首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, we have shown that macrophage uptake of low density lipoprotein (LDL) and cholesterol accumulation can occur by nonreceptor mediated fluid-phase macropinocytosis when macrophages are differentiated from human monocytes in human serum and the macrophages are activated by stimulation of protein kinase C (Kruth, H. S., Jones, N. L., Huang, W., Zhao, B., Ishii, I., Chang, J., Combs, C. A., Malide, D., and Zhang, W. Y. (2005) J. Biol. Chem. 280, 2352-2360). Differentiation of human monocytes in human serum produces a distinct macrophage phenotype. In this study, we examined the effect on LDL uptake of an alternative macrophage differentiation phenotype. Differentiation of macrophages from human monocytes in fetal bovine serum with macrophage-colony-stimulating factor (M-CSF) produced a macrophage phenotype demonstrating constitutive fluid-phase uptake of native LDL leading to macrophage cholesterol accumulation. Fluid-phase endocytosis of LDL by M-CSF human macrophages showed non-saturable uptake of LDL that did not down-regulate over 48 h. LDL uptake was mediated by continuous actin-dependent macropinocytosis of LDL by these M-CSF-differentiated macrophages. M-CSF is a cytokine present within atherosclerotic lesions. Thus, macropinocytosis of LDL by macrophages differentiated from monocytes under the influence of M-CSF is a plausible mechanism to account for macrophage foam cell formation in atherosclerotic lesions. This mechanism of macrophage foam cell formation does not depend on LDL modification or macrophage receptors.  相似文献   

2.
Macropinocytosis is a regulated form of endocytosis that mediates the non-selective uptake of solute molecules, nutrients and antigens. It is an actin-dependent process initiated from surface membrane ruffles that give rise to large endocytic vacuoles called macropinosomes. Macropinocytosis is important in a range of physiological processes; it is highly active in macrophages and dendritic cells where it is a major pathway for the capture of antigens, it is relevant to cell migration and tumour metastasis and it represents a portal of cell entry exploited by a range of pathogens. The molecular basis for the formation and maturation of macropinosomes has only recently begun to be defined. Here, we review the general characteristics of macropinocytosis, describe some of the regulators of this pathway, which have been identified to date and highlight strategies to explore the relevance of this endocytosis pathway in vivo.  相似文献   

3.
《The Journal of cell biology》1996,135(5):1249-1260
Phosphoinositide 3-kinase (PI 3-kinase) has been implicated in growth factor signal transduction and vesicular membrane traffic. It is thought to mediate the earliest steps leading from ligation of cell surface receptors to increased cell surface ruffling. We show here that inhibitors of PI 3-kinase inhibit endocytosis in macrophages, not by interfering with the initiation of the process but rather by preventing its completion. Consistent with earlier studies, the inhibitors wortmannin and LY294002 inhibited fluid-phase pinocytosis and Fc receptor-mediated phagocytosis, but they had little effect on the receptor-mediated endocytosis of diI-labeled, acetylated, low density lipoprotein. Large solute probes of endocytosis reported greater inhibition by wortmannin than smaller probes did, indicating that macropinocytosis was affected more than micropinocytosis. Since macropinocytosis and phagocytosis are actin-mediated processes, we expected that their inhibition by wortmannin resulted from deficient signaling from macrophage colony-stimulating factor (M-CSF) receptors or Fc receptors to the actin cytoskeleton. However, video microscopy showed cell surface ruffling in wortmannin-treated cells, and increased ruffling after addition of M-CSF or phorbol myristate acetate. Quantitative measurements of video data reported slightly diminished ruffling in wortmannin-treated cells. Remarkably, the ruffles that formed in wortmannin-treated macrophages all receded into the cytoplasm without closing into macropinosomes. Similarly, wortmannin and LY294002 did not inhibit the extension of actin-rich pseudopodia along IgG- opsonized sheep erythrocytes, but instead prevented them from closing into phagosomes. These findings indicate that PI 3-kinase is not necessary for receptor-mediated stimulation of pseudopod extension, but rather functions in the closure of macropinosomes and phagosomes into intracellular organelles.  相似文献   

4.
Macrophage foam cell formation with native low density lipoprotein   总被引:5,自引:0,他引:5  
This investigation has elucidated a mechanism for development of macrophage foam cells when macrophages are incubated with native low density lipoprotein (LDL). LDL is believed to be the main source of cholesterol that accumulates in monocyte-derived macrophages within atherosclerotic plaques, but native LDL has not previously been shown to cause substantial cholesterol accumulation when incubated with macrophages. We have found that activation of human monocyte-derived macrophages with phorbol 12-myristate 13-acetate (PMA) stimulates LDL uptake and degradation and acyl-CoA:cholesterol acyltransferase-mediated esterification of LDL-derived cholesterol, resulting in massive macrophage cholesterol accumulation that could exceed 400 nmol/mg of cell protein. Cholesterol accumulation showed a biphasic linear LDL concentration dependence with LDL levels as high as 4 mg/ml, similar to LDL levels in artery intima. Protein kinase C mediated the PMA-stimulated macrophage uptake of LDL because the protein kinase C inhibitors, G?6983 and GF109203X, inhibited cholesterol accumulation. LDL receptors did not mediate macrophage cholesterol accumulation because accumulation occurred with reductively methylated LDL and in the presence of an anti-LDL receptor-blocking monoclonal antibody. LDL-induced cholesterol accumulation was not inhibited by antioxidants, was not accompanied by increased LDL binding to macrophages, did not depend on the apoB component of LDL, and was not down-regulated by prior cholesterol enrichment of macrophages. We have shown that the mechanism of LDL uptake by macrophages was PMA-stimulated endocytosis of LDL taken up as part of the bulk phase fluid (i.e. fluid phase endocytosis). The amount of LDL taken up with the bulk phase fluid was measured with [(3)H]sucrose and accounted for a minimum of 83% of the LDL cholesterol delivery and accumulation in PMA-activated macrophages. This novel mechanism of macrophage cholesterol accumulation shows that modification of LDL is not necessary for foam cell formation to occur. In addition, the findings direct attention to macrophage fluid phase endocytosis as a relevant pathway to target for modulating macrophage cholesterol accumulation in atherosclerosis.  相似文献   

5.
Dictyostelium amoebae, like mammalian macrophages, take up fluid by macropinocytosis. The present study used fluorescent fluid-phase markers and GFP-labeled microtubules to visualize the uptake, dynamics, and fusion of early endosomes in Dictyostelium. Consecutive labeling with two fluorescent fluid-phase markers demonstrated that within the first few minutes after uptake, new macropinosomes underwent fusion with pre-existing endosomes. The fusing endosomes, which represent the mixing compartment, displayed extreme shape changes and rapid transport about the cell in association with microtubules. The great plasticity of endosomes at this stage of maturation was also evident by electron microscopy. The constant undulatory motion of microtubules was implemental in establishing contact with endosomes. Treatment of cells with agents that selectively disrupted either actin filaments or microtubules confirmed that endosome dynamics were microtubule based. Further maturation of endosomes led to loss of pleiomorphy in favor of a spherical shape, inability to fuse with new macropinosomes, and diminished motility.  相似文献   

6.
During atherosclerosis, low-density lipoprotein (LDL)-derived cholesterol accumulates in macrophages to form foam cells. Macrophage uptake of LDL promotes foam cell formation but the mechanism mediating this process is not clear. The present study investigates the mechanism of LDL uptake for macrophage colony-stimulating factor (M-CSF)-differentiated murine bone marrow-derived macrophages. LDL receptor-null (LDLR−/−) macrophages incubated with LDL showed non-saturable accumulation of cholesterol that did not down-regulate for the 24 h examined. Incubation of LDLR−/− macrophages with increasing concentrations of 125I-LDL showed non-saturable macrophage LDL uptake. A 20-fold excess of unlabeled LDL had no effect on 125I-LDL uptake by wild-type macrophages and genetic deletion of the macrophage scavenger receptors CD36 and SRA did not affect 125I-LDL uptake, showing that LDL uptake occurred by fluid-phase pinocytosis independently of receptors. Cholesterol accumulation was inhibited approximately 50% in wild-type and LDLR−/− mice treated with LY294002 or wortmannin, inhibitors of all classes of phosphoinositide 3-kinases (PI3K). Time-lapse, phase-contrast microscopy showed that macropinocytosis, an important fluid-phase uptake pathway in macrophages, was blocked almost completely by PI3K inhibition with wortmannin. Pharmacological inhibition of the class I PI3K isoforms alpha, beta, gamma or delta did not affect macrophage LDL-derived cholesterol accumulation or macropinocytosis. Furthermore, macrophages from mice expressing kinase-dead class I PI3K beta, gamma or delta isoforms showed no decrease in cholesterol accumulation or macropinocytosis when compared with wild-type macrophages. Thus, non-class I PI3K isoforms mediated macropinocytosis in these macrophages. Further characterization of the components necessary for LDL uptake, cholesterol accumulation, and macropinocytosis identified dynamin, microtubules, actin, and vacuolar type H(+)-ATPase as contributing to uptake. However, Pak1, Rac1, and Src-family kinases, which mediate fluid-phase pinocytosis in certain other cell types, were unnecessary. In conclusion, our findings provide evidence that targeting those components mediating macrophage macropinocytosis with inhibitors may be an effective strategy to limit macrophage accumulation of LDL-derived cholesterol in arteries.  相似文献   

7.
Clathrin-coated vesicle endocytosis and macropinocytosis are distinct endocytic pathways demonstrable in several cell types including human epidermoid A431 cells (West, M.A., M.S. Bretscher, and C. Watts. 1989. J. Cell Biol. 109:2731-2739). Here we analyze the extent of mixing of macropinocytic endosome (macropinosome) content with that of conventional endosomes served by coated vesicle endocytosis. Using laser scanning confocal fluorescence microscopy we detected very little delivery of macropinosome content to either early or late endosomes- lysosomes as defined by labeling with transferrin or with LDL. Mixing of the contents of the macropinosomes and conventional endosomes was not induced by the addition of brefeldin A. Moreover, the morphology of macropinosomes was not grossly altered in the presence of brefeldin A, whilst in the same cells there were dramatic tubulation effects on conventional endosomes as reported by others. Although refractory to fusion with conventional endosomes, macropinosomes were nonetheless dynamic structures which sometimes exhibited vesiculo-tubular morphology in living cells and were capable of fusing with each other. We suggest that different endocytic mechanisms can give rise to distinct endosome populations.  相似文献   

8.
Macropinocytosis     
Macropinocytosis is a form of endocytosis that accompanies cell surface ruffling. It is distinct in many ways from the better characterized micropinocytosis, which includes clathrin-coated vesicle endocytosis and small uncoated vesicles. Because macropinosomes are relatively large, they provide an efficient route for non-selective endocytosis of solute macromolecules. This route may facilitate MHC-class-II-restricted antigen presentation by dendritic cells. Because the ruffling that leads to macropinocytosis is regulated, it has been exploited by some pathogenic bacteria as a novel route for entry into cells.  相似文献   

9.
In the process of receptor-mediated endocytosis, the fusion of endosomes in vitro is known to be inhibited by wortmannin or LY294002; inhibitors of phosphoinositide 3-kinase (PI3K), suggesting that the activity of PI3K is required for the fusion of early endosomes. In macropinocytosis, a process of bulk fluid-phase endocytosis, however, it remains unclear whether PI3K is required for the fusion of macropinosomes, since the macropinosome formation is inhibited by the PI3K inhibitors. In this study, we examined the effect of 3-methlyadenine (3-MA), which shows a distinct specificity to the PI3K classes from wortmannin and LY294002, on the macropinosome formation and fusion in EGF-stimulated A431 cells. Unlike wortmannin or LY294002, 3-MA did not inhibit the uptake of fluorescent dextran by macropinocytosis. However, the fusion of macropinosomes was inhibited by 3-MA. By imaging of live-cells expressing fluorescent protein-fused tandem FYVE domains, we found that PtdIns(3)P appeared on the macropinosomal membrane shortly after the closure of macropinocytic cups and remained on macropinosomes even at 60-min age. The production of PtdIns(3)P and the recruitment of EEA1 to macropinosomes were abolished by the 3-MA treatment. Therefore, it is likely that 3-MA impairs recruitment of EEA1 by inhibiting PtdIns(3)P production and resultantly blocks the fusion of macropinosomes. These results suggest that the local production of PtdIns(3)P implicates the fusion of macropinosomes via EEA1 as well as conventional early endosomes. However, the long association of PtdIns(3)P with macropinosomes may well be a cell-type specific feature of A431 cells.  相似文献   

10.
Accumulation of cholesterol by macrophage uptake of LDL is a key event in the formation of atherosclerotic plaques. Previous research has shown that granulocyte-macrophage colony-stimulating factor (GM-CSF) is present in atherosclerotic plaques and promotes aortic lipid accumulation. However, it has not been determined whether murine GM-CSF-differentiated macrophages take up LDL to become foam cells. GM-CSF-differentiated macrophages from LDL receptor-null mice were incubated with LDL, resulting in massive macrophage cholesterol accumulation. Incubation of LDL receptor-null or wild-type macrophages with increasing concentrations of 125I-LDL showed nonsaturable macrophage LDL uptake that was linearly related to the amount of LDL added, indicating that LDL uptake was mediated by fluid-phase pinocytosis. Previous studies suggest that phosphoinositide 3-kinases (PI3K) mediate macrophage fluid-phase pinocytosis, although the isoform mediating this process has not been determined. Because PI3Kγ is known to promote aortic lipid accumulation, we investigated its role in mediating macrophage fluid-phase pinocytosis of LDL. Wild-type macrophages incubated with LDL and the PI3Kγ inhibitor AS605240 or PI3Kγ-null macrophages incubated with LDL showed an ∼50% reduction in LDL uptake and cholesterol accumulation compared with wild-type macrophages incubated with LDL only. These results show that GM-CSF-differentiated murine macrophages become foam cells by fluid-phase pinocytosis of LDL and identify PI3Kγ as contributing to this process.  相似文献   

11.
Macropinocytosis is increasingly recognized for its versatile adaptations and functions as a highly conserved, ubiquitous pathway for the bulk uptake of fluid, particulate cargo, and membranes. Innate immune cells and transformed cancer cells share the capacity for both constitutive and induced macropinocytosis, which is used for immune surveillance, ingestion of pathogens, immune response shaping, and enhancement of scavenging for nutrients as fuel for cell survival and proliferation. Immunology and cancer biology are leading a resurgence of interest in defining the molecular and physiological regulation of macropinocytosis, partly in pursuit of ways to control macropinocytic uptake in disease settings. New approaches, including high-resolution live imaging, screening of cell surface molecular inventories, biophysics, and exploration of cell microenvironments, have converged to provide new insights into macropinosome induction, formation, and maturation. Recent studies reveal mechanisms for fluid control in and by macrophage macropinosomes that impinge on membrane trafficking and cell migration. EGFR, PTEN, V-ATPase, syndecan 1, and galectin-3 have roles variably in the metabolic regulation of Ras or PI3K signaling for Rac1-mediated macropinocytosis in cancer. These molecular pathways and mechanisms contribute to the impressive adaptability of macropinocytosis in many cells and tissues and in disease.  相似文献   

12.
Macrophage foam cells are a defining pathologic feature of atherosclerotic lesions. Recent studies have demonstrated that at high concentrations associated with hypercholesterolemia, native LDL induces macrophage lipid accumulation. LDL particles are taken up by macrophages as part of bulk fluid pinocytosis. However, the uptake and metabolism of cholesterol from native LDL during foam cell formation has not been clearly defined. Previous reports have suggested that selective cholesteryl ester (CE) uptake might contribute to cholesterol uptake from LDL independently of particle endocytosis. In this study we demonstrate that the majority of macrophage LDL-derived cholesterol is acquired by selective CE uptake in excess of LDL pinocytosis and degradation. Macrophage selective CE uptake does not saturate at high LDL concentrations and is not down-regulated during cholesterol accumulation. In contrast to CE uptake, macrophages exhibit little selective uptake of free cholesterol (FC) from LDL. Following selective uptake from LDL, CE is rapidly hydrolyzed by a novel chloroquine-sensitive pathway. FC released from LDL-derived CE hydrolysis is largely effluxed from cells but also is subject to ACAT-mediated reesterification. These results indicate that selective CE uptake plays a major role in macrophage metabolism of LDL.  相似文献   

13.
14.
Much of the cholesterol that accumulates in atherosclerotic plaques is found within monocyte-macrophages transforming these cells into "foam cells." Native low density lipoprotein (LDL) does not cause foam cell formation. Treatment of LDL with cholesterol esterase converts LDL into cholesterol-rich liposomes having >90% cholesterol in unesterified form. Similar cholesterol-rich liposomes are found in early developing atherosclerotic plaques surrounding foam cells. We now show that cholesterol-rich liposomes produced from cholesterol esterase-treated LDL can cause human monocyte-macrophage foam cell formation inducing a 3-5-fold increase in macrophage cholesterol content of which >60% is esterified. Although cytochalasin D inhibited LDL liposome-induced macrophage cholesteryl ester accumulation, LDL liposomes did not enter macrophages by phagocytosis. Rather, the LDL liposomes induced and entered surface-connected compartments within the macrophages, a unique endocytic pathway in these cells that we call patocytosis. LDL liposome apoB rather than LDL liposome lipid mediated LDL liposome uptake by macrophages. This was shown by the findings that: 1) protease treatment of the LDL liposomes prevented macrophage cholesterol accumulation; 2) liposomes prepared from LDL lipid extracts did not cause macrophage cholesterol accumulation; and 3) purified apoB induced and accumulated within macrophage surface-connected compartments. Although apoB mediated the macrophage uptake of LDL liposomes, this uptake did not occur through LDL, LDL receptor-related protein, or scavenger receptors. Also, LDL liposome uptake was not sensitive to treatment of macrophages with trypsin or heparinase. Cholesterol esterase-mediated transformation of LDL into cholesterol-rich liposomes is an LDL modification that: 1) stimulates uptake of LDL cholesterol by apoB-dependent endocytosis into surface-connected compartments, and 2) causes human monocyte-macrophage foam cell formation.  相似文献   

15.
Macropinocytosis is a clathrin‐independent endocytic pathway implicated in fluid uptake, pathogen invasion and cell migration. During collective cell migration, macropinocytosis occurs primarily at membrane ruffles arising from the leading edges of migrating cells. We report here that N‐cadherin (Ncad) regulates the tempo of macropinocytosis and thereby influences wound‐induced collective cell migration. Using live‐cell and super‐resolution imaging techniques, we observed that Ncad formed clusters at the membrane ruffles and macropinosomes. De‐clustering of Ncad by an interfering antibody impaired the recruitment of Rab5‐an early endosomal marker‐to the macropinosomes. Moreover, we demonstrated that Ncad interacts with Rab5, and laser ablation of Ncad caused Rab5 to dissociate from the macropinosomes. Although Rab5 detached from macropinosomes upon the de‐clustering of Ncad, the recruitment of late endosomal marker Rab7 occurred earlier. Consequently, both centripetal trafficking of macropinosomes and collective migration were accelerated due to de‐clustering of Ncad. Thus, our results suggest that Ncad is involved in the maturation of macropinocytosis through Rab5 recruitment, linking macropinocytosis and cell migration through a novel function of Ncad.   相似文献   

16.
Nucleoside diphosphate kinases (NDPKs) are ubiquitous phosphotransfer enzymes responsible for producing most of the nucleoside triphosphates except for ATP. This role is important for the synthesis of nucleic acids and proteins and the metabolism of sugars and lipids. Apart from this housekeeping role NDPKs have been shown to have many regulatory functions in diverse cellular processes including proliferation and endocytosis. Although the protein has been shown to have a positive regulatory role in clathrin- and dynamin-mediated micropinocytosis, its roles in macropinocytosis and phagocytosis have not been studied. The additional non-housekeeping roles of NDPK are often independent of enzyme activity but dependent on the expression level of the protein. In this study we altered the expression level of NDPK in the model eukaryotic organism Dictyostelium discoideum through antisense inhibition and overexpression. We demonstrate that NDPK levels affect growth, endocytosis and exocytosis. In particular we find that Dictyostelium NDPK negatively regulates endocytosis in contrast to the positive regulatory role identified in higher eukaryotes. This can be explained by the differences in types of endocytosis that have been studied in the different systems - phagocytosis and macropinocytosis in Dictyostelium compared with micropinocytosis in mammalian cells. This is the first report of a role for NDPK in regulating macropinocytosis and phagocytosis, the former being the major fluid phase uptake mechanism for macrophages, dendritic cells and other (non dendritic) cells exposed to growth factors.  相似文献   

17.
Pathogen entry into cells occurs by direct penetration of the plasma membrane, clathrin-mediated endocytosis, caveolar endocytosis, pinocytosis or macropinocytosis. For a particular agent, the infectious pathways are typically restricted, reflecting a tight relationship with the host. Here, we survey the uptake process of human adenovirus (Ad) type 2 and 5 and integrate it into the cell biology of endocytosis. Ad2 and Ad5 naturally infect respiratory epithelial cells. They bind to a primary receptor, the coxsackie virus B Ad receptor (CAR). The CAR-docked particles activate integrin coreceptors and this triggers a variety of cell responses, including endocytosis. Ad2/Ad5 endocytosis is clathrin-mediated and involves the large GTPase dynamin and the adaptor protein 2. A second endocytic process is induced simultaneously with viral uptake, macropinocytosis. Together, these pathways are associated with viral infection. Macropinocytosis requires integrins, F-actin, protein kinase C and small G-proteins of the Rho family, but not dynamin. Macropinocytosis per se is not required for viral uptake into epithelial cells, but it appears to be a productive entry pathway of Ad artificially targeted to the high-affinity Fcgamma receptor CD64 of hematopoietic cells lacking CAR. In epithelial and hematopoietic cells, the macropinosomal contents are released to the cytosol. This requires viral signalling from the surface and coincides with particle escape from endosomes and infection. It emerges that incoming Ad2 and Ad5 distinctly modulate the endocytic trafficking and disrupt selective cellular compartments. These features can be exploited for effective artificial targeting of Ad vectors to cell types of interest.  相似文献   

18.
Pathogen entry into cells occurs by direct penetration of the plasma membrane, clathrin-mediated endocytosis, caveolar endocytosis, pinocytosis or macropinocytosis. For a particular agent, the infectious pathways are typically restricted, reflecting a tight relationship with the host. Here, we survey the uptake process of human adenovirus (Ad) type 2 and 5 and integrate it into the cell biology of endocytosis. Ad2 and Ad5 naturally infect respiratory epithelial cells. They bind to a primary receptor, the coxsackie virus B Ad receptor (CAR). The CAR-docked particles activate integrin coreceptors and this triggers a variety of cell responses, including endocytosis. Ad2/Ad5 endocytosis is clathrin-mediated and involves the large GTPase dynamin and the adaptor protein 2. A second endocytic process is induced simultaneously with viral uptake, macropinocytosis. Together, these pathways are associated with viral infection. Macropinocytosis requires integrins, F-actin, protein kinase C and small G-proteins of the Rho family, but not dynamin. Macropinocytosis per se is not required for viral uptake into epithelial cells, but it appears to be a productive entry pathway of Ad artificially targeted to the high-affinity Fcgamma receptor CD64 of hematopoietic cells lacking CAR. In epithelial and hematopoietic cells, the macropinosomal contents are released to the cytosol. This requires viral signalling from the surface and coincides with particle escape from endosomes and infection. It emerges that incoming Ad2 and Ad5 distinctly modulate the endocytic trafficking and disrupt selective cellular compartments. These features can be exploited for effective artificial targeting of Ad vectors to cell types of interest.  相似文献   

19.
Entamoeba histolytica, the protozoan parasite of humans, manifests constitutive endocytosis to obtain nutrients and, when induced to express invasive behavior, as a means of ingesting and processing host cells and tissue debris. E. histolytica trophozoites were grown in liquid axenic medium that contained fluorescently labeled fluid-phase markers, so that the kinetics of uptake, the transit of loaded endosomes through the cytoplasm, and the time of release of the markers could be monitored by flow cytometry. Confocal microscopy of live trophozoites revealed uptake of fluid by avid macropinocytosis and the occurrence of fusion between young and older endosomes, as well as between pinosomes and phagosomes containing bacteria. Endosomes were rapidly acidified, then gradually neutralized; finally, indigestible material was released. Transit of endosomes containing fluid-phase markers required about 2 h. Uptake and release of fluid-phase markers were impaired by drugs that inhibited actin dynamics and actin-myosin interaction; uptake was also impaired by inhibition of PI 3-kinase. A striking feature of the trophozoites was the great heterogeneity of their endocytic behavior.  相似文献   

20.
We have developed a chemically defined monolayer culture system for guinea pig seminal vesicle epithelial cells (SVEP). The cells appeared as a polarized monolayer with apical microvilli, tight junctions and desmosome-like junctions, and often dilated intercellular spaces. SVEP expressed epithelial-specific cytokeratins as detected immunocytochemically. Growth was obtained during the first week of culture. In this period, the cells were exposed to unconjugated horseradish peroxidase (HRP), a ricin-peroxidase conjugate (Ri-HRP), or cationized ferritin (CF). HRP was endocytosed without binding to the SVEP surface (fluid-phase endocytosis) and was found mainly in multivesicular endosomes and lysosomes. Ri-HRP and CF, however, were endocytosed following binding to the cell surface. Initially these markers were present in multivesicular endosomes, but later also in smaller tubular and vesicular endosomes, some Golgi-associated elements (but not Golgi stacks), and lysosomes. We conclude that our SVEP culture system may be useful in further studies, on e.g. hormonal regulation of endocytosis and other processes of importance for SVEP maintenance and modulation of the seminal fluid in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号