首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 872 毫秒
1.
Abstract The first fossil dance fly, Empis (s.s.) orapaensis sp.nov., of the subfamily Empidinae (Diptera: Empididae) is described from Africa. It was extracted from middle Cretaceous sediments of Orapa, Botswana.
Empis orapaensis manifests a more plesiomorphous wing venational pattern then the extant species of Empis , and a list of the apomorphic and plesiomorphic characteristics is given. The specimen modifies earlier ideas on the phylogeny of the Empidoidea.
The fossil also provides us with more conclusive evidence on the environment of Cretaceous southern Africa. E.orapanenis probably had a similar life-style to extant members of the group and therefore visited flowers.  相似文献   

2.
3.
Dicotyledonous woods from the Upper Cretaceous of Southern IllinoiS. Five species of fossil dicotyledonous wood are described from an Upper Cretaceous (Maestrichtian; locality in Alexander County, IllinoiS. U.S. A. Paraquercimum cretaceum has structure similar to the Fagaceae (evergreen Oak- Lithocarpus ) and Casuarinaceae and represents the earliest known occurrence of this structural type (large solitary pores and uniseriate and large multiseriale rays). Paraphyltanthoxyhin illirioisense and Icacinoxylon alternipunctata are species of genera represented at other Cretaceous and Early Tertiary localities In large diameter trees. Parabombacaceoxylon magniporosum has large diameter pores and scalariform perforation plates, a combination of characters that is extremely rare in the extant flora. Paraapocynaceoxylon barghoorni has a combination of characters represented in extant Apocynaceae. These five species lack growth rings, have high vulnerability indices (mean vessel diameter divided by mean number of vessels per square millimeter, and a relatively high proportion of ray parenchyma. They lack specialized wood anatomical characters, and a compilation of vessel element lengths in these and other Cretaceous woods indicates that short vessel elements (a derived character) were less frequent in the Cretaceous than in extant dicotyledonous trees.  相似文献   

4.
A fossil Mycetophilidae from the Aptian Crato Formation—Cretomanota gondwanica gen. nov., sp. nov.—is described, which is the first mycetophilid from the Crato Formation and corresponds to the oldest known fossil leiine and only the second Gondwanan fossil mycetophilid described so far. Cretomanota gondwanica and both species of Alavamanota Blagoderov and Arillo were added as terminals to the data matrix of a general phylogenetic analysis of the Mycetophilidae, and both fit into the Leiinae. Alavamanota is monophyletic, sister to the clade composed by Cretomanota and the extant genus Manota Williston. The biology of the extant members of this fungivorous family corroborates the reconstruction of the Crato palaeoenvironment as including woodlands with humid habitats and microhabitats. The presence of a Cretaceous member of the tribe Manotini at low latitudes in South America reinforces the hypothesis that the clade with all manotines except Leiella Edwards corresponds to a Lower Cretaceous offshoot from a group in southern Gondwana expanding its distribution to more northern areas into the Gondwana and into Laurasia.  相似文献   

5.
Recent discoveries of new fossil hominid species have been accompanied by several phylogenetic hypotheses. All of these hypotheses are based on a consideration of hominid craniodental morphology. However, Collard and Wood (2000) suggested that cladograms derived from craniodental data are inconsistent with the prevailing hypothesis of ape phylogeny based on molecular data. The implication of their study is that craniodental characters are unreliable indicators of phylogeny in hominoids and fossil hominids but, notably, their analysis did not include extinct species. We report here on a cladistic analysis designed to test whether the inclusion of fossil taxa affects the ability of morphological characters to recover the molecular ape phylogeny. In the process of doing so, the study tests both Collard and Wood's (2000) hypothesis of character reliability, and the several recently proposed hypotheses of early hominid phylogeny. One hundred and ninety-eight craniodental characters were examined, including 109 traits that traditionally have been of interest in prior studies of hominoid and early hominid phylogeny, and 89 craniometric traits that represent size-corrected linear dimensions measured between standard cranial landmarks. The characters were partitioned into two data sets. One set contained all of the characters, and the other omitted the craniometric characters. Six parsimony analyses were performed; each data set was analyzed three times, once using an ingroup that consisted only of extant hominoids, a second time using an ingroup of extant hominoids and extinct early hominids, and a third time excluding Kenyanthropus platyops. Results suggest that the inclusion of fossil taxa can play a significant role in phylogenetic analysis. Analyses that examined only extant taxa produced most parsimonious cladograms that were inconsistent with the ape molecular tree. In contrast, analyses that included fossil hominids were consistent with that tree. This consistency refutes the basis for the hypothesis that craniodental characters are unreliable for reconstructing phylogenetic relationships. Regarding early hominids, the relationships of Sahelanthropus tchadensis and Ardipithecus ramidus were relatively unstable. However, there is tentative support for the hypotheses that S. tchadensis is the sister taxon of all other hominids. There is support for the hypothesis that A. anamensis is the sister taxon of all hominids except S. tchadensis and Ar. ramidus. There is no compelling support for the hypothesis that Kenyanthropus platyops shares especially close affinities with Homo rudolfensis. Rather, K. platyops is nested within the Homo + Paranthropus + Australopithecus africanus clade. If K. platyops is a valid species, these relationships suggest that Homo and Paranthropus are likely to have diverged from other hominids much earlier than previously supposed. There is no support for the hypothesis that A. garhi is either the sister taxon or direct ancestor of the genus Homo. Phylogenetic relationships indicate that Australopithecus is paraphyletic. Thus, A. anamensis and A. garhi should be allocated to new genera.  相似文献   

6.
The relationships among families of catfishes are poorly understood and have yet to be the subject of a comprehensive investigation with molecular data. Existing phylogenetic hypotheses are based on morphological data and incompletely resolved. This study analyzed complete sequences of mitochondrial gene cytochrome b for 170 species from 29 of 33 extant families, and focused on the relationships of Ictaluridae to other catfishes. In addition to previous phylogenetic studies, the fossil record, paleogeography, biogeography, and distribution of extant catfish families collectively suggest the location (if extant) of the ictalurid sister taxon to be Northern or Eastern Asia. Of the extant catfishes currently native to this area and included in this analysis, parsimony and Bayesian likelihood analyses recovered Cranoglanis bouderius as the most proximal sister taxon of Ictaluridae. Seemingly, ictalurids and cranoglanidids represent another biogeographic component linking freshwater fishes of North America and eastern Asia, e.g., catostomids and paddlefishes. The results coupled with present-day catfish distributions and inferences from the fossil record collectively suggest the ancestor of Ictaluridae to have invaded freshwaters of North America at the close of the Cretaceous through northeastern Asia and northwestern North America. Other superfamilial nodes supported the results of previous phylogenetic studies of narrower taxonomic scope. Several novel relationships were recovered (including a clade composed of Pimelodidae, Pseudopimelodidae, and Heptapteridae) and these along with sources of systematic error are discussed. A broad sampling of Bagridae permitted an examination of intergeneric relationships within this family and in light of recent morphological and molecular studies.  相似文献   

7.
Skates, rays and allies (Batoidea) comprise more than half of the species diversity and much of the morphological disparity among chondrichthyan fishes, the sister group to all other jawed vertebrates. While batoids are morphologically well characterized and have an excellent fossil record, there is currently no consensus on the interrelationships of family-level taxa. Here we construct a resolved, robust and time-calibrated batoid phylogeny using mitochondrial genomes, nuclear genes, and fossils, sampling densely across taxa. Data partitioning schemes, biases in the sequence data, and the relative informativeness of each fossil are explored. The molecular phylogeny is largely congruent with morphology crownward in the tree, but the branching orders of major batoid groups are mostly novel. Body plan convergence appears to be widespread in batoids. A depressed, rounded pectoral disk supported to the snout tip by fin radials, common to skates and stingrays, is indicated to have been derived independently by each group, while the long, spiny rostrum of sawfishes similarly appears to be convergent with that of sawsharks, which are not batoids. The major extant batoid lineages are inferred to have arisen relatively rapidly from the Late Triassic into the Jurassic, with long stems followed by subsequent radiations in each group around the Cretaceous/Tertiary boundary. The fossil record indicates that batoids were affected with disproportionate severity by the end-Cretaceous extinction event.  相似文献   

8.
? Premise of the study: Pinaceae and nonpinoid species are sister groups within the conifer clade as inferred from molecular systematic comparisons of living species and therefore should have comparable geological ages. However, the fossil record for the nonpinoid lineage of extant conifer families is Triassic, nearly 100 million years older than the oldest widely accepted Lower Cretaceous record for Pinaceae. An anatomically preserved fossil conifer seed cone described here extends the stratigraphic range of Pinaceae nearly 30 million years, thus reducing the apparent discrepancy between evidence from the fossil record and inferences from systematic studies of living species. ? Methods: Material was prepared as serial thin sections by the cellulose acetate peel technique, mounted on microscope slides, and viewed and photographed using transmitted light. ? Key results: A large cylindrical cone consisting of bract-scale complexes that diverge from the cone axis in a helical phyllotaxis has bracts and scales that separate from each other in the midregion and are of equal length and of nearly equal width. The cone has two inverted and winged seeds that are attached to the adaxial surface of each cone scale and, thus, represents an early member of the Pinaceae. ? Conclusions: Eathiestrobus mackenziei gen. et sp. nov. extends the fossil record for well-documented members of the family Pinaceae from the Lower Cretaceous to the Kimmeridgian Stage of the Upper Jurassic. This species also clarifies the set of characters that are diagnostic for seed cones of Pinaceae and reveals possible plesiomorphic characters for seed cones of the family.  相似文献   

9.
Explanations of the distributions of terrestrial vertebrates during the Mesozoic are currently vigorously contested and debated in palaeobiogeography. Recent studies focusing on dinosaurs yield conflicting hypotheses. Dispersal, coupled with regional extinction or vicariance driven by continental break-up, have been cited as the main causal factors behind dinosaur distributions in the Mesozoic. To expand the scope of the debate and test for vicariance within another terrestrial group, I herein apply a cladistic biogeographical method to a large sample of Cretaceous crocodyliform taxa. A time-slicing methodology is employed and a refinement made to account for the divergence times of the analysed clades. The results provide statistically significant evidence that Gondwana fragmentation affected crocodyliform diversification during the Mid-Late Cretaceous. Detection of a vicariant pattern within crocodyliforms is important as it helps corroborate vicariance hypotheses in other fossil and extant groups as well as furthers the move towards more taxonomically diverse approaches to palaeobiogeographical research.  相似文献   

10.
《Palaeoworld》2023,32(1):116-123
The oldest fossils assigned to Athyrium (mostly based on the sorus morphology) comprise fronds and spores from the Lower Cretaceous of Northeast Asia. However, most molecular dating suggests that extant Athyrium diverged from its sister genus during the Eocene or later, implying that the Cretaceous fossils probably belong to another polypodiaceous taxon. By examining the sorus morphology of extant genera related to the family Athyriaceae, we found that the primary diagnostic feature for assigning the Cretaceous fossils to Athyrium, i.e., the sorus shape, is common to the entire extant family, or plesiomorphic for the genus. As the fronds are more commonly preserved than the reproductive parts, we compared the fossil frond morphology with those of living taxa of the family that is divided into two types. The Cretaceous fossil we examined here bears the frond’s costal groove characters on adaxial side, which is more closely related to that of the Deparia-clade instead of the clade including Athyrium and other genera of the family. The observation is further confirmed by the cladistic analysis using morphological characters. The systematic position of the Early Cretaceous “Athyrium” was resolved as a stem member of the total Athyriaceae using a tip-dating approach with the Fossilized Birth-Death model in a Bayesian framework. Our study suggests that Early Cretaceous fossils previously assigned to Athyrium require taxonomic revision.  相似文献   

11.
The position of the earliest-derived living molluscs, the Polyplacophora (chitons) and shell-less vermiform Aplacophora, remains highly contentious despite many morphological, developmental and molecular studies of extant organisms. These two groups are thought to represent either a basal molluscan grade or a clade (Aculifera) sister to the 'higher' molluscs (Conchifera). These incompatible hypotheses result in very different predictions about the earliest molluscs. A new cladistic analysis incorporating both Palaeozoic and extant molluscs is presented here. Our results support the monophyly of Aculifera and suggest that extant aplacophorans and polyplacophorans both derive from a disparate group of multivalved molluscs in two major clades. Reanalysis of the critical Ordovician taxon 'Helminthochiton' thraivensis shows that this animal lacks a true foot despite bearing polyplacophoran-like valves. Its position within our phylogenetic reconstruction indicates that many fossil 'polyplacophorans' in the order Palaeoloricata are likely to represent footless stem-group aplacophorans. 'H.' thraivensis and similar forms such as Acaenoplax may be morphological stepping stones between chitons and the shell-less aplacophorans. Our results imply that crown-group molluscan synapomorphies include serial repetition, the presence of a foot, a mineralized scleritome and a creeping rather than worm-like mode of life.  相似文献   

12.
HistoricalreviewoneshouldexpectthatanewtheorychangesorimprovestheunderstandingofPhylogeneticquestions.ThatdoesnotseemtobetrueoftheoriginoftetrapodsasRosenetal.(l98l)havealreadyshowninthecaseoftheapPearanceofDarwin's'ontheoriginofsPecies"inl859.Incontrast,thehistoryofthedevelopmentofhypothesesontheoriginoftetrapodsdemonstratesthatdiscoveryofnewextantorfos-silforms(Tab.l)shapesourunderstandingoftherelationshipoftetrapodstofishes.Thefrstextantlungfishwasdiscoveredinl836inSouthAmerica(Fitzinge…  相似文献   

13.
The Southern Hemisphere conifer family Araucariaceae has a very restricted present day distribution, but was more widespread in the past. The genusAraucaria is represented by good fossil material in both hemispheres as early as the Jurassic, whileAgathis is only known from the Southern Hemisphere beginning in the Cretaceous. Cuticle studies of extant araucarians have enabled accurate comparisons of fossil leaves to living taxa.Araucaria SectionBunya is represented by cones of several types in the Jurassic. In addition to these remains, a suite of araucarian cones showing affinities to several sections of the genusAraucaria have been described from England, Japan and North America. Evidence that fossil araucarian cones may have produced seeds with hypogeal germination is discussed in light of recent work on germination of extant bunya seedlings and the discovery of new fossil shoots from the Jurassic Morrison Formation of Utah.  相似文献   

14.
A NEW PIPINE FROG FROM AN EOCENE CRATER LAKE IN NORTH-CENTRAL TANZANIA   总被引:1,自引:0,他引:1  
Abstract:  The fossiliferous site of Mahenge, Tanzania, interpreted as a small lake that formed in a kimberlite intrusion, has yielded a vertebrate assemblage that includes scarce frog remains. Radiometric dating of the pipe indicates that the volcanic activity took place at 45·83 ± 0·17 Ma, whereas infilling of the crater was completed in 0·2–1·0 myr after emplacement. The frogs, described herein, are preserved as partially articulated skeletons that represent a new pipine taxon, Singidella latecostata gen. et sp. nov. A parsimony analysis of fossil and extant pipoid frogs indicates that Singidella is more closely related to African Hymenochirus and Pseudhymenochirus than to South American Pipa . It also provides weak support for the sister-group relationship of Singidella and the bizarre Late Cretaceous Pachycentrata taqueti (replacement name for Pachybatrachus taqueti ) from Niger, although the incomplete preservation of Pachycentrata precludes thorough comparisons. This record indicates that prior to the rifting in the Miocene the distribution of pipines extended into eastern Africa where they do not occur today.  相似文献   

15.
A new genus and species (Caryophylloflora paleogenica genus and species nova G. J. Jord. & Macphail) are proposed for a fossil inflorescence found in Middle-Late Eocene sediments at Locharbour, northeastern Tasmania, Australia. A parsimony analysis of 75 extant species of the order Caryophyllales and five outgroups placed the fossil within Caryophyllaceae, either subfamily Alsinoideae or Caryophylloideae. The analysis used molecular (rbcL and/or matK), morphological, and anatomical data for the extant species and morphological data for the fossil. Tests on extant species imply that the placement of the fossil should be convincing. The fossil appears to be of a lineage distinct from any extant Australian Caryophyllaceae. In situ pollen are consistent with the form species, Periporopollenites polyoratus. This relatively simple pollen type first appears in Australia and New Zealand in the Late Cretaceous, the oldest known record of the Caryophyllaceae. The last appearance of P. polyoratus in Australia is in the Oligocene, and extant Australian members of the Caryophyllaceae are best interpreted as having evolved from species that dispersed from elsewhere during the Neogene or Quaternary.  相似文献   

16.
The first two fossil species of the canthyloscelid genus Synneuron are described based on compression wings. Synneuron eomontana sp. nov. is described from the Middle Eocene Coal Creek Member of the Kishenehn Formation, in the USA, and Synneuron jelli sp. nov. is described from the Lower Cretaceous Koonwarra Fossil Bed of the Korumburra Group, in Australia. The wings are illustrated and compared to the extant species of the genus, to species of the three other recent genera of Canthyloscelidae and to an anisopodid. A phylogenetic analysis of the relationships between the species of Synneuron was performed. The Eocene fossil S. eomontana appears as sister of the pair of recent Holarctic species of the genus, while the Australian Cretaceous species S. jelli is sister of the clade with the species of Synneuron of the northern hemisphere. The sister group of Synneuron is the canthyloscelid clade (Hyperoscelis + Canthyloscelis), for which a middle Jurassic fossil is known. At the early Cretaceous, Gondwana was already separated from Laurasia and the disjunction between the species of Synneuron in Australia and the northern hemisphere clade of the genus suggest a true pangeic origin for the genus. The biology of the canthyloscelid larvae is shaped by its trophic specialization—xylosaprophagous. This suggests that the transition from the Pangean Jurassic gymnosperm-dominated forests to the late Cretaceous angiosperm-dominated forests may be related to the low recent diversity of Synneuron or of the canthyloscelids in the world—and maybe to the extinction of the genus in the southern hemisphere. This major turnover of the vegetation type along the Cretaceous may be also somehow related to the complete extinction of other groups of flies strictly associated with gymnosperms, as may be the case of the lower brachyceran family Zhangsolvidae. This speculation needs additional corroboration from other groups, that will become available with the combination of systematics, paleontology and biogeographical information of different early Cretaceous clades.  相似文献   

17.
Seahorses (Syngnathidae: Hippocampus) are iconic marine teleosts that are readily identifiable by their upright posture. The fossil record is inadequate to shed light on the evolution of this trait because it lacks transitional forms. There are, however, extant syngnathid species (the pygmy pipehorses) that look like horizontally swimming seahorses and that might represent a surviving evolutionary link between the benthic seahorses and other, free-swimming members of the family Syngnathidae. Using sequence data from five nuclear loci, we confirm the sister taxon relationship between seahorses and pygmy pipehorses. Molecular dating indicates that the two taxa diverged during the Late Oligocene. During this time, tectonic events in the Indo-West Pacific resulted in the formation of vast amounts of new shallow-water areas and associated expansion of seagrass habitats that would have favoured the seahorses’ upright posture by improving their camouflage while not affecting their manoeuvrability negatively. The molecular techniques employed here provide new insights into the evolution of a taxon whose fossil record is incomplete, but whose evolutionary history is so recent that the major stages of morphological evolution are still represented in extant species.  相似文献   

18.
Jack A. Wolfe 《Brittonia》1973,25(4):334-355
Review of the procedures used in determining fossil plant organs indicates that the many Cretaceous records of extant genera of “Amentiferae” based on leaves should be rejected as theoretically unreliable. Palynological data, in combination with some valid megafossil data, indicate that most recognizable members of “Amentiferae” are no older than the later part of the Late Cretaceous. Juglandales appear to be derivatives of the ancient Normapolles complex and unrelated to other “Amentiferae.” A preliminary account of some of the comparative foliar morphology of extant “Amentiferae” indicates that some—particularly Betulaceae and Fagaceae—are closely related to Hamamelidales but that other families—notably Rhoipteleaceae, Juglandaceae, Didymelaceae, and Leitneriaceae—are unrelated to this order.  相似文献   

19.
The phylogeny of cetaceans is still unresolved. Two hypotheses prevail for the position of cetaceans among ungulates. The first hypothesis shows that Artiodactyla is monophyletic and is sister taxon to a clade composed of cetaceans and mesonychians. The second one shows that Artiodactyla is paraphyletic and contains Cetacea that is sister taxon of Hippopotamida. These hypotheses are based on fossil records and molecular studies. The behaviour of extant species can provide as much phylogenetic information as other classical parameters. I considered the behaviour observed during male agonistic interactions in placental mammals in order to determine which of these hypotheses was supported by the behaviour of extant species. Headbutting was only observed in ruminants, hippopotamids and cetaceans, supporting the paraphyletic nature of Artiodactyla. Primitive ruminants (tragulids) and two genera of ruminants (Moschus and Oreamnos) were not observed headbutting. These secondary losses were only present in 6.25% of the 48 surveyed ruminant genera. Head-to-head attacks emerged in pigs, which have developed dermal protusions. Yet, these confrontations are not based on mutual blow delivery. The behavioural evidence supports the inclusion of cetaceans in Artiodactyla.  相似文献   

20.
Recent discoveries of fossil reproductive structures from deposits of the Raritan Formation in New Jersey (Turonian, Upper Cretaceous, ~90 million years BP) include a previously undescribed representative of the Order Capparales. The fossils are usually charcoalified with three-dimensional structure and excellent anatomical details. In the present contribution, we introduce a taxon represented by fossil flowers that have a combination of characters now found in the families of the Order Capparales sensu Cronquist. The fossil species is characterized by an unique suite of characters, such as the presence of a gynophore, arrangement of the sepals, unequal petal size, monothecal anthers, and a bicarpellate gynoecium, that are found in extant families of the Order Capparales. This new taxon constitutes an important addition to our understanding of Cretaceous angiosperm diversity and represents the oldest known fossil record for the Capparales. Heretofore, the oldest known capparalean was from the Late Tertiary sediments of North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号