首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Ras is a small GTP-binding protein that is an essential molecular switch for a wide variety of signaling pathways including the control of cell proliferation, cell cycle progression and apoptosis. In the GTP-bound state, Ras can interact with its effectors, triggering various signaling cascades in the cell. In the GDP-bound state, Ras looses its ability to bind to known effectors. The interaction of the GTP-bound Ras (RasGTP) with its effectors has been studied intensively. However, very little is known about the much weaker interaction between the GDP-bound Ras (RasGDP) and Ras effectors. We investigated the factors underlying the nucleotide-dependent differences in Ras interactions with one of its effectors, Raf kinase. Using computational protein design, we generated mutants of the Ras-binding domain of Raf kinase (Raf) that stabilize the complex with RasGDP. Most of our designed mutations narrow the gap between the affinity of Raf for RasGTP and RasGDP, producing the desired shift in binding specificity towards RasGDP. A combination of our best designed mutation, N71R, with another mutation, A85K, yielded a Raf mutant with a 100-fold improvement in affinity towards RasGDP. The Raf A85K and Raf N71R/A85K mutants were used to obtain the first high-resolution structures of RasGDP bound to its effector. Surprisingly, these structures reveal that the loop on Ras previously termed the switch I region in the RasGDP·Raf mutant complex is found in a conformation similar to that of RasGTP and not RasGDP. Moreover, the structures indicate an increased mobility of the switch I region. This greater flexibility compared to the same loop in RasGTP is likely to explain the natural low affinity of Raf and other Ras effectors to RasGDP. Our findings demonstrate that an accurate balance between a rigid, high-affinity conformation and conformational flexibility is required to create an efficient and stringent molecular switch.  相似文献   

2.
Zeng J  Treutlein HR  Simonson T 《Proteins》1999,35(1):89-100
The protein Raf is an immediate downstream target of Ras in the MAP kinase signalling pathway. The complex of Ras with the Ras-binding domain (RBD) of Raf has been modelled by homology to the (E30D,K31E)-Rap1A:RBD complex, and both have been subjected to multiple molecular dynamics simulations in solution. While both complexes are stable, several rearrangements occur in the Ras:RBD simulations: the RBD loop 100-109 moves closer to Ras, Arg73 in the RBD moves towards Ras to form a salt bridge with Ras-Asp33, and Loop 4 of the Ras switch II region shifts upwards toward the RBD. The Ras:RBD interactions (including the RBD-Arg73 interaction) are consistent with available NMR and mutagenesis data on the Ras: RBD complex in solution. The Ras switch II region does not interact directly with the RBD, although indirect interactions exist through the effector domain and bridging water molecules. No large-scale RBD motion is seen in the Ras:RBD complex, compared to the Rap:RBD complex, to suggest an allosteric activation of Raf by Ras. This may be because the Raf kinase domain (whose structure is unknown) is not included in the model.  相似文献   

3.
The Ral effector protein RLIP76 (also called RIP/RalBP1) binds to Ral.GTP via a region that shares no sequence homology with the Ras-binding domains of the Ser/Thr kinase c-Raf-1 and the Ral-specific guanine nucleotide exchange factors. Whereas the Ras-binding domains have a similar ubiquitin-like structure, the Ral-binding domain of RLIP was predicted to comprise a coiled-coil region. In order to obtain more information about the specificity and the structural mode of the interaction between Ral and RLIP, we have performed a sequence space and a mutational analysis. The sequence space analysis of a comprehensive nonredundant assembly of Ras-like proteins strongly indicated that positions 36 and 37 in the core of the effector region are tree-determinant positions for all subfamilies of Ras-like proteins and dictate the specificity of the interaction of these GTPases with their effector proteins. Indeed, we could convert the specific interaction with Ras effectors and RLIP by mutating these residues in Ras and Ral. We therefore conclude that positions 36 and 37 are critical for the discrimination between Ras and Ral effectors and that, despite the absence of sequence homology between the Ral-binding and the Ras-binding domains, their mode of interaction is most probably similar.  相似文献   

4.
The function of the c-Raf-1 zinc finger domain in the activation of the Raf kinase was examined by the creation of variant zinc finger structures. Mutation of Raf Cys 165 and Cys 168 to Ser strongly inhibits the Ras-dependent activation of c-Raf-1 by epidermal growth factor (EGF). Deletion of the Raf zinc finger and replacement with a homologous zinc finger from protein kinase C gamma (PKC gamma) (to give gamma/Raf) also abrogates EGF-induced activation but enables a vigorous phorbol myristate acetate (PMA)-induced activation. PMA activation of gamma/Raf does not require endogenous Ras or PKCs and probably occurs through a PMA-induced recruitment of gamma/Raf to the plasma membrane. The impaired ability of EGF to activate the Raf zinc finger variants in situ is attributable, at least in part, to a major decrement in their binding to Ras-GTP; both Raf zinc finger variants exhibit decreased association with Ras (V12) in situ upon coexpression in COS cells, as well as diminished binding in vitro to immobilized, processed COS recombinant Ras(V12)-GTP. In contrast, Raf binding to unprocessed COS or prokaryotic recombinant Ras-GTP is unaffected by Raf zinc finger mutation. Thus, the Raf zinc finger contributes an important component to the overall binding to Ras-GTP in situ, through an interaction between the zinc finger and an epitope on Ras, distinct from the effector loop, that is present only on prenylated Ras.  相似文献   

5.
The overexpression of some human proteins can cause interference with the Ras signal transduction pathway in the yeast Saccharomyces cerevisiae. The functional block is located at the level of the effector itself, since these proteins do not suppress activating mutations further downstream in the same pathway. We now demonstrate, with in vivo and in vitro experiments, that the protein encoded by one human cDNA (clone 99) can interact directly with yeast Ras2p and with human H-Ras protein, and we have named this gene rin1 (Ras interaction/interference). The interaction between Ras and Rin1 is enhanced when Ras is bound to GTP. Rin1 is not able to interact with either an effector mutant or a dominant negative mutant of H-Ras. Thus, Rin1 displays a human H-Ras interaction profile that is the same as that seen for Raf1 and yeast adenylyl cyclase, two known effectors of Ras. Moreover, Raf1 directly competes with Rin1 for binding to H-Ras in vitro. Unlike Raf1, however, the Rin1 protein resides primarily at the plasma membrane, where H-Ras is localized. These data are consistent with Rin1 functioning in mammalian cells as an effector or regulator of H-Ras.  相似文献   

6.
Random mutagenesis and genetic screens for impaired Raf function in Caenorhabditis elegans were used to identify six loss-of-function alleles of lin-45 raf that result in a substitution of a single amino acid. The mutations were classified as weak, intermediate, and strong based on phenotypic severity. We engineered these mutations into the homologous residues of vertebrate Raf-1 and analyzed the mutant proteins for their underlying biochemical defects. Surprisingly, phenotype strength did not correlate with the catalytic activity of the mutant proteins. Amino acid substitutions Val-589 and Ser-619 severely compromised Raf kinase activity, yet these mutants displayed weak phenotypes in the genetic screen. Interestingly, this is because these mutant Raf proteins efficiently activate the MAPK (mitogen-activated protein kinase) cascade in living cells, a result that may inform the analysis of knockout mice. Equally intriguing was the observation that mutant proteins with non-functional Ras-binding domains, and thereby deficient in Ras-mediated membrane recruitment, displayed only intermediate strength phenotypes. This confirms that secondary mechanisms exist to couple Ras to Raf in vivo. The strongest phenotype in the genetic screens was displayed by a S508N mutation that again did not correlate with a significant loss of kinase activity or membrane recruitment by oncogenic Ras in biochemical assays. Ser-508 lies within the Raf-1 activation loop, and mutation of this residue in Raf-1 and the equivalent Ser-615 in B-Raf revealed that this residue regulates Raf binding to MEK. Further characterization revealed that in response to activation by epidermal growth factor, the Raf-S508N mutant protein displayed both reduced catalytic activity and aberrant activation kinetics: characteristics that may explain the C. elegans phenotype.  相似文献   

7.
It has previously been shown that the transient kinetics of the interaction between the Ras-binding domain of c-Raf-1 and the proto-oncoprotein Ras can be followed by stopped-flow measurements using the 2',3'-(N-methylanthraniloyl) fluorescence of 2',3'-(N-methylanthraniloyl) guanyl-5'-yl-imidodiphosphate-labelled Ras. In continuation of this work, we demonstrate that the His-tagged Ras-binding domain of c-Raf-1 can also be synthesized in a cell-free expression system. After purification by Ni2+ affinity chromatography, His-tagged Ras-binding domain of c-Raf-1 could be isolated in sufficient amounts for biochemical and biophysical investigations. The results obtained describe the first example of a cell-free synthesized protein which has been used for stopped-flow measurements to determine the transient kinetics of protein-protein interactions with an effector.  相似文献   

8.
Substantial evidence supports a critical role for the activation of the Raf-1/MEK/mitogen-activated protein kinase pathway in oncogenic Ras-mediated transformation. For example, dominant negative mutants of Raf-1, MEK, and mitogen-activated protein kinase all inhibit Ras transformation. Furthermore, the observation that plasma membrane-localized Raf-1 exhibits the same transforming potency as oncogenic Ras suggests that Raf-1 activation alone is sufficient to mediate full Ras transforming activity. However, the recent identification of other candidate Ras effectors (e.g., RalGDS and phosphatidylinositol-3 kinase) suggests that activation of other downstream effector-mediated signaling pathways may also mediate Ras transforming activity. In support of this, two H-Ras effector domain mutants, H-Ras(12V, 37G) and H-Ras(12V, 40C), which are defective for Raf binding and activation, induced potent tumorigenic transformation of some strains of NIH 3T3 fibroblasts. These Raf-binding defective mutants of H-Ras induced a transformed morphology that was indistinguishable from that induced by activated members of Rho family proteins. Furthermore, the transforming activities of both of these mutants were synergistically enhanced by activated Raf-1 and inhibited by the dominant negative RhoA(19N) mutant, indicating that Ras may cause transformation that occurs via coordinate activation of Raf-dependent and -independent pathways that involves Rho family proteins. Finally, cotransfection of H-Ras(12V, 37G) and H-Ras(12V, 40C) resulted in synergistic cooperation of their focus-forming activities, indicating that Ras activates at least two Raf-independent, Ras effector-mediated signaling events.  相似文献   

9.
Within the superfamily of small GTPases, Ras appears to be the master regulator of such processes as cell cycle progression, cell division, and apoptosis. Several oncogenic Ras mutations at amino acid positions 12, 13, and 61 have been identified that lose their ability to hydrolyze GTP, giving rise to constitutive signaling and eventually development of cancer. While disruption of the Ras/effector interface is an attractive strategy for drug design to prevent this constitutive activity, inhibition of this interaction using small molecules is impractical due to the absence of a cavity to which such molecules could bind. However, proteins and especially natural Ras effectors that bind to the Ras/effector interface with high affinity could disrupt Ras/effector interactions and abolish procancer pathways initiated by Ras oncogene. Using a combination of computational design and in vitro evolution, we engineered high-affinity Ras-binding proteins starting from a natural Ras effector, RASSF5 (NORE1A), which is encoded by a tumor suppressor gene. Unlike previously reported Ras oncogene inhibitors, the proteins we designed not only inhibit Ras-regulated procancer pathways, but also stimulate anticancer pathways initiated by RASSF5. We show that upon introduction into A549 lung carcinoma cells, the engineered RASSF5 mutants decreased cell viability and mobility to a significantly greater extent than WT RASSF5. In addition, these mutant proteins induce cellular senescence by increasing acetylation and decreasing phosphorylation of p53. In conclusion, engineered RASSF5 variants provide an attractive therapeutic strategy able to oppose cancer development by means of inhibiting of procancer pathways and stimulating anticancer processes.  相似文献   

10.
Raf-1 is a critical downstream target of Ras and contains two distinct domains that bind Ras. The first Ras-binding site (RBS1) in Raf-1 has been shown to be essential for Ras-mediated translocation of Raf-1 to the plasma membrane, whereas the second site, in the Raf-1 cysteine-rich domain (Raf-CRD), has been implicated in regulating Raf kinase activity. While recognition elements that promote Ras.RBS1 complex formation have been characterized, relatively little is known about Ras/Raf-CRD interactions. In this study, we have characterized interactions important for Ras binding to the Raf-CRD. Reconciling conflicting reports, we found that these interactions are essentially independent of the guanine nucleotide bound state, but instead, are enhanced by post-translational modification of Ras. Specifically, our findings indicate that Ras farnesylation is sufficient for stable association of Ras with the Raf-CRD. Furthermore, we have also identified a Raf-CRD variant that is impaired specifically in its interactions with Ras. NMR data also suggests that residues proximal to this mutation site on the Raf-CRD form contacts with Ras. This Raf-CRD mutant impairs the ability of Ras to activate Raf kinase, thereby providing additional support that Ras interactions with the Raf-CRD are important for Ras-mediated activation of Raf-1.  相似文献   

11.
Posttranslational modification, in particular farnesylation, of Ras is crucial for activation of Saccharomyces cerevisiae adenylyl cyclase (CYR1). Based on the previous observation that association of CYR1 with cyclase-associated protein (CAP) is essential for its activation by posttranslationally modified Ras, we postulated that the associated CAP might contribute to the formation of a Ras-binding site of CYR1, which mediates CYR1 activation, other than the primary Ras-binding site, the leucine-rich repeat domain. Here, we observed a posttranslational modification-dependent association of Ras with a complex between CAP and CYR1 C-terminal region. When CAP mutants defective in Ras signaling but retaining the CYR1-binding activity were isolated by screening of a pool of randomly mutagenized CAP, CYR1 complexed with two of the obtained three mutants failed to be activated efficiently by modified Ras and exhibited a severely impaired ability to bind Ras, providing a genetic evidence for the importance of the physical association with Ras at the second Ras-binding site. On the other hand, CYR1, complexed with the other CAP mutant, failed to be activated by Ras but exhibited a greatly enhanced binding to Ras. Conversely, a Ras mutant E31K, which exhibits a greatly enhanced binding to the CYR1-CAP complex, failed to activate CYR1 efficiently. Thus, the strength of interaction at the second Ras-binding site appears to be a critical determinant of CYR1 regulation by Ras: too-weak and too-strong interactions are both detrimental to CYR1 activation. These results, taken together with those obtained with mammalian Raf, suggest the importance of the second Ras-binding site in effector regulation.  相似文献   

12.
The protein kinase Bcr is a negative regulator of cell proliferation and oncogenic transformation. We identified Bcr as a ligand for the PDZ domain of the cell junction and Ras-interacting protein AF-6. The Bcr kinase phosphorylates AF-6, which subsequently allows efficient binding of Bcr to AF-6, showing that the Bcr kinase is a regulator of the PDZ domain-ligand interaction. Bcr and AF-6 colocalize in epithelial cells at the plasma membrane. In addition, Bcr, AF-6, and Ras form a trimeric complex. Bcr increases the affinity of AF-6 to Ras, and a mutant of AF-6 that lacks a specific phosphorylation site for Bcr shows a reduced binding to Ras. Wild-type Bcr, but not Bcr mutants defective in binding to AF-6, interferes with the Ras-dependent stimulation of the Raf/MEK/ERK pathway. Since AF-6 binds to Bcr via its PDZ domain and to Ras via its Ras-binding domain, we propose that AF-6 functions as a scaffold-like protein that links Bcr and Ras to cellular junctions. We suggest that this trimeric complex is involved in downregulation of Ras-mediated signaling at sites of cell-cell contact to maintain cells in a nonproliferating state.  相似文献   

13.
Activation of c-Raf-1 (referred to as Raf) by Ras is a pivotal step in mitogenic signaling. Raf activation is initiated by binding of Ras to the regulatory N terminus of Raf. While Ras binding to residues 51 to 131 is well understood, the role of the RafC1 cysteine-rich domain comprising residues 139 to 184 has remained elusive. To resolve the function of the RafC1 domain, we have performed an exhaustive surface scanning mutagenesis. In our study, we defined a high-resolution map of multiple distinct functional epitopes within RafC1 that are required for both negative control of the kinase and the positive function of the protein. Activating mutations in three different epitopes enhanced Ras-dependent Raf activation, while only some of these mutations markedly increased Raf basal activity. One contiguous inhibitory epitope consisting of S177, T182, and M183 clearly contributed to Ras-Raf binding energy and represents the putative Ras binding site of the RafC1 domain. The effects of all RafC1 mutations on Ras binding and Raf activation were independent of Ras lipid modification. The inhibitory mutation L160A is localized to a position analogous to the phorbol ester binding site in the protein kinase C C1 domain, suggesting a function in cofactor binding. Complete inhibition of Ras-dependent Raf activation was achieved by combining mutations K144A and L160A, which clearly demonstrates an absolute requirement for correct RafC1 function in Ras-dependent Raf activation.  相似文献   

14.
Cellular signaling downstream of Ras is highly diversified and may involve many different effector molecules. A potential candidate is AF6 which was originally identified as a fusion to ALL-1 in acute myeloid leukemia. In the present work the interaction between Ras and AF6 is characterized and compared with other effectors. The binding characteristics are quite similar to Raf and RalGEF, i.e. nucleotide dissociation as well as GTPase-activating protein activity are inhibited, whereas the intrinsic GTPase activity of Ras is unperturbed by AF6 binding. Particularly, the dynamics of interaction are similar to Raf and RalGEF with a lifetime of the Ras. AF6 complex in the millisecond range. As probed by 31P NMR spectroscopy one of two major conformational states of Ras is stabilized by the interaction with AF6. Looking at the affinities of AF6 to a number of Ras mutants in the effector region, a specificity profile emerges distinct from that of other effector molecules. This finding may be useful in defining the biological function of AF6 by selectively switching off other pathways downstream of Ras using the appropriate effector mutant. Notably, among the Ras-related proteins AF6 binds most tightly to Rap1A which could imply a role of Rap1A in AF6 regulation.  相似文献   

15.
Ras plays a key role in regulating cellular proliferation, differentiation, and transformation. Raf is the major effector of Ras in the Ras > Raf > Mek > extracellular signal-activated kinase (ERK) cascade. A second effector is phosphoinositide 3-OH kinase (PI 3-kinase), which, in turn, activates the small G protein Rac. Rac also has multiple effectors, one of which is the serine threonine kinase Pak (p65(Pak)). Here we show that Ras, but not Raf, activates Pak1 in cotransfection assays of Rat-1 cells but not NIH 3T3 cells. We tested agents that activate or block specific components downstream of Ras and demonstrate a Ras > PI 3-kinase > Rac/Cdc42 > Pak signal. Although these studies suggest that the signal from Ras through PI 3-kinase is sufficient to activate Pak, additional studies suggested that other effectors contribute to Pak activation. RasV12S35 and RasV12G37, two effector mutant proteins which fail to activate PI 3-kinase, did not activate Pak when tested alone but activated Pak when they were cotransfected. Similarly, RacV12H40, an effector mutant that does not bind Pak, and Rho both cooperated with Raf to activate Pak. A dominant negative Rho mutant also inhibited Ras activation of Pak. All combinations of Rac/Raf and Ras/Raf and Rho/Raf effector mutants that transform cells cooperatively stimulated ERK. Cooperation was Pak dependent, since all combinations were inhibited by kinase-deficient Pak mutants in both transformation assays and ERK activation assays. These data suggest that other Ras effectors can collaborate with PI 3-kinase and with each other to activate Pak. Furthermore, the strong correlation between Pak activation and cooperative transformation suggests that Pak activation is necessary, although not sufficient, for cooperative transformation of Rat-1 fibroblasts by Ras, Rac, and Rho.  相似文献   

16.
Activated Ras, but not Raf, causes transformation of RIE-1 rat intestinal epithelial cells, demonstrating the importance of Raf-independent effector signaling in mediating Ras transformation. To further assess the contribution of Raf-dependent and Raf-independent function in oncogenic Ras transformation, we evaluated the mechanism by which oncogenic Ras blocks suspension-induced apoptosis, or anoikis, of RIE-1 cells. We determined that oncogenic versions of H-, K-, and N-Ras, as well as the Ras-related proteins TC21 and R-Ras, protected RIE-1 cells from anoikis. Surprisingly, our analyses of Ras effector domain mutants or constitutively activated effectors indicated that activation of Raf-1, phosphatidylinositol 3-kinase (PI3K), or RalGDS alone is not sufficient to promote Ras inhibition of anoikis. Treatment of Ras-transformed cells with the U0126 MEK inhibitor caused partial reversion to an anoikis-sensitive state, indicating that extracellular signal-regulated kinase activation contributes to inhibition of anoikis. Unexpectedly, oncogenic Ras failed to activate Akt, and treatment of Ras-transformed RIE-1 cells with the LY294002 PI3K inhibitor did not affect anoikis resistance or growth in soft agar. Thus, while important for Ras transformation of fibroblasts, PI3K may not be involved in Ras transformation of RIE-1 cells. Finally, inhibition of epidermal growth factor receptor kinase activity did not overcome Ras inhibition of anoikis, indicating that this autocrine loop essential for transformation is not involved in anoikis protection. We conclude that a PI3K- and RalGEF-independent Ras effector(s) likely cooperates with Raf to confer anoikis resistance upon RIE-1 cells, thus underscoring the complex nature by which Ras transforms cells.  相似文献   

17.
Two dominant inhibitory Ras mutant proteins were analyzed by microinjection. One, [Asn-17]Ras, had a substitution in the putative Mg(2+)-binding site of Ha-Ras. The other, RAST, had a mutation in a yeast RAS protein that impaired its GTPase activity and increased its affinity for GAP. RAST also had a mutation that blocked its localization to the plasma membrane. In NIH 3T3 cells [Asn-17]Ras inhibited the function of normal Ras much more efficiently than that of oncogenic Ras. In contrast, RAST interfered with the transforming activity of oncogenic Ras more efficiently than that of normal Ras. These conclusions were based on two separate types of analysis. The inhibitory Ras mutant proteins were first microinjected into cells stably transformed either by oncogenic Ras or by high levels of expression of cellular Ras. Results obtained in stably transformed cells were then verified by coinjection of the inhibitory Ras mutant proteins together with transforming concentrations of either oncogenic or normal Ras protein. Whereas RAST was active in soluble form. [Asn-17]Ras required membrane localization for activity. Furthermore, mutations in the GAP/effector-binding domain reduced or eliminated the inhibitory activity of RAST but had no detectable effect on [Asn-17]Ras. These results are consistent with the possibility that [Asn-17]Ras functions by blocking the activation of endogenous Ras proteins, while RAST functions by blocking the ability of activated Ras to stimulate a downstream target within the cells. The properties of RAST suggest that interference with the GAP/effector-binding function of RAS represents a strategy for the preferential inactivation of oncogenic Ras in cells.  相似文献   

18.
Tomić S  Bertosa B  Wang T  Wade RC 《Proteins》2007,67(2):435-447
The small guanosine triphosphate (GTP)-binding proteins of the Ras family are involved in many cellular pathways leading to cell growth, differentiation, and apoptosis. Understanding the interaction of Ras with other proteins is of importance not only for studying signalling mechanisms but also, because of their medical relevance as targets, for anticancer therapy. To study their selectivity and specificity, which are essential to their signal transfer function, we performed COMparative BINding Energy (COMBINE) analysis for 122 different wild-type and mutant complexes between the Ras proteins, Ras and Rap, and their effectors, Raf and RalGDS. The COMBINE models highlighted the amino acid residues responsible for subtle differences in binding of the same effector to the two different Ras proteins, as well as more significant differences in the binding of the two different effectors (RalGDS and Raf) to Ras. The study revealed that E37, D38, and D57 in Ras are nonspecific hot spots at its effector interface, important for stabilization of both the RalGDS-Ras and Raf-Ras complexes. The electrostatic interaction between a GTP analogue and the effector, either Raf or RalGDS, also stabilizes these complexes. The Raf-Ras complexes are specifically stabilized by S39, Y40, and D54, and RalGDS-Ras complexes by E31 and D33. Binding of a small molecule in the vicinity of one of these groups of amino acid residues could increase discrimination between the Raf-Ras and RalGDS-Ras complexes. Despite the different size of the RalGDS-Ras and Raf-Ras complexes, we succeeded in building COMBINE models for one type of complex that were also predictive for the other type of protein complex. Further, using system-specific models trained with only five complexes selected according to the results of principal component analysis, we were able to predict binding affinities for the other mutants of the particular Ras-effector complex. As the COMBINE analysis method is able to explicitly reveal the amino acid residues that have most influence on binding affinity, it is a valuable aid for protein design.  相似文献   

19.
We have investigated the relationship between hydrolysis of phosphatidylcholine (PC) and activation of the Raf-1 protein kinase in Ras-mediated transduction of mitogenic signals. As previously reported, cotransfection of a PC-specific phospholipase C (PC-PLC) expression plasmid bypassed the block to cell proliferation resulting from expression of the dominant inhibitory mutant Ras N-17. In contrast, PC-PLC failed to bypass the inhibitory effect of dominant negative Raf mutants, suggesting that PC-PLC functions downstream of Ras but upstream of Raf. Consistent with this hypothesis, treatment of quiescent cells with exogenous PC-PLC induced Raf activation, even when normal Ras function was blocked by Ras N-17 expression. Further, activation of Raf in response to mitogenic growth factors was blocked by inhibition of endogenous PC-PLC. Taken together, these results indicate that hydrolysis of PC mediates Raf activation in response to mitogenic growth factors.  相似文献   

20.
To be fully activated at the plasma membrane, Raf-1 must establish two distinct modes of interactions with Ras, one through its Ras-binding domain and the other through its cysteine-rich domain (CRD). The Ras homologue Rap1A is incapable of activating Raf-1 and even antagonizes Ras-dependent activation of Raf-1. We proposed previously that this property of Rap1A may be attributable to its greatly enhanced interaction with Raf-1 CRD compared to Ras. On the other hand, B-Raf, another Raf family member, is activatable by both Ras and Rap1A. When interactions with Ras and Rap1A were measured, B-Raf CRD did not exhibit the enhanced interaction with Rap1A, suggesting that the strength of interaction at CRDs may account for the differential action of Rap1A on Raf-1 and B-Raf. The importance of the interaction at the CRD is further supported by a domain-shuffling experiment between Raf-1 and B-Raf, which clearly indicated that the nature of CRD determines the specificity of response to Rap1A: Raf-1, whose CRD is replaced by B-Raf CRD, became activatable by Rap1A, whereas B-Raf, whose CRD is replaced by Raf-1 CRD, lost its response to Rap1A. Finally, a B-Raf CRD mutant whose interaction with Rap1A is selectively enhanced was isolated and found to possess the double mutation K252E/M278T. B-Raf carrying this mutation was not activated by Rap1A but retained its response to Ras. These results indicate that the strength of interaction with Ras and Rap1A at its CRD may be a critical determinant of regulation of the Raf kinase activity by the Ras family small GTPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号