首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The first seven residues of the yeast cytochrome oxidase subunit IV presequence are insufficient to target attached mouse dihydrofolate reductase into isolated yeast mitochondria. However, the targeting function of this truncated presequence can be restored by presenting the fusion protein to isolated mitochondria either as nascent, unfolded chains, or as full-length chains whose dihydrofolate reductase moiety had been destabilized either by urea treatment or by point mutations. The targeting efficiency of a mitochondrial presequence can thus be strongly influenced by the conformation of the attached 'passenger protein'. These results also underscore the difficulty of defining a 'minimal' mitochondrial targeting signal.  相似文献   

3.
Tso SC  Yin Y  Yu CA  Yu L 《Biochimica et biophysica acta》2006,1757(12):1561-1567
A region of subunit IV comprising residues 77-85 is identified as essential for interaction with the core complex to restore the bc(1) activity (reconstitutive activity). Recombinant subunit IV mutants with single or multiple alanine substitution at this region were generated and characterized to identify the essential amino acid residues. Residues 81-84, with sequence of YRYR, are required for reconstitutive activity of subunit IV, because a mutant with these four residues substituted with alanine has little activity, while a mutant with alanine substitution at residues 77-80 and 85 have the same reconstitutive activity as that of the wild-type IV. The positively charged group at R-82 and R-84 and both the hydroxyl group and aromatic group at Y-81 and Y-83 are essential. The interactions between these four residues of subunit IV and residues of core subunits are also responsible for the stability of the complex. However, these interactions are not essential for the incorporation of subunit IV into the bc(1) complex.  相似文献   

4.
Allotopic expression is potentially a gene therapy for mtDNA-related diseases. Some OXPHOS proteins like ATP6 (subunit a of complex V) and COX3 (subunit III of complex IV) that are typically mtDNA-encoded, are naturally nucleus-encoded in the alga Chlamydomonas reinhardtii. The mitochondrial proteins whose genes have been relocated to the nucleus exhibit long mitochondrial targeting sequences ranging from 100 to 140 residues and a diminished overall mean hydrophobicity when compared with their mtDNA-encoded counterparts. We explored the allotopic expression of the human gene products COX3 and ATP6 that were re-designed for mitochondrial import by emulating the structural properties of the corresponding algal proteins. In vivo and in vitro data in homoplasmic human mutant cells carrying either a T8993G mutation in the mitochondrial atp6 gene or a 15 bp deletion in the mtDNA-encoded cox3 gene suggest that these human mitochondrial proteins re-designed for nuclear expression are targeted to the mitochondria, but fail to functionally integrate into their corresponding OXPHOS complexes.  相似文献   

5.
Shih-Chia Tso 《BBA》2006,1757(12):1561-1567
A region of subunit IV comprising residues 77-85 is identified as essential for interaction with the core complex to restore the bc1 activity (reconstitutive activity). Recombinant subunit IV mutants with single or multiple alanine substitution at this region were generated and characterized to identify the essential amino acid residues. Residues 81-84, with sequence of YRYR, are required for reconstitutive activity of subunit IV, because a mutant with these four residues substituted with alanine has little activity, while a mutant with alanine substitution at residues 77-80 and 85 have the same reconstitutive activity as that of the wild-type IV. The positively charged group at R-82 and R-84 and both the hydroxyl group and aromatic group at Y-81 and Y-83 are essential. The interactions between these four residues of subunit IV and residues of core subunits are also responsible for the stability of the complex. However, these interactions are not essential for the incorporation of subunit IV into the bc1 complex.  相似文献   

6.
The amino acid sequence of subunit VIII from yeast cytochrome c oxidase is reported. This 47-residue (Mr = 5364) amphiphilic polypeptide has a polar NH2 terminus, a hydrophobic central section, and a dilysine COOH terminus. An analysis of local hydrophobicity and predicted secondary structure along the peptide chain predicts that the hydrophobic central region is likely to be transmembranous. Subunit VIII from yeast cytochrome c oxidase exhibits 40.4% homology to bovine heart cytochrome c oxidase subunit VIIc , at the level of primary structure. Secondary structures and hydrophobic domains predicted from the sequences of both polypeptides are also highly conserved. From the location of hydrophobic domains and the positions of charged amino acid residues we have formulated a topological model for subunit VIII in the inner mitochondrial membrane.  相似文献   

7.
The gene coding for four subunits of cytochrome aa3-type oxidase was isolated from a genomic DNA library of the thermophilic bacterium PS3 and sequenced. The N-terminus of each subunit was also sequenced to verify the initiation site of the reading frame. The deduced amino acid sequences contained 615 amino acid residues for subunit I (CO1/caaB product), 333 residues for subunit II (CO2/caaA product), 207 residues for subunit III (CO3/caaC product), and 109 residues for subunit IV (CO4/caaD product) after processing. Re-examination of the sequencing of caa revealed a longer open reading frame for CO1, which contains 14 transmembrane segments instead of 12 [Sone et al. (1988) J. Biochem. 103, 606-610], although the main portions of the sequences constituting cytochrome a (FeA), cytochrome a3 (FeB), and CuB are correct. PS3 CO2 has an additional sequence for cytochrome c after the CuA binding protein portion with 2 transmembrane segments, which is homologous to the mitochondrial counterpart. PS3 CO3 has DCCD-binding glutamyl residues but contains only 5 transmembrane segments, unlike the mitochondrial counterpart, which has 7 segments. The subunits of PS3 cytochrome oxidase (aa3-type) show clear similarity in amino acid sequences with those of cytochrome bo-type oxidase from Escherichia coli as well, in spite of the difference of hemes. PS3 CO3 and CO4 are much more similar to E. coli CO3 and CO4 than to mitochondrial CO3 and CO4, respectively.  相似文献   

8.
The requirements for protein import into mitochondria was investigated by using the targeting signal of the F(A)d subunit of soybean mitochondrial ATP synthase attached to two different passenger proteins, its native passenger and soybean alternative oxidase. Both passenger proteins are soybean mitochondrial proteins. Changing hydrophobic residues at positions -24:25 (Phe:Leu), -18:19 (Ile:Leu) and -12:13 (Leu:Ile) of the 31 amino acid cleavable presequence gave more than 50% inhibition of import with both passenger proteins. Some other residues in the targeting signal played a more significant role in targeting of one passenger protein compared to another. Notably changing positive residues (Arg, Lys) had a greater inhibitory affect on import with the native passenger protein, i.e. greater inhibition of import with F(A)d mature protein was observed compared to when alternative oxidase was the mature protein. When using chimeric passenger proteins it was shown that the nature of the mature protein can greatly affect the targeting properties of the presequence. In vivo investigations of the targeting presequence indicated that the presequence of 31 amino acids could not support import of GFP as a passenger protein. However, fusion of the full-length F(A)d coding sequence to GFP did result in mitochondrial localisation of GFP. Using the latter fusion we confirmed the critical role of hydrophobic residues at positions -24:25 and -18:19. These results support the proposal that core mitochondrial targeting features exist in all presequences, but that additional features exist. These features may not be evident with all passenger proteins.  相似文献   

9.
The smallest subunit (V) of sweet potato cytochrome c oxidase was separated into three polypeptides, Va, Vb and Vc with different molecular masses (7.4 kDa, 6.8 kDa and 6.2 kDa respectively) by highly resolving sodium dodecylsulfate polyacrylamide gel electrophoresis. Antibody against subunit V reacted specifically with the polypeptide Vc. When polyadenylated mRNA from sweet potato root tissue was translated in a wheat germ cell-free system, the smallest subunit (Vc) of the polypeptides was synthesized to the same size as the mature form, which suggests that the mature subunit retains the signal for import into mitochondria. Within the N-terminal first 25 amino acids there is a stretch of 16 non-polar residues, periodically linked by basic residues, which might form an amphiphilic helix as the targeting signal.  相似文献   

10.
Domain structure of mitochondrial and chloroplast targeting peptides   总被引:109,自引:0,他引:109  
Representative samples of mitochondrial and chloroplast targeting peptides have been analyzed in terms of amino acid composition, positional amino acid preferences and amphiphilic character. No highly conserved 'homology blocks' are found in either class of topogenic sequence. Mitochondrial-matrix-targeting peptides are composed of two domains with different amphiphilic properties. Arginine is frequently found either at position -10 or -2 relative to the cleavage site, suggesting that some targeting peptides may be cleaved twice in succession by two different matrix proteases. In stroma-targeting chloroplast transit peptides three distinct regions are evident: an uncharged amino-terminal domain, a central domain lacking acidic residues and a carboxy-terminal domain with the potential to form an amphiphilic beta-strand. Targeting peptides that route proteins to the mitochondrial intermembrane space or the lumen of chloroplast thylakoids have a mosaic design with an amino-terminal matrix- or stroma-targeting part attached to a carboxy-terminal extension that shares many characteristics with secretory signal peptides.  相似文献   

11.
Yeast cytochrome c oxidase subunit IV (an imported mitochondrial protein) is made as a larger precursor with a transient pre-sequence of 25 amino acids. If this pre-sequence is fused to the amino terminus of mouse dihydrofolate reductase (a cytosolic protein) the resulting fusion protein is imported into the matrix space, and cleaved to a smaller size, by isolated yeast mitochondria. We have now fused progressively shorter amino-terminal segments of the subunit IV pre-sequence to dihydrofolate reductase and tested each fusion protein for import into the matrix space and cleavage by the matrix-located processing protease. The first 12 amino acids of the subunit IV pre-sequence were sufficient to direct dihydrofolate reductase into the mitochondrial matrix, both in vitro and in vivo. However, import of the corresponding fusion protein into the matrix was no longer accompanied by proteolytic processing. Fusion proteins containing fewer than nine amino-terminal residues from the subunit IV pre-piece were not imported into isolated mitochondria. The information for transporting attached mouse dihydrofolate reductase into mitochondria is thus contained within the first 12 amino acids of the subunit IV pre-sequence.  相似文献   

12.
Most mitochondrial proteins are synthesized in the cytosol as precursor proteins containing an N-terminal targeting peptide and are imported into mitochondria through the import machineries, the translocase of the outer mitochondrial membrane (TOM) and the translocase of the inner mitochondrial membrane (TIM). The N-terminal targeting peptide of precursor proteins destined for the mitochondrial matrix is recognized by the Tom20 receptor and plays an important role in the import process. Protein import is usually organelle specific, but several plant proteins are dually targeted into mitochondria and chloroplasts using an ambiguous dual targeting peptide. We present NMR studies of the dual targeting peptide of Thr-tRNA synthetase and its interaction with Tom20 in Arabidopsis?thaliana. Our findings show that the targeting peptide is mostly unstructured in buffer, with a propensity to form α-helical structure in one region, S6-F27, and a very weak β-strand propensity for Q34-Q38. The α-helical structured region has an amphiphilic character and a φχχφφ motif, both of which have previously been shown to be important for mitochondrial import. Using NMR we have mapped out two regions in the peptide that are important for Tom20 recognition: one of them, F9-V28, overlaps with the amphiphilic region, and the other comprises residues L30-Q39. Our results show that the targeting peptide may interact with Tom20 in several ways. Furthermore, our results indicate a weak, dynamic interaction. The results provide for the first time molecular details on the interaction of the Tom20 receptor with a dual targeting peptide. DATABASE: The backbone chemical shift assignments for ThrRS-dTP(2-60) have been deposited with the Biological Magnetic Resonance Bank (BMRB) under the accession code 18248 STRUCTURED DIGITAL ABSTRACT: ThrRS-dTP?and?Tom20-4?bind?by?nuclear magnetic resonance?(View interaction).  相似文献   

13.
The Saccharomyces cerevisiae F1-ATPase beta subunit precursor contains redundant mitochondrial protein import information at its NH2 terminus (D. M. Bedwell, D. J. Klionsky, and S. D. Emr, Mol. Cell. Biol. 7:4038-4047, 1987). To define the critical sequence and structural features contained within this topogenic signal, one of the redundant regions (representing a minimal targeting sequence) was subjected to saturation cassette mutagenesis. Each of 97 different mutant oligonucleotide isolates containing single (32 isolates), double (45 isolates), or triple (20 isolates) point mutations was inserted in front of a beta-subunit gene lacking the coding sequence for its normal import signal (codons 1 through 34 were deleted). The phenotypic and biochemical consequences of these mutations were then evaluated in a yeast strain deleted for its normal beta-subunit gene (delta atp2). Consistent with the lack of an obvious consensus sequence for mitochondrial protein import signals, many mutations occurring throughout the minimal targeting sequence did not significantly affect its import competence. However, some mutations did result in severe import defects. In these mutants, beta-subunit precursor accumulated in the cytoplasm, and the yeast cells exhibited a respiration defective phenotype. Although point mutations have previously been identified that block mitochondrial protein import in vitro, a subset of the mutations reported here represents the first single missense mutations that have been demonstrated to significantly block mitochondrial protein import in vivo. The previous lack of such mutations in the beta-subunit precursor apparently relates to the presence of redundant import information in this import signal. Together, our mutants define a set of constraints that appear to be critical for normal activity of this (and possibly other) import signals. These include the following: (i) mutant signals that exhibit a hydrophobic moment greater than 5.5 for the predicted amphiphilic alpha-helical conformation of this sequence direct near normal levels of beta-subunit import (ii) at least two basic residues are necessary for efficient signal function, (iii) acidic amino acids actively interfere with import competence, and (iv) helix-destabilizing residues also interfere with signal function. These experimental observations provide support for mitochondrial protein import models in which both the structure and charge of the import signal play a critical role in directing mitochondrial protein targeting and import.  相似文献   

14.
Preproteins destined for mitochondria either are synthesized with amino-terminal signal sequences, termed presequences, or possess internal targeting information within the protein. The preprotein translocase of the outer mitochondrial membrane (designated Tom) contains specific import receptors. The cytosolic domains of three import receptors, Tom20, Tom22, and Tom70, have been shown to interact with preproteins. Little is known about the internal targeting information in preproteins and the distribution of binding sequences for the three import receptors. We have studied the binding of the purified cytosolic domains of Tom20, Tom22, and Tom70 to cellulose-bound peptide scans derived from a presequence-carrying cleavable preprotein, cytochrome c oxidase subunit IV, and a non-cleavable preprotein with internal targeting information, the phosphate carrier. All three receptor domains are able to bind efficiently to linear 13-mer peptides, yet with different specificity. Tom20 preferentially binds to presequence segments of subunit IV. Tom22 binds to segments corresponding to the carboxyl-terminal part of the presequence and the amino-terminal part of the mature protein. Tom70 does not bind efficiently to any region of subunit IV. In contrast, Tom70 and Tom20 bind to multiple segments within the phosphate carrier, yet the amino-terminal region is excluded. Both charged and uncharged peptides derived from the phosphate carrier show specific binding properties for Tom70 and Tom20, indicating that charge is not a critical determinant of internal targeting sequences. This feature contrasts with the crucial role of positively charged amino acids in presequences. Our results demonstrate that linear peptide segments of preproteins can serve as binding sites for all three receptors with differential specificity and imply different mechanisms for translocation of cleavable and non-cleavable preproteins.  相似文献   

15.
E C Hurt  U Müller    G Schatz 《The EMBO journal》1985,4(13A):3509-3518
We have used an in vivo complementation assay to test whether a given polypeptide sequence can direct an attached protein to the mitochondrial inner membrane. The host is a previously described yeast deletion mutant that lacks cytochrome oxidase subunit IV (an imported protein) and, thus neither assembles cytochrome oxidase in its mitochondrial inner membrane nor grows on the non-fermentable carbon source, glycerol. Growth on glycerol and cytochrome oxidase assembly are restored to the mutant if it is transformed with the gene encoding authentic subunit IV precursor, a protein carrying a 25-residue transient pre-sequence. No restoration is seen with a plasmid encoding a subunit IV precursor whose pre-sequence has been shortened to seven residues. Partial, but significant restoration is achieved by an artificial subunit IV precursor in which the authentic pre-sequence has been replaced by the first 12 amino acids of a 70-kd protein of the mitochondrial outer membrane. If this dodecapeptide is fused to the amino terminus of mouse dihydrofolate reductase (a cytosolic protein), the resulting fusion protein is imported into the matrix of yeast mitochondria in vitro and in vivo. Import in vitro requires an energized inner membrane. We conclude that the extreme amino terminus of the 70-kd outer membrane protein can direct an attached protein across the mitochondrial inner membrane.  相似文献   

16.
A set of chimaeric precursors which contain the same leader sequences but different passenger proteins has been analyzed for the site of protease cleavage following import into yeast mitochondria. Each precursor comprises the leader of Neurospora crassa subunit 9 of mitochondrial ATP synthase fused to subunit 8 or 9 of the corresponding yeast enzyme. Precursors containing the first five residues of mature N. crassa subunit 9 interposed between the leader and the yeast passenger protein were cleaved at the natural site of the N. crassa subunit 9 precursor. Direct fusions without interposed sequences were cleaved at novel sites. Cleavage occurred between the 3rd and 4th residues of yeast subunit 8, but for yeast subunit 9, cleavage occurred within the leader, 8 residues upstream of the passenger protein.  相似文献   

17.
Recombinant subunit IV mutants which identify the regions essential for restoration of bc(1) activity to the three-subunit core complex of Rhodobacter sphaeroides were generated and characterized. Four C-terminal truncated mutants: IV(1-109), IV(1-85), IV(1-76), and IV(1-40) had 100, 0, 0, and 0% of reconstitutive activity of the wild-type IV, indicating that residues 86-109 are essential. IV(1-109) is associated with the core complex in the same manner as the wild-type IV while mutants IV(1-85), IV(1-76), and IV(1-40) do not associate with the core complex, indicating that subunit IV requires its transmembrane helix region (residues 86-109) for assembly into the bc(1) complex. Since GST-IV(86-109) fusion protein has little reconstitutive activity, some region(s) in residues 1-85 are required for bc(1) activity restoration after subunit IV is incorporated into the complex through the transmembrane helix, presumably by interaction with cytochrome b in the core complex. The interacting regions are identified as residues 41-53 and 77-85, since mutants IV(21-109), IV(41-109), IV(54-109), and IV(77-109) had 95, 98, 53, and 53% of the reconstitutive activity of the wild-type IV. These two interacting regions are on the cytoplasmic side of the chromatophore membrane and closed to the DE loop and helix G of cytochrome b, respectively.  相似文献   

18.
We show that a synthetic peptide corresponding to the N-terminal 22 residues of the cytochrome c oxidase subunit IV presequence blocked import of pre-subunit IV into yeast mitochondria. The 22-residue peptide pL4-(1-22) did not alter the electrical potential across the mitochondrial inner membrane (the delta psi). Inhibition of import was reversible and could be overcome by the addition of increased amounts of precursor. Two other peptides, pL4-(1-16) and pL4-(1-23), which correspond to, respectively, the N-terminal 16 and 23 residues of the same presequence, also blocked import of pre-subunit IV. However, pL4-(1-16) was a much weaker inhibitor of import, while the inhibitory effect of pL4-(1-23) was due to its ability to completely collapse the delta psi. pL4-(1-22) seems to be a general inhibitor of mitochondrial import, in that it also blocked uptake of several other proteins. These included the precursors of the yeast proteins cytochrome c oxidase subunit Va, the F1-ATPase beta subunit, mitochondrial malate dehydrogenase, and the ATP/ADP carrier. In addition, uptake of two non-yeast precursor proteins (human ornithine transcarbamylase and a cytochrome oxidase subunit IV-dihydrofolate reductase fusion), was also blocked by the peptide. Subsequent studies revealed that pL4-(1-22) did not block the initial recognition or binding of proteins to mitochondria. Rather, our results suggest that the peptide acts at a subsequent translocation step which is common to the import pathways of many different precursor proteins.  相似文献   

19.
Mitochondrial targeting sequences may form amphiphilic helices.   总被引:134,自引:33,他引:101       下载免费PDF全文
Twenty three mitochondrial targeting sequences have been analysed with regard to their potential for forming amphiphilic helices. It is shown that most if not all of these sequences can be expected to form helices with high hydrophobic moments in a suitable environment. In the few cases studied so far, the segments of maximal hydrophobic moment coincide closely with 'critical' regions defined by deletions and point mutations.  相似文献   

20.
Subunit 8 of yeast mitochondrial F1F0-ATPase is a proteolipid made on mitochondrial ribosomes and inserted directly into the inner membrane for assembly with the other F0 membrane-sector components. We have investigated the possibility of expressing this extremely hydrophobic, mitochondrially encoded protein outside the organelle and directing its import back into mitochondria using a suitable N-terminal targeting presequence. This report describes the successful import in vitro of ATPase subunit 8 proteolipid into yeast mitochondria when fused to the targeting sequence derived from the precursor of Neurospora crassa ATPase subunit 9. The predicted cleavage site of matrix protease was correctly recognized in the fusion protein. A targeting sequence from the precursor of yeast cytochrome oxidase subunit VI was unable to direct the subunit 8 proteolipid into mitochondria. The proteolipid subunit 8 exhibited a strong tendency to embed itself in mitochondrial membranes, which interfered with its ability to be properly imported when part of a synthetic precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号