首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular diagnostics of 27 from 26 Ukrainian families has been performed. The common mutations in GBA gene (N370S, L444P and 84GG) accounted for up to 58% of all cases: mutation N370S was detected in 42.3% alleles, mutation L444P was observed in 15.4% alleles and mutation 84GG was not found at all. The other mutations were: P178S, W184R and Rec Nci I (in compounds with N370S) in the patients with nonneuronopathic form of Gaucher disease, and the genotypes G377S/c 999G --> A and D409H/R120W/G202R were detected in patients with chronic neuronopathic form of Gaucher disease. The data analysis of the genotype and disease progression in the patients allows confirming the known genotype-phenotype correlation.  相似文献   

2.
Gaucher disease (GD) is the most frequent lysosomal storage disease presenting in all populations. Mutations in the acid β-D-glucosidase gene (GBA) cause development of GD, resulting in a decrease or full loss of activity of this enzyme. We report here the results of the molecular-genetic analysis in 68 Russian GD patients from 65 families with the three types of this disease. The GD genotype has been completely elucidated in 58 patients and in all patients we have found at least one mutant allele (92.6%). Besides frequent mutations (p.N370S, c.1263_1317del (del55), p.L444P, p.R463C, Rec NciI) we have identified rare mutations p.R120W, p.R170C, p.R184W, p.G202R, Rec C (p.R120W; p.W184R; p.N188K; p.V191G; p.S196P; p.G202R; p.F213I), presenting in other populations of GD patients. The mutations p.P236T, p.L249Q, p.L288P, p.P319S, p.V352M, p.W381X, p.A384D identified in this study had not been described before. The GBA mutations identified in Russian patients have been compared with those found in patients of other European countries. Genotype-phenotype correlations in GD are discussed.  相似文献   

3.
Gaucher's disease is the most inherited lysosomal storage disorder. Except for a few cases, the broad phenotypic heterogeneity of Gaucher's disease can be neither predicted from defined mutations nor from differences in residual enzyme activity. Here, we analyse the intracellular trafficking of glucocerebrosidase as an underlying mechanism for the expression of the clinical phenotype. Biosynthetic labeling studies combined with immunofluorescence analyses with fibroblasts from patients with the defined mutations N370S, L444P, D409H and G202R unequivocally demonstrate a retarded transport of glucocerebrosidase carrying the mutation N370S and a transport block in the ER of the enzyme with the mutations G202R, L444P and D409H. We asked whether cellular components in the patients' fibroblasts other than glucocerebrosidase are implicated in the onset of the disease. For this, mutant cDNA's corresponding to the phenotypes N370S, G202R and L444P were expressed in the mouse fibroblasts NIH3T3. Essentially similar biochemical and cellular features were revealed as compared to the patients' fibroblasts strongly suggesting that these mutations are exclusively responsible for the characterized phenotypes. Interestingly, the immunoglobulin binding protein (BiP) binds wild type and the mutant N370S but not the G202R and L444P variants suggesting a discriminatory role played by this chaperone associated with the severity of the disease.  相似文献   

4.
Gaucher disease: gene frequencies in the Ashkenazi Jewish population.   总被引:7,自引:1,他引:6  
DNA from over 2,000 Ashkenazi Jewish subjects has been examined for the four most common Jewish Gaucher disease mutations, which collectively account for about 96% of the disease-producing alleles in Jewish patients. This population survey has made possible the estimation of gene frequencies for these alleles. Eighty-seven of 1,528 individuals were heterozygous for the 1226G (N370S) mutation, and four presumably well persons were homozygous for this mutation. The gene frequency for the 1226G allele was calculated to be .0311, and when these data were pooled with those obtained previously from another 593 Jewish subjects, a gene frequency of .032 with a standard error of .004 was found. Among 2,305 normal subjects, 10 were found to be heterozygous for the 84GG allele, giving a gene frequency of .00217 with a standard error of .00096. No examples of the IVS2(+1) mutation were found among 1,256 samples screened, and no 1448C (L444P) mutations were found among 1,528 samples examined. Examination of the distribution of Gaucher disease gene frequencies in the general population shows that the ratio of 1226G mutations to 84GG mutations is higher than that in the patient population. This is presumed to be due to the fact that homozygotes for the 1226G mutation often have late-onset disease or no significant clinical manifestations at all. To bring the gene frequency in the patient population into conformity with the gene frequency in the general population, nearly two-thirds of persons with a Gaucher disease genotype would be missing from the patient population, presumably because their clinical manifestations were very mild.  相似文献   

5.
Type 1 Gaucher disease (GD), a non-neuronopathic lysosomal storage disorder, results from the deficient activity of acid beta-glucosidase (GBA). Type 1 disease is panethnic but is more prevalent in individuals of Ashkenazi Jewish (AJ) descent. Of the causative GBA mutations, N370S is particularly frequent in the AJ population, (q approximately .03), whereas the 84GG insertion (q approximately .003) occurs exclusively in the Ashkenazim. To investigate the genetic history of these mutations in the AJ population, short tandem repeat (STR) markers were used to map a 9.3-cM region containing the GBA locus and to genotype 261 AJ N370S chromosomes, 60 European non-Jewish N370S chromosomes, and 62 AJ 84GG chromosomes. A highly conserved haplotype at four markers flanking GBA (PKLR, D1S1595, D1S2721, and D1S2777) was observed on both the AJ chromosomes and the non-Jewish N370S chromosomes, suggesting the occurrence of a founder common to both populations. Of note, the presence of different divergent haplotypes suggested the occurrence of de novo, recurrent N370S mutations. In contrast, a different conserved haplotype at these markers was identified on the 84GG chromosomes, which was unique to the AJ population. On the basis of the linkage disequilibrium (LD) delta values, the non-Jewish European N370S chromosomes had greater haplotype diversity and less LD at the markers flanking the conserved haplotype than did the AJ N370S chromosomes. This finding is consistent with the presence of the N370S mutation in the non-Jewish European population prior to the founding of the AJ population. Coalescence analyses for the N370S and 84GG mutations estimated similar coalescence times, of 48 and 55.5 generations ago, respectively. The results of these studies are consistent with a significant bottleneck occurring in the AJ population during the first millennium, when the population became established in Europe.  相似文献   

6.
Mutations of glucocerebrosidase (GBA) confer susceptibility to Parkinson''s disease in several ethnical populations, with a high incidence especially in the Ashkenazi Jewish population. Although there are several studies that have investigated a similar association in a Chinese population, small sample sizes and few positive outcomes have made it difficult to obtain conclusive results from these individual studies. Therefore, the present study used a meta-analysis approach, pooling the appropriate data from published studies to investigate the association of GBA mutations and Parkinson''s disease in a Chinese population. Nine studies containing 6536 Chinese subjects (3438 cases and 3098 healthy controls) and examining the GBA mutations of L444P, N370S and several other mutations were included. Review Manager 5.2 software was applied to analyze the pooled odds ratios (ORs) and 95% confidence intervals (CIs). The results showed a significant association of Parkinson''s disease risk with overall GBA mutations (OR = 6.34, 95% CI = 3.77–10.68, p<0.00001), and with the subgroup of L444P mutation (OR = 11.68, 95% CI = 5.23–26.06, p<0.00001). No such association was observed for the subgroup with N370S mutation or other mutations, in part because of the small sample size or rare events. Thus, for the rare occurrence of GBA mutations, studies with larger sample size are necessary to minimize the sampling error and to obtain convincing results.  相似文献   

7.
Gaucher disease results from the inherited deficiency of the enzyme glucocerebrosidase (EC 3.2.1.45). Although >100 mutations in the gene for human glucocerebrosidase have been described, most genotype-phenotype studies have focused upon screening for a few common mutations. In this study, we used several approaches-including direct sequencing, Southern blotting, long-template PCR, restriction digestions, and the amplification refraction mutation system (ARMS)-to genotype 128 patients with type 1 Gaucher disease (64 of Ashkenazi Jewish ancestry and 64 of non-Jewish extraction) and 24 patients with type 3 Gaucher disease. More than 97% of the mutant alleles were identified. Fourteen novel mutations (A90T, N117D, T134I, Y135X, R170C, W184R, A190T, Y304X, A341T, D399Y, c.153-154insTACAGC, c.203-204insC, c.222-224delTAC, and c.1122-1123insTG) and many rare mutations were detected. Recombinant alleles were found in 19% of the patients. Although 93% of the mutant alleles in our Ashkenazi Jewish type 1 patients were N370S, c.84-85insG, IVS2+1G-->A or L444P, these four mutations accounted for only 49% of mutant alleles in the non-Jewish type 1 patients. Genotype-phenotype correlations were attempted. Homozygosity or heterozygosity for N370S resulted in type 1 Gaucher disease, whereas homozygosity for L444P was associated with type 3. Genotype L444P/recombinant allele resulted in type 2 Gaucher disease, and homozygosity for a recombinant allele was associated with perinatal lethal disease. The phenotypic consequences of other mutations, particularly R463C, were more inconsistent. Our results demonstrate a high rate of mutation detection, a large number of novel and rare mutations, and an accurate assessment of the prevalence of recombinant alleles. Although some genotype-phenotype correlations do exist, other genetic and environmental factors must also contribute to the phenotypes encountered, and we caution against relying solely upon genotype for prognostic or therapeutic judgements.  相似文献   

8.
Clinical signs and symptoms of Gaucher disease are more severe in Japanese than in Jewish and other non-Japanese patients. A higher percentage of bone crises and splenectomy was demonstrated by Japanese patients, and there were five fatalities among patients with type 1 Gaucher disease. Additionally, neonatal Gaucher disease, clinically characterized by hydrops foetalis, was observed. Japanese patients with type 2 and type 3 disease also demonstrate clinical heterogeneity. About 100 alleles of patients with Japanese Gaucher disease were examined for genotype determination with the PCR and SSCP methods. About 18 different mutations, including several novel mutations in Japanese patients, were identified. The most common mutations in Japanese patients were 1448C(L444P), accounting for 41 (41%) of alleles. The second most prevalent mutation was 754A(F2131), accounting for 14 (14%) of alleles. Other alleles identified included the 1324C, IVS2 and other mutations. Unidentified alleles comprised 16% of the total number of alleles studied. To date, neither the 1226G (N370S) nor the 84GG mutation has been identified in the Japanese population, although these mutations account for about 70% and 10% of the mutations in Jewish and other non-Japanese populations, respectively. The phenotype-genotype correlation in Japanese patients is more complex compared with that of the Jewish population. In Japanese patients, the 1448C mutation, in either heteroallelic or homoallelic forms, exhibits both neurological and non-neurological phenotypes. Japanese patients with the 754A mutation also exhibit both neuronopathic and non-neuronopathic disease. On the other hand, patients with the D409H mutation show only type 3 neurological disease, and those with the 1447–1466 del 20 ins TG mutation have the severe, neonatal neurological form of Gaucher disease. The 1503T allele was present only in patients with type 1 non-neurological disease. However, since this correlation was observed only in young patients, we do not as yet know the final phenotypic outcome of this mutation. Probably, Japanese patients with Gaucher disease have few mutations that exhibit non-neurological signs and symptoms.  相似文献   

9.
Alternating hemiplegia of childhood (AHC) is a rare and severe neurological disorder. ATP1A3 was recently identified as the causative gene. Here we report the first genetic study in Chinese AHC cohort. We performed whole-exome sequencing on three trios and three unrelated patients, and screened additional 41 typical cases and 100 controls by PCR-Sanger sequencing. ATP1A3 mutations were detected in 95.7% of typical AHC patients. At least 93.3% were de novo. Four late onset, atypical AHC patients were also mutation positive, suggesting the need for testing ATP1A3 mutations in atypical cases. Totally, 13 novel missense mutations (T370N, G706R, L770R, T771N, T771I, S772R, L802P, D805H, M806K, P808L, I810N, L839P and G893R) were identified in our study. By homology modeling of the mutant protein structures and calculation of an extensive list of molecular features, we identified two statistically significant molecular features, solvent accessibility and distance to metal ion, that distinguished disease-associated mutations from neutral variants. A logistic regression classifier achieved 92.9% accuracy by the average of 100 times of five-fold cross validations. Genotype-phenotype correlation analysis showed that patients with epilepsy were more likely to carry E815K mutation. In summary, ATP1A3 is the major pathogenic gene of AHC in Chinese patients; mutations have distinctive molecular features that discriminate them from neutral variants and are correlated with phenotypes.  相似文献   

10.
Gaucher disease is the most frequent lysosomal storage disease and the most prevalent genetic disease among Ashkenazi Jews. Gaucher disease type 1 is characterized by marked variability of the phenotype and by the absence of neuronopathic involvement. To test the hypothesis that this phenotypic variability was due to genetic compounds of several different mutant alleles, 161 symptomatic patients with Gaucher disease type 1 (> 90% Ashkenazi Jewish) were analyzed for clinical involvement, and their genotypes were determined. Qualitative and quantitative measures of disease involvement included age at onset of the disease manifestations, hepatic and splenic volumes, age at splenectomy, and severity of bony disease. Highly statistically significant differences (P < .005) were found in each clinical parameter in patients with the N370S/N370S genotype compared with those patients with the N370S/84GG, N370S/L444P, and N370S/? genotypes. The symptomatic N370S homozygotes had onset of their disease two to three decades later than patients with the other genotypes. In addition, patients with the latter genotypes have much more severely involved livers, spleens, and bones and had a higher incidence of splenectomy at an earlier age. These predictive genotype analyses provide the basis for genetic care delivery and therapeutic recommendations in patients affected with Gaucher disease type 1.  相似文献   

11.
The yeast Saccharomyces cerevisiae was used to validate the pathogenic significance of eight human mutations in the gene encoding for the mitochondrial DNA polymerase gamma, namely G303R, S305R, R386H, R574W, P625R, D930N, K947R and P1073L, among which three are novel and four are of unclear pathological significance. Mitochondrial DNA extended and point mutability as well as dominance/recessivity of each mutation has been evaluated. The analysis in yeast revealed that two mutations, S305R and R386H, cannot be the sole cause of pathology observed in patients. These data led us to search for a second mutation in compound with S305R and we found a mutation, P1073L, missed in the first genetic analysis. Finally, a significant rescue of extended mutability has been observed for several dominant mutations by treatment with mitochondrial antioxidants.  相似文献   

12.
The autosomal dominant disorder, variegate porphyria (VP), results from mutations in the protoporphyrinogen oxidase (PPOX) gene. We have investigated the effects of 22 disease-associated missense mutations in this gene on enzyme activity. Mutants were generated in the expression plasmid pHPPOX by site-directed mutagenesis. They were screened for PPOX activity by complementation of the Escherischia coli strain SAS38X which lacks PPOX activity. Ten mutants (G40E, L85P, G232R, de1281H, V282D, L295P, V335G, S350P, L444P, G453V) had no detectable PPOX activity. PPOX activity of the remaining 12 mutants (L15F, R38P, L73P, V84G, D143V, R152C, L154P, V158M, R168H, A172V, V290L, G453R) ranged from less than 1% to 9.2% of wild-type activity. Our findings show that all 22 mutations substantially impair or abolish PPOX activity in a prokaryotic expression system and add to the evidence that they cause VP.  相似文献   

13.
Gaucher disease (GD), caused by a defect of beta-glucosidase (beta-Glu), is the most common form of sphingolipidosis. We have previously shown that a carbohydrate mimic N-octyl-beta-valienamine (NOV), an inhibitor of beta-Glu, could increase the protein level and enzyme activity of F213I mutant beta-Glu in cultured GD fibroblasts, suggesting that NOV acted as a pharmacological chaperone to accelerate transport and maturation of this mutant enzyme. In the current study, NOV effects were evaluated in GD fibroblasts with various beta-Glu mutations and in COS cells transiently expressing recombinant mutant proteins. In addition to F213I, NOV was effective on N188S, G202R and N370S mutant forms of beta-Glu, whereas it was ineffective on G193W, D409H and L444P mutants. When expressed in COS cells, the mutant proteins as well as the wild-type protein were localized predominantly in the endoplasmic reticulum and were sensitive to Endo-H treatment. NOV did not alter this localization or Endo-H sensitivity, suggesting that it acted in the endoplasmic reticulum. Profiling of N-alkyl-beta-valienamines with various lengths of the acyl chain showed that N-dodecyl-beta-valienamine was as effective as NOV. These results suggest a potential therapeutic value of NOV and related compounds for GD with a broad range of beta-Glu mutations.  相似文献   

14.
In the present study, 1000 patients with clinical suspicion of FMF were retrospectively reviewed to determine the spectrum of MEFV gene mutations by using DNA sequence analysis between September, 2008 and April, 2012. Sixteen different mutations and 55 different genotypes were detected in 618 of 1000 patients. Among 16 different mutations, R202Q (21.35%) was the most frequently observed mutation; followed by E148Q (8.85%), M694V (7.95%), M680I (2.40%), V726A (1.85%), M694I (0.95%), A744S (0.80%), R761H (0.55%), P283L (0.35%), K695R (0.20%), E230K (0.15%), L110P (0.10%), I247V (0.05%), G196W (0.05%) and G304R (0.05%). In the present study, a novel missense mutation (I247V) and a silent variant (G150G) were identified in the MEFV gene. On the other hand, P238L, G632A and G304R mutations are the first cases reported from Turkey. Our results indicated that MEFV mutations are highly heterogeneous in our study population as in other regions of Turkey and mutation screening techniques such as PCR-RFLP, amplification refractory mutation system or reverse hybridization do not adequately detect uncommon or novel mutations. Therefore, it was proven that sequence analysis of the MEFV gene could be useful for detection of rare or unknown mutations.  相似文献   

15.
Summary We have developed a simple rapid DNA screening test that allows us simultaneously to analyze seven CF mutations (deltaF508, R347P, S549N, G551D, R553X, R334W, 444delA) that together account for about 60% of all CF mutations in the Italian population. It consists of three steps: multiplex polymerase chain reaction (PCR) amplification of exons 4, 7, 10 and 11; restriction endonuclease digestion of the PCR products; and vertical polyacrylamide gel electrophoresis analysis. We have used our multiplex assay for analyzing 15 CF chromosomes (non delta F508) and have found 3 cases of the R553X mutation; the latter have been confirmed by amplification and digestion of exon 11.  相似文献   

16.
Steroid 21-hydroxylase deficiency, due to the genetic impairment of the CYP21 gene, is a major cause of congenital adrenal hyperplasia (CAH). In about 80% of the cases, the defect is related with the transfer of deleterious point mutations from the CYP21P pseudogene to the active CYP21 gene. Sixteen different point mutations have been searched for in 60 Spanish patients with the classic form of CAH and 171 unaffected family members, using selective amplification of the CYP21 gene followed by allele-specific oligonucleotide hybridization (PCR-ASOH) and sequencing analysis. While 31.9% of the disease alleles carry CYP21 deletions or large gene conversions, around 58% of the alleles carry single point mutations. Corresponding segregation of mutations was found in every case indicating that none of them has apparently appeared de novo. The most frequent mutations found in our sample are i2G, V281L, R356W, Q318X, P453S and F306+t, with rates of 30, 14.2, 10, 9.2, 9.2 and 7. 5%, respectively. We found similar frequencies for the A and C polymorphism at position 656 (40 and 31.5%, respectively) in wild-type alleles for the i2G mutation. Around 10% of the alleles, for which no mutations were identified by searching for the sixteen previously known mutations, are currently being sequenced and new possible mutations and polymorphisms have been identified.  相似文献   

17.
BACKGROUND: Fabry disease (OMIM 301500) is an X-linked inborn error of glycosphingolipid metabolism resulting from mutations in the alpha-galactosidase A (alpha-Gal A) gene. The disease is phenotypically heterogeneous with classic and variant phenotypes. To assess the molecular heterogeneity, define genotype/phenotype correlations, and for precise carrier identification, the nature of the molecular lesions in the alpha-Gal A gene was determined in 40 unrelated families with Fabry disease. MATERIALS AND METHODS: Genomic DNA was isolated from affected males or obligate carrier females and the entire alpha-Gal A coding region and flanking sequences were amplified by PCR and analyzed by automated sequencing. Haplotype analyses were performed with polymorphisms within and flanking the alpha-Gal A gene. RESULTS: Twenty new mutations were identified (G43R, R49G, M72I, G138E, W236X, L243F, W245X, S247C, D266E, W287C, S297C, N355K, E358G, P409S, g1237del15, g10274insG, g10679insG, g10702delA, g11018insA, g11185-delT), each in a single family. In the remaining 20 Fabry families, 18 previously reported mutations were detected (R49P, D92N, C94Y, R112C [two families], F113S, W162X, G183D, R220X, R227X, R227Q, Q250X, R301X, R301Q, G328R, R342Q, E358K, P409A, g10208delAA [two families]). Haplotype analyses indicated that the families with the R112C or g10208delAA mutations were not related. The proband with the D266E lesion had a severe classic phenotype, having developed renal failure at 15 years. In contrast, the patient with the S247C mutation had a variant phenotype, lacking the classic manifestations and having mild renal involvement at 64 years. CONCLUSIONS: These results further define the heterogeneity of alpha-Gal A mutations causing Fabry disease, permit precise heterozygote detection and prenatal diagnosis in these families, and provide additional genotype/phenotype correlations in this lysosomal storage disease.  相似文献   

18.
19.
A detailed study of the mutant phenylalanine hydroxylase (PAH) gene from the eastern part of the Czech Republic (Moravia) is reported. A total of 190 mutant alleles from 95 phenylketonuria (PKU) families were analyzed for 21 prevalent Caucasian mutations and restriction fragment length polymorphism /variable number of tandem repeats (RFLP/VNTR) haplotypes. Eighty per cent of all mutant alleles were found to carry 11 mutations. The most common molecular defect was the mutation R408W (55.3%), with a very high degree of homozygosity (34.6%). Each of four other mutations (R158Q, R243X, G272X, IVS12nt1) accounted for more than 3% of PKU alleles. Rarely present were mutations IVS10nt546 (2.6%), R252W (2.6%), L48S (2.1%), R261Q (1.6%), Y414C (1.0%) and I65T (0.5%). Mutations that have been predominantly described in southern Europe (IVS7nt1, A259V, Y277D, R241H, T278N) were not detected. A total of 14 different mutant haplotypes were observed. Three unusual genotype-haplotype associations were identified (R158Q on haplotypes 2.3 and 7.8 and R252W on haplotype 69.3). There was a strong association between the mutation R408W and haplotype 2.3 (54.7%). Heterogeneity was found at mutations R408W (haplotypes 2.3 and 5.9), R158Q (haplotypes 4.3, 2.3 and 7.8) and IVS10nt546 (haplotypes 6.7 and 34.7). The molecular basis of PKU in the Moravian area appears to be relatively homogeneous in comparison with other southern and western European populations, thus providing a good starting point for prenatal diagnosis and early clinical classification.  相似文献   

20.
The frequency of nine different mutated alleles known to occur in the glucocerebrosidase gene was determined in 247 Gaucher patients, of whom 176 were of Jewish extraction, 2 were Jewish with one converted parent, and 69 were of non-Jewish origin. DNA was prepared from peripheral blood, active glucocerebrosidase sequences were amplified by using the PCR technique, and the mutations were identified by using the allele-specific oligonucleotide hybridization method. The N37OS mutation appeared in 69.77% of the mutated alleles in Jewish patients and in 22.86% of the mutated alleles in non-Jews. The 84GG mutation, which has not been found so far among non-Jewish patients, existed in 10.17% of the disease alleles among Jewish patients. The IVS + 1 mutation constituted 2.26% of the disease alleles among Jewish patients and 1.43% among the non-Jewish patients. RecTL, a complex allele containing four single-base-pair changes, occurred in 2.26% of the alleles in Jewish patients and was found in two (1.43%) of the patients of non-Jewish extraction. Another complex allele, designated "RecNciI" and containing three single-point mutations, appeared in 7.8% of alleles of non-Jewish patients and in only two (0.56%) of the Jewish families. The prevalence of the L444P mutation among non-Jewish Gaucher patients was 31.43%, while its prevalence among Jewish patients was only 4.24%. The prevalence of two other point mutations--D409H and R463C--was 5.00% and 3.57%, respectively, among non-Jewish patients and was not found among the Jewish Gaucher patient population. The prevalence of the R496H mutation, found so far only among Jewish patients, was 1.13%. The results presented demonstrate that seven mutations identify 90.40% of the mutations among Jewish patients and that these seven mutations allow diagnosis of only 73.52% of the non-Jewish patients. Identification of additional mutant alleles will enhance the accuracy of carrier detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号