首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
(25R)-26-Amino-cholesterol-[7α-3H], (25R)-26-amino-5-cholestene-3β,16β-diol-[7α-3H] and (25R)-26-acetylamino-5-cholestene-3β,16β-diol-[7α-3H] administered to Solanum laciniatum were converted into solasodine. The results indicate that in the biosynthesis of solasodine the introduction of nitrogen occurs immediately after the hydroxylation at C-26 and before a further oxidation of the side chain of cholesterol. The next step after the amination at C-26 is not hydroxylation at the 16β-position but probably the functionalization of C-22.  相似文献   

2.
Two new furostanol glycosides, trigofoenosides F and G, have been isolated as their methyl ethers from the methanolic extract of Trigonella foenum-graecum seeds (Leguminosae). The structures of the original glycosides have been determined as (25R)-furost-5-en-3β,22,26-triol, 3-O-α-l-rhamnopyranosyl (1 → 2)β-d-glucopyranosyl (1 → 6)β-d-glucopyranoside; 26-O-β-d-glucopyranoside and (25R)-furost-5en-3β,22,26-triol, 3-O-α-L-rhamnopyranosyl (1 → 2) [β-d-xylopyranosyl (1 → 4)]β-d-glucopyranosyl (1 → 6)β-d-glucopyranoside; 26-O-β-d-glucopyranoside, respectively.  相似文献   

3.
Three new saponins, melongosides N, O and P, have been isolated from the methanolic extract of seeds of Solanum melongena and their structures elucidated. Melongoside N is 3-O-[β-D-glucopyranosy l-(1 → 2)-β-D-glucopyranosyl]-26-O-(β-D-glucopyranosyl)-(25R)-5α-furostan-3β,22 α,26-triol, whereas melongoside O is 3-O-[β-D-glucopyranosyl-(1 → 2)β-D-glucopyranosyl]- 26-O-(β-D-glucopyranosyl)-(25R)-furost-5-en-3β,22α,26-triol and melongoside P is 3-O- [β-D-glucopyranosyl-(1 → 2)]-[α-L-rhamnopyranosyl-(1 → 3)]-β-D-glucopyranosyl)-26-O- (β-D-glucopyranosyl)-(25 R)-5α-furostan-3β,22α,26-triol.  相似文献   

4.
Two previously undescribed steroidal alkaloids, compounds 1–2, were isolated from the ripe fruits of Solanum nigrum, along with seven known metabolites (3–9). Based on spectroscopic and chemical evidence, including IR, NMR, and HR-ESI-MS analyses, the structures of the isolated compounds were elucidated as 12β-hydroxy-(3β,22α,25R)-spirosol-5-en-27-acid-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranosyl-(1→3)]-β-D-galacopyranoside and 12β-hydroxy-(3β,22α,25R)-spirosol-5-en-27-acid-3-O-α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside. Four steroidal alkaloids (compounds 1–2 and 4–5) were tested for their anti-proliferative effects against the HT-29, A549, and Lewis cell lines. Both of the previously isolated compounds inhibited the proliferation of these three cell lines in a dose-dependent manner, with the most significant effect being in the A549 cells, but neither reached IC50 at 50 μM. These results revealed that S. nigrum had weak cytotoxicity, indicating its clinical safety as a traditional anti-tumor herbal medicine.  相似文献   

5.
A new steroidal alkaloid glycoside named havanine has been isolated from the leaves of Solanum havanense and its structure elucidated by spectral data as (25S)-O(3)-β-D-glucopyranosyl-16α-acetoxy-22,26-epiminocholesta-5,22(N)-dien-3β-ol.  相似文献   

6.
Two oligofurostanosides and two spirostanosides, isolated from a methanol extract of Asparagus adscendens (leaves), were characterized as 3-O-[{α-l-rhamnopyranosyl (1 → 4)} {α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]-22α-methoxy-(25S)-furost-5-en-3β,26-diol (Adscendoside A), 3-O-[{α-l-rhamnopyranosyl (1 → 4)} {α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]-(25S)-furost-5-en-3β,22α,26-triol-(Adscendoside B), 3-O-[{α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyranosyl]-(25S)-spirostan-5-en-3β-ol (Adscendin A) and 3-O-[{α-l-rhamnopyranosyl (1 → 4)} {α-l-rhamnopyranosyl (1 → 6)}-β-d-glucopyr anosyl]-(25S)-spirostan-5-en-3β-ol (Adscendin B), respectively. Adscendin B and Adscendoside A are the artefacts of Adscendoside B formed through hydrolysis and methanol extraction respectively.bl]  相似文献   

7.
A new furostanol glucuronide and three known glycosides, SL-O, aspidistrin and methyl proto-aspidistrin, were isolated from the fresh immature berries of Solanum lyratum. The structure of the new compound was characterized as 26-O-β-D-glucopyranosyl-(22ξ,25R-3β,22,26-trihydroxyfurost-5-ene 3-O-α-L-rhamnopyranosyl-(1 → 2)-[β-D-glucopyranosyl-(1 → 3)]-β-D-glucuronopyranoside.  相似文献   

8.
From the seed of fenugreek, a new glycoside has been isolated and shown to have the structure, (25S)-22-O- methyl-5α-furostan-3β,22,26-triol 3-O-α-rhamnopyranosyl(1→2)[-β-d-glucopyranosyl (1→3)]-β-d- glucopyranoside-26-O-β-d-glucopyranoside.  相似文献   

9.
Besides solasodine and tomatidine the new alkaloid solaverbascine has been obtained from the leaves of Solanum verbascifolium and identified as (22S:25R)-22,26-epiminocholest-5-ene-3β, 16β-diol by physical data and direct comparison with synthetic material.  相似文献   

10.
A phytochemical analysis of the bulbs of Allium vavilovii M. Pop. & Vved. was attained for the first time extensively, affording to the isolation of four new furostanol saponins, named vavilosides A1/A2–B1/B2 (1a/b–2a/2b), as two couple of isomers in equilibrium, together with ascalonicoside A1/A2 (3a/3b) and 22-O-methyl ascalonicoside A1/A2 (4a/4b), previously isolated from shallot, Allium ascalonicum. High concentrations of kaempferol, kaempferide, and kaempferol 4I-glucoside were also isolated. The chemical structures of the new compounds, established through a combination of extensive nuclear magnetic resonance, mass spectrometry and chemical analyses, were identified as (25R)-furost-5(6)-en-1β,3β,22α,26-tetraol 1-O-α-l-rhamnopyranosyl-(1→2)-O-β-d-galactopyranosyl 26-O-α-l-rhamnopyranoside (vaviloside A1), (25R)-furost-5(6)-en-1β,3β,22β,26-tetraol 1-O-α-l-rhamnopyranosyl-(1→2)-O-β-d-galactopyranosyl 26-O-α-l-rhamnopyranoside (vaviloside A2), (25R)-furost-5(6)-en-1β,3β,22α,26-tetraol 1-O-α-l-rhamnopyranosyl-(1→2)-O-β-d-xylopyranosyl 26-O-α-l-rhamnopyranoside (vaviloside B1), (25R)-furost-5(6)-en-1β,3β,22β,26-tetraol 1-O-α-l-rhamnopyranosyl-(1→2)-O-β-d-xylopyranosyl 26-O-α-l-rhamnopyranoside (vaviloside B2). The isolated saponins showed cytotoxic activity on J-774, murine monocyte/macrophage, and WEHI-164, murine fibrosarcoma, cell lines with the following rank: vaviloside B1/B2 > ascalonicoside A1/A2 > vaviloside A1/A2.  相似文献   

11.
Two new steroid glycosides: distolasteroside D6, (24S)-24-O-(β-D-xylopyranosyl)-5α-cholestane-3β,6α,8,15β,16β,24-hexaol, and distolasteroside D7, (22E,24R)-24-O-(β-D-xylopyranosyl)-5α-cholest-22-ene-3β,6α,8,15β,24-pentaol were isolated along with the previously known distolasterosides D1, D2, and D3, echinasteroside C, and (25S)-5α-cholestane-3β4β,6α,7α,8,15α,16β,26-octaol from the Far Eastern starfish Distolasterias nipon. The structures of new compounds were elucidated by NMR spectroscopy and MALDI TOF mass spectrometry. Like neurotrophins, distolasterosides D1, D2, and D3 were shown to induce neuroblast differentiation in a mouse neuroblastoma C1300 cell culture.  相似文献   

12.
From bulbs of Tristagma uniflorum the known sapogenins tigogenin, neotigogenin and (20S,22R,25S)-5α-spirostan-3β,25-diol, as well as the new (20S,22R,25R)-5α-spirostan-3β,25-diol, (20S,22S,25S)-5α-furostan-22,25-epoxy-3β,26-diol and (20S,22S,25R) -5α-furostan-22,25-epoxy-3β,26-diol, were isolated and characterized by spectroscopic (IR, 1H NMR, 13C NMR, MS) methods.  相似文献   

13.
(19R)-and (19S)-tert-Butyldimethylsilyl (TBS) ethers of 19-hydroxy-19-vinyl-16α,17α-cyclohexanopregn-5-en-20-ones were synthesized. These compounds containing the 1,5-oxydienoic motif were subjectedto the anionic oxy-Cope rearrangement to obtain 3β-TBS ether of 6β-(3-oxopropyl)-16α,17α-cyclohexano-19-norpregn-5(10)-en-20-one. The structures of the compounds synthesized were confirmed by the analysis of their 1H and 13C NMR spectra.  相似文献   

14.
A facile and efficient way for the synthesis of cholestane and furostan saponin analogues was established and adopted for the first time. Following this strategy, starting from diosgenin, three novel cholestane saponin analogues: (22S,25R)-3β,22,26-trihydroxy-cholest-5-ene-16-one 22-O-[O-α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranoside] 11, (25R)-3β,16β,26-trihydroxy-cholest-5-ene-22-one 16-O-[O-α-l-rhamnopyranosyl-(1  2)-α-d-glucopyranoside] 14 and (25R)-3β,16β,26-trihydroxy-cholest-5-ene-22-one 16-O-[O-α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranoside] 17, three novel furostan saponin analogues: (22S,25R)-furost-5-ene-3β,22,26-triol 22-O-(α-d-glucopyranoside) 23, (22R,25R)-furost-5-ene-3β,22,26-triol 22-O-(α-d-glucopyranoside) 24 and (22S,25R)-furost-5-ene-3β,22,26-triol 22-O-[O-α-l-rhamnopyranosyl-(1  2)-α-d-glucopyranoside] 26, were synthesized ultimately. The structures of all the synthesized analogues were confirmed by spectroscopic methods. The S-chirality at C-22 of cholestane was confirmed by Mosher's method. The absolute configuration at C-22 of furostan saponin analogues was distinguished by conformational analysis combined with the NMR spectroscopy. The cytotoxicities of the synthetic analogues toward four types of tumor cells were shown also.  相似文献   

15.
The chemical synthesis of (22R,23R)-3β-hydroxy-22,23-epoxy-5α-ergost-8(14)-en-15-one from (22A)-3β-acetoxy-5α-ergosta-7,14,22-triene was improved. The stages of obtaining and isomerization of (22A)-3β-acetoxy-14α15α-epoxy-5α-ergosta-7,22-diene were optimized. The introduction of (22R,23R)-epoxide cycle was carried out by alkaline treatment of intermediate (22S,23R)-3β,23-diacetoxy-22-iodo-5α-ergost-8(14)-en-15-one. In cells of human breast carcinoma MCF-7, (22R,23R)-3β-hydroxy-22,23-epoxy-5α-ergost-8(14)-en-15-one showed a high toxicity (TC50 = 0.4±0.1 μM at 48-h incubation in serum-free medium).  相似文献   

16.
A method is described for the chemical synthesis of stigmasta-5,24-dien-3β-ol-[26-14C] and (24S)-24-ethylcholesta-5,25-dien-3β-ol-[26-14C] (clerosterol). 28-Isofucosterol-[7-3H2] fed to developing barley seedlings (Hordeum vulgare) was incorporated into sitosterol and stigmasterol confirming the utilisation of a 24-ethylidene sterol intermediate in 24α-ethyl sterol production in this plant. Also, the use of mevalonic acid-[2-14C(4R)-4-3H1] verified the loss of the C-25 hydrogen of 28-isofucosterol during its conversion into sitosterol and stigmasterol in agreement with the previously postulated isomerisation of the 24-ethylidene sterol to a Δ24(25)-sterol prior to reduction. However, feeding stigmasta-5,24-dien-3β-ol [26-14C] to barley seedlings gave very low incorporation into sitosterol. Attempts to trap radioactivity from mevalonic-[2-14C(4R)-4-3H1] in stigmasta-5,24-dien-3β-ol when this unlabelled sterol was administered to barley seedlings gave only a very small incorporation although both 28-isofucosterol and sitosterol were labelled.  相似文献   

17.
The structure of costusoside I and costusoside J have been established as 3-O-{β-d-glucopyranosyl (1 → 2)-α-l-rhamnopyranosyl (1 → 2) [α-l-rhamnopyranosyl (1 → 4)]-β-d-glucopyranosyl}-26-O-(β-d-glucopyranosyl)-22α-methoxy 25 R)-furost-5-en-3β, 26-diol and its 22-hydroxy compound respectively, isolated fron the seeds of Costus speciosus.  相似文献   

18.
For further structure–activity relationships (SAR) research of furostan saponin, two icogenin analogues: (25R)-22-O-methyl-furost-5-en-3β,26-diol-3-O-α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranoside 1 and (25R)-22-O-methyl-furost-5-en-3β,26-diol-3-O-α-l-rhamnopyranosyl-(1  2)-α-d-glucopyranoside 2, with valuable disaccharide moieties, were synthesized from diosgenin through eight steps. Both of the analogues behaved the similar cytotoxic activities with icogenin, towards nine types of human tumor cells herein.  相似文献   

19.
Thirteen steroidal saponins were isolated from the leaves of Beaucarnea recurvata Lem. Their structures were established using one- and two-dimensional NMR spectroscopy and mass spectrometry. Six of them were identified as: 26-O-β-d-glucopyranosyl (25S)-furosta-5,20(22)-diene 1β,3β,26-triol 1-O-α-l-rhamnopyranosyl-(1 → 2) β-d-fucopyranoside, 26-O-β-d-glucopyranosyl (25S)-furosta-5,20(22)-diene 1β,3β,26-triol 1-O-α-l-rhamnopyranosyl-(1 → 2)-4-O-acetyl-β-d-fucopyranoside, 26-O-β-d-glucopyranosyl (25R)-furosta-5,20(22)-diene-23-one-1β,3β,26-triol 1-O-α-l-rhamnopyranosyl-(1 → 2) β-d-fucopyranoside, 26-O-β-d-glucopyranosyl (25S)-furosta-5-ene-1β,3β,22α,26-tetrol 1-O-α-l-rhamnopyranosyl-(1 → 4)-6-O-acetyl-β-d-glucopyranoside, 26-O-β-d-glucopyranosyl (25S)-furosta-5-ene-1β,3β,22α,26-tetrol 1-O-α-l-rhamnopyranosyl-(1 → 2) β-d-fucopyranoside, and 24-O-β-d-glucopyranosyl (25R)-spirost-5-ene-1β,3β,24-triol 1-O-α-l-rhamnopyranosyl-(1 → 2)-4-O-acetyl-β-d-fucopyranoside. The chemotaxonomic classification of B. recurvata in the family Ruscaceae was discussed.  相似文献   

20.
Three spirostanol and two furostanol glycosides were isolated from a methanol extract of the roots of Asparagus curillus and characterized as 3-O-[α-l-arabinopyranosyl (1→4)- β-d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, 3-O-[{α-l-rhamnopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-(25S)-5β-spirostan- 3β-ol, 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β- d-glucopyranosyl]-(25S)-5β-spirostan-3β-ol, 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]- 22α-methoxy-(25S)-5β-furostan-3β, 26-diol and 3-O-[{β-d-glucopyranosyl (1→2)} {α-l-arabinopyranosyl (1→4)}-β-d-glucopyranosyl]-26-O-[β-d-glucopyranosyl]- (25S)-5β-furostan-3β, 22α, 26-triol respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号