首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An inducible l-mandelate-4-hydroxylase has been partially purified from crude extracts of Pseudomonas convexa. This enzyme catalyzed the hydroxylation of l-mandelic acid to 4-hydroxymandelic acid. It required tetrahydropteridine, NADPH, Fe2+, and O2 for its activity. The approximate molecular weight of the enzyme was assessed as 91,000 by gel filtration on Sephadex G-150. The enzyme was optimally active at pH 5.4 and 38 °C. A classical Michaelis-Menten kinetic pattern was observed with l-mandelate, NADPH, and ferrous sulfate and Km values for these substrates were found to be 1 × 10?4, 1.9 × 10?4, and 4.7 × 10?5m, respectively. The enzyme is very specific for l-mandelate as substrate. Thiol inhibitors inhibited the enzyme reaction, indicating that the sulfhydryl groups may be essential for the enzyme action. Treatment of the partially purified enzyme with denaturing agents inactivated the enzyme.  相似文献   

2.
α-d-Galactosidases (α-d-galactoside galactohydrolase, EC 3.2.1.22) from normal coconut endosperm were isolated and partially purified by a combination of ammonium sulfate fractionation, SP-Sephadex C50–120 ion-exchange chromatography and Sephadex G-200 and G-100 gel filtration. Two molecular forms of the enzyme, designated as A and B, were eluted after SP-Sephadex C50–120 ion-exchange chromatography. α-d-Galactosidase A, which is the major isoenzyme, was partially purified 43-fold on Sephadex G-200 and has a MW of about 23 000 whereas α-d-galactosidase B was partially purified 23-fold on Sephadex G-100 and has a similar MW of about 26 600. Both isoenzymes exhibited optimum activity at pH 7.5. The apparent Km and Vmax of α-d-galactosidase A were obtained at 3.46 × 10?4M and 1.38 × 10?3 M p-nitrophenyl α-<d-galactoside, respectively. A distinct substrate inhibition was noted. The enzyme was inhibited strongly by d-galactose and to a lesser extent by myo-inositol, d-glucose-6-phosphate, l-arabinose, melibiose and iodoacetic acid. Similarly, makapuno α-d-galactosidase was localized in the 40–70 % (NH4)2SO4 cut but its optimum activity at pH 7.5 was considerably lower as compared to the normal. Its Km was obtained at 6.75 × 10?4 M p-nitrophenyl α-d-galactoside while the Vmax was noted at 5.28 × 10?3 M p-nitrophenyl α-d-galactoside. Based on the above kinetic data, the possible cause(s) of the deficiency of α-d-galactosidase activity in makapuno is discussed.  相似文献   

3.
β-galactosidase is a commercially important enzyme that was purified from probiotic Pediococcus acidilactici. The enzyme was extracted from cells using sonication and subsequently purified using ammonium sulphate fractionation and successive chromatographies on Sephadex G-100 and Q-Sepharose. The enzyme was purified 3.06-fold up to electrophoretic homogeneity with specific activity of 0.883 U/mg and yield of 28.26%. Molecular mass of β-galactosidase as estimated by SDS-PAGE and MALDI-TOF was 39.07 kDa. The enzyme is a heterodimer with subunit mass of 15.55 and 19.58 kDa. The purified enzyme was optimally active at pH 6.0 and stable in a pH range of 5.8–7.0 with more than 97% activity. Purified β-galactosidase was optimally active at 50 °C. Kinetic parameters Km and Vmax for purified enzyme were 400 µM and 1.22 × 10−1 U respectively. Its inactivation by PMSF confirmed the presence of serine at the active site. The metal ions had different effects on enzyme. Ca2+, Mg2+ and Mn2+ slightly activated the enzyme whereas NH4+, Co2+ and Fe3+ slightly decreased the enzyme activity. Thermodynamic parameters were calculated that suggested that β-galactosidase is less stable at higher temperature (60 °C). Purified enzyme effectively hydrolysed milk lactose with lactose hydrolysing rate of 0.047 min−1 and t1/2 of 14.74 min. This is better than other studied β-galactosidases. Both sonicated Pediococcus acidilactici cells and purified β-galactosidase synthesized galactooligosaccharides (GOSs) as studied by TLC at 30% and 50% of lactose concentration at 47.5 °C. These findings indicate the use of β-galactosidase from probiotic bacteria for producing delactosed milk for lactose intolerant population and prebiotic synthesis. pH and temperature optima and its activation by Ca2+ shows that it is suitable for milk processing.  相似文献   

4.
Aminopeptidase B was purified from goat brain with a purification fold of ~280 and a yield of 2.7%. The enzyme revealed a single band on both native acrylamide gel and SDS-PAGE thereby confirming apparent homogeneous preparation and its monomeric nature. The enzyme exhibited a molecular mass of 80.2 kDa and 79.7 kDa on Sephadex G-200 and SDS-PAGE respectively. The pH optimum was 7.4 and the enzyme was stable between pH 6.0 and 9.0. l-Arg-βNA was the most rapidly hydrolyzed substrate followed by Lys-βNA. The Km value with Arg-βNA was found to be 0.1 mM. Metal chelating and –SH reactive agents strongly inhibited the enzyme activity. 1,10-Phenanthroline exhibited mixed type of inhibition with a Ki of 5 × 10?5 M. The enzyme was highly sensitive to urea. Metal ions like Ni2+, Cd2+, Fe2+and Hg2+ inhibited the enzyme, whereas Co2+, Zn2+, Mn2+and Sn2+ slightly activated the enzyme.  相似文献   

5.
A repressible extracellular alkaline phosphatase (with activity increasing steadily even up to pH 10.5) was purified from cultures of the wild-type strain 74A of Neurospora crassa, after growth on acetate and under limiting amounts of inorganic phosphate for 72 hr at 30°. The enzyme was homogeneous on polyacrylamide gel electrophoresis (PAGE) with or without sodium dodecyl sulphate (SDS). The MW was ca 172 000 and 82 000 as determined by Sephadex G-200 gel filtration and SDS-PAGE, respectively. The enzyme contained 23.6% neutral sugars, cations were not required for activity, and it was not inactivated by 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) at pH 8. Kinetic data showed Michaelian behaviour for the enzymatic hydrolysis of 4-nitrophenyl disodium orthophosphate (PNP-P) at pH 9 (the Km value and Hill coefficient were 2.2 × 10?4 M and 0.95, respectively). It was also shown that, at pH 9, the apparent number of Pi bound per dimer molecule equalled one, with a Ki value of 7.0 × 10?4 M. The secreted enzyme showed half-lives of 23.5, 49.0 and 23.5 min at, pH 5.4, 7.4 and 9.0, respectively, after thermal inactivation at 60°. At pH 5.4, the half-life value was quite similar, while the others were respectively 2 and 4 times greater than those previously described for the repressible alkaline phosphatase retained by the mycelium at pH 5.6 or secreted by ‘slime’ cells.  相似文献   

6.
Prostaglandin A isomerase has been purified 120-fold from rabbit serum by the use of ammonium sulfate fractionation, isoelectric focusing, and Sephadex G-200 chromatography. The molecular weight of the enzyme was estimated to be 110,000 from the elution volume on Sephadex G-200. Prostaglandin A isomerase is a heterogeneous protein with respect to charge. This has been concluded from the spread of enzymatic activity over 1 pH unit after isoelectric focusing. The enzymatic activity is inhibited by N-ethylmaleimide but not by other sulfhydryl blocking agents. The Km was determined to be 5 × 10?5m.  相似文献   

7.
Dehydrocyclopeptine epoxidase (DE) activity was determined in cell free preparations of Penicillium cyclopium. The enzyme transforms dehydrocyclopeptine into cyclopenin by a mixed function oxygenation. It needs molecular oxygen and uses NAD(P)H, ascorbate or d,l-6-methyl-5,6,7,8-tetrahydropteridine as cosubstrates. DE is inhibited by CN?, SCN?, 1,10-phenanthroline, EDTA, 2,2′-bipyridine, sodium diethyldithiocarbamate, dicoumarol, p-chloromercuribenzoate and ions of different heavy metals, but not by CO and the lead salt of diethyldithiocarbamate. These properties indicate a specific importance of Fe2+-ions, SH-groups and flavins. DE activity is increased by Fe2+ and FAD. The enzyme may be therefore a Fe2+ activated FAD containing flavoprotein. DE was enriched 268-fold by (NH4)2SO4 precipitation and chromatography on Sephadex G-200. Its MW estimated by Sephadex chromatography, exceeds 480 000.  相似文献   

8.
An inhibitor of phoapholipase A has been isolated from Bothrops neuwiedii venom after gel filtrations through Sephadex G-50 (pH 4.5), Sephadex G-25 (pH 7.6), Sephadex G-15 (pH 4.0), and chromatography on SE-Sephadex C-25 (pH 4.2–4.5). When subjected to paper electrophoresis, the inhibitor migrates as a simple compound with isoelectric point near pH 6.8. Aminoacid composition, sensitivity toward proteases, and the absorption spectrum fit in well with a polypeptide structure lacking tyrosine and tryptophan. In the absence of EDTA, an inactive, anionic derivative appears in inhibitor preparations; the reaction can be reversed by 2-mercaptoethanol. Direct interaction of enzyme and inhibitor is proved by the inhibition of enzyme activity and the chromatography of enzyme-inhibitor mixtures. Titration of inhibitor with venom phospholipases A (isoenzymes P-1 and P-2) yields sigmoid-shaped concentration-inhibition curves, with P-1 far more sensitive than P-2. The enzyme-inhibitor interaction depends on pH since it is tight at pH 4.5 but does not occur at pH 7.5. Presence of thiol groups in inhibitor is consistent with (a) characteristic spectral changes after reaction of inhibitor with PMB 4 and NEM; (b) the inhibitor inhibition by PMB, NEM, iodoacetate, and Hg2+, and (c) the reversal of PMB inhibition with reduced glutathione. Since phospholipase A is insensitive towards Hg2+, addition of Hg2+ to enzyme-inhibitor mixtures (or crude venom samples) causes an apparent enzyme activation (deinhibition). When substrate (egg-yolk lipoprotein) is added to enzyme-inhibitor mixtures, the reaction kinetics show an initial “lag-period” which is proportional to the inhibitor concentration. The “lag-period” does not occur in the absence of inhibitor or in the presence of Hg2+, that inactivates the inhibitor.  相似文献   

9.
An inhibitor of ß-glucuronidase was isolated from porcine sublingual gland by successive fractionation of trypsin extracts of the latter on Sephadex G-100, DEAE-cellulose, Sephadex G-200, and DEAE-cellulose. Its purity and homogeneity were established by DEAE-cellulose column chromatography, ultracentrifugation, and electrophoresis on cellulose-acetate membrane. The sedimentation coefficient of the purified ß-glucuronidase inhibitor was 3.75 S (S200, w), and the molecular weight was determined to be 340 000 from Sephadex G-200 column chromatography. The inhibitor contained 17.5% protein, 20.8% total hexoses, 19.9% hexosamine, 21.8% N-acetylneuraminic acid, and 9.6% fucose. The inhibition was non-competitive, and it was completely suppressed by the addition of NaCl, KCl, Na2SO4, or CaCl2, respectively.  相似文献   

10.
An l-amino acid oxidase (Akbu-LAAO) was isolated from the venom of Agkistrodon blomhoffii ussurensis snake using DEAE Sephadex A-50 ion-exchange, Sephadex G-75 gel filtration, and high performance liquid chromatographies. The homogeneity and molecular mass of Akbu-LAAO were analyzed by SDS-PAGE and MALDI-TOF spectrometry. The sequences of ten peptides from Akbu-LAAO were established by HPLC-nESI-MS/MS analysis. Protein sequence alignment indicated that i) that Akbu-LAAO is a new snake venom LAAO, and ii) Akbu-LAAO shares homology with several LAAOs from the venoms of Calloselasma rhodost, Agkistrodon halys, Daboia russellii siamensis, and Trimeresurus stejnegeri. Akbu-LAAO is a homodimer with a molecular mass of ∼124.4 kDa. It reacts optimally with its enzymatic substrate, Leu, at pH 4.7 with a Km of 2.1 mM. ICP-AES measurements showed that Akbu-LAAO contains four Zn2+ per dimer that are unessential for the hydrolytic activity of the enzyme. The emission fluorescence intensity of Akbu-LAAO decreases by 61% on removal of Zn2+ indicating that the zinc probably helps maintain the structural integrity of the enzyme. The addition of exogenous metal ions, including Mg2+, Mn2+, Ca2+, Ce3+, Nd3+, Co2+ and Tb3+, increases the l-Leu hydrolytic activity of the enzyme. Akbu-LAAO shows apparent anti-aggregation effects on human and rabbit platelets. It exhibits a strong bacteriostasis effect on Staphylococcus aureus, eighteen fold that of cephalosporin C under the same conditions. Taken together, the biochemical, proteomic, structural and functional characterizations reveal that Akbu-LAAO is a novel LAAO with promise for biotechnological and medical applications.  相似文献   

11.
An α-amylase which produces maltohexaose as the main product from strach was found in the culture filtrate of Bacillus circulans G-6 which was isolated from soil and identified by the author.

The enzyme was purified by means of ammonium sulfate fractionation, DEAE-Sepharose column chromatography and Sephadex G-200 column chromatography. The purified enzyme was homogeneous on disc electrophoresis. The optimum pH and temperature of the enzyme were around pH 8.0 and around 60°C, respectively. The enzyme was stable in the range of pH 5–10. Metal ions such as Hg2+, Cu2+, Zn2+, Fe2+ and Co2+ inhibited the enzyme activity. The molecular weight was about 76,000. The yield of maltohexaose from soluble starch of DE (dextrose equivalent*) 1.8-12.6 was about 30%, and the combined action of the enzyme and pullulanase or isoamylase increased the yield of maltohexaose.  相似文献   

12.
The oligomeric form of the larger subunit designated as Am produced by alkali treatment of ribulose-1,5-diphosphate carboxylase from the purple sulfur bacterium, Chromatium strain D, retained partial enzymic activity in the absence of the small subunit (B). Supporting evidence was obtained by polyacrylamide gel electrophoresis at pH 8.9 and Sephadex G-200 gel filtration equilibrated with alkaline buffer at pH 9.2. The specific enzyme activity of Am (45 nmoles CO2 fixed/mg protein/min) was approximately 15% of the native intact enzyme molecule. By sodium dodecyl sulfatepolyacrylamide gel electrophoresis, the Am preparation was proved to be free from contamination of subunit B. With reservation of the sensitivity limit of this particular technique we concur that the larger subunit is the catalytic entity of the carboxylase reaction. The optimum pH of the ribulose-1,5-diphosphate carboxylase reaction catalyzed by isolated Am lies on the alkaline side at about pH 8.3 with or without Mg2+. The undissociated native enzyme possesses an optimum pH on the alkaline side in the absence of Mg2+, which shifts to the acidic side in the presence of Mg2+. From this behavior it is inferred that the association of the smaller subunit with the larger subunit causes conformational stabilization of the enzyme molecule with an accompanying change in the pH optimum due to Mg2+.  相似文献   

13.
TYROSINE HYDROXYLASE IN BOVINE CAUDATE NUCLEUS   总被引:7,自引:4,他引:3  
Approximately 80 per cent of tyrosine hydroxylase activity in bovine caudate nucleus was particle-bound. The rest of the activity was found in the soluble fraction. The enzyme activity in crude tissue preparations was inhibited, probably by the presence of endogenous inhibitors. Dilution of crude tissue preparations such as the crude mitochondrial fraction caused an increase in the specific activity. The particle-bound enzyme was solubilized by incubation with trypsin. The presence of deoxycholate increased the degree of solubilization. The activity of the solubilized enzyme from the washed particles was also inhibited, but the subsequent purification by ammonium sulphate could eliminate the inhibition. The solubilized enzyme was partially purified by ammonium sulphate fractionation and Sephadex G-150 chromatography. A tetrahydropteridine and ferrous ion were required as cofactors for the partially purified enzyme. Among various divalent cations, only ferrous ion could activate the partially purified enzyme. The enzyme was inhibited by L-α-methyl-p-tyrosine and catecholamines such as dopamine. The optimum pH was found between 5.5 and 6.0. Km values toward tyrosine, 2-amino-4-hydroxy-6,7-dimethyltetrahydropteridine and Fe2+, were approximately 5 × 10?5 M, 1 × 10?4 M and 4 × 10?4 M, respectively.  相似文献   

14.
1. Rat liver microsomal preparations incubated in 1% Triton X-100 at 37°C for 1h released about 60% of the membrane-bound UDP-galactose–glycoprotein galactosyltransferase (EC 2.4.1.22) into a high-speed supernatant. The supernatant galactosyltransferase which was solubilized but not purified by this treatment had a higher molecular weight than the serum enzyme as shown by Sephadex G-100 column chromatography. 2. The galactosyltransferase present in the high-speed supernatant was purified 680-fold by an affinity-column-chromatographic technique by using a column of activated Sepharose 4B coupled with α-lactalbumin. The galactosyltransferase ran as a single band on polyacrylamide gels and contained no sialyltransferase, N-acetylglucosaminyltransferase or UDP-galactose pyrophosphatase activities. 3. The purified membrane enzyme had properties similar to serum galactosyltransferase. It had an absolute requirement for Mn2+ that could not be replaced by Ca2+, Mg2+, Zn2+ or Co2+, and was active over a wide pH range (6–8) with a pH optimum of 6.5. The apparent Km for UDP-galactose was 10.8μm. The protein α-lactalbumin modified the enzyme to a lactose synthetase by increasing substrate specificity for glucose in preference to N-acetylglucosamine and fetuin depleted of sialic acid and galactose. 4. The molecular weight of the membrane enzyme was 65000–70000, similar to that of the purified serum enzyme. Amino acid analyses of the two proteins were similar but not identical. 5. Sephadex G-100 column chromatography of the purified membrane enzyme showed a small peak (2–5%) of higher molecular weight than the purified serum enzyme. Inclusion of 1mm-ε-aminohexanoic acid in the isolation procedures increased this peak to as much as 30% of the total enzyme recovered. Increasing the ε-aminohexanoic acid concentration to 100mm resulted in no further increase in this high-molecular-weight fraction.  相似文献   

15.
A sucrose:sucrose 1F-β-d-fructosyltransferase (EC 2.4.1.99) has been purified from onion seeds by fractionation with ammonium sulphate and then by chromatography on DEAE-cellulose, CM-cellulose, octyl-Sepharose and Sephadex G-200. The purified enzyme which showed a single protein band on polyacrylamide gel electrophoresis was free from the other fructosyltransferases, catalysed fructosyltransfer from sucrose to another sucrose to form 1-kestose and glucose, and also in some degree transferred a fructosyl residue from sucrose to raffinose and stachyose but did not to 1-kestose and nystose. The enzyme had an Mr of ca 68 000, an optimum pH of 5.4, and Km of 0.083 M, was stable at 20–37° for 10 min, and was inhibited by Hg2+, Ag+, Mn2+ and p-chloromercuribenzoate.  相似文献   

16.
Carbonic anhydrase enzyme, one of the fastest known enzymes, remains largely unexplored in prokaryotes when compared to its mammalian counterparts despite its ubiquity. In this study, the enzyme has been purified from Bacillus subtilis SA3 using sequential Sephadex G-75 chromatography, DEAE cellulose chromatography, and sepharose-4B-L-tyrosinesulphanilamide affinity chromatography and characterized to provide additional insights into its properties. The apparent molecular mass of carbonic anhydrase obtained by SDS-PAGE was found to be approximately 37 kDa. Isoelectric focusing of the purified enzyme revealed an isoelectric point (pI) of around 6.1 when compared with marker. The presence of metal ions such as Zn2+, Co2+, Cu2+, Fe3+, Mg2+, and anion SO4 increased enzyme activity while strong inhibition was observed in the presence of Hg2+, Cl, HCO3, and metal chelator EDTA. The optimum pH and temperature for the enzyme were found to be 8.3 and 37°C, respectively. Enzyme kinetics with p-nitrophenyl acetate as substrate at pH 8.3 and 37°C determined the Vmax and Km values of the enzyme to be 714.28 μmol/mg protein/min and 9.09 mM, respectively. The Ki value for acetazolamide was 0.22 mM, compared to 0.099 mM for sulphanilamide. The results from N-terminal amino acid sequencing imply the purified protein is a putative beta-carbonic anhydrase with close similarities to CAs from plants, microorganisms.  相似文献   

17.
Two enzymes capable of hydrolyzing fructose-1,6-bisphosphate (FBP) have been isolated from the foliose lichen Peltigera rufescens (Weis) Mudd. These enzymes can be separated using Sephadex G-100 and DEAE Sephacel chromatography. One enzyme has a pH optimum of 6.5, and a substrate affinity of 228 micromolar FBP. This enzyme does not require MgCl2 for activity, and is inhibited by AMP. The second enzyme has a pH optimum of 9.0, with no activity below pH 7.5. This enzyme responds sigmoidally to Mg2+, with half-saturation concentration of 2.0 millimolar MgCl2, and demonstrates hyperbolic kinetics for FBP (Km = 39 micromolar). This enzyme is activated by 20 millimolar dithiothreitol, is inhibited by AMP, but is not affected by fructose-2-6-bisphosphate. It is hypothesized that the latter enzyme is involved in the photosynthetic process, while the former enzyme is a nonspecific acid phosphatase.  相似文献   

18.
A dextranase (EC 3.2.1.11) was purified and characterized from the IP-29 strain of Sporothrix schenckii, a dimorphic pathogenic fungus. Growing cells secreted the enzyme into a standard culture medium (20 °C) that supports the mycelial phase. Soluble bacterial dextrans substituted for glucose as substrate with a small decrease in cellular yield but a tenfold increase in the production of dextranase. This enzyme is a monomeric protein with a molecular mass of 79 kDa, a pH optimum of 5.0, and an action pattern against a soluble 170-kDa bacterial dextran that leads to a final mixture of glucose (38%), isomaltose (38%), and branched oligosaccharides (24%). In the presence of 200 mM sodium acetate buffer (pH 5.0), the K m for soluble dextran was 0.067 ± 0.003% (w/v). Salts of Hg2+, (UO2)2+, Pb2+, Cu2+, and Zn2+ inhibited by affecting both V max and K m. The enzyme was most stable between pH values of 4.50 and 4.75, where the half-life at 55 °C was 18 min and the energy of activation for heat denaturation was 99 kcal/mol. S. schenckii dextranase catalyzed the degradation of cross-linked dextran chains in Sephadex G-50 to G-200, and the latter was a good substrate for cell growth at 20 °C. Highly cross-linked grades (i.e., G-10 and G-25) were refractory to hydrolysis. Most strains of S. schenckii from Europe and North America tested positive for dextranase when grown at 20 °C. All of these isolates grew on glucose at 35 °C, a condition that is typically associated with the yeast phase, but they did not express dextranase and were incapable of using dextran as a carbon source at the higher temperature. Received: 29 December 1997 / Accepted: 4 March 1998  相似文献   

19.
Diamine oxidase of rice seedlings has been purified 1800-fold to homogeneity. The MW of the enzyme as determined by Sephadex G-100 gel filtration was 12.3 × 104 and the enzyme contained two identical subunits each with a MW of 6.12 × 104. The optimal temperature and pH for the enzyme were 30° and 7.5 respectively and the enzyme followed typical Michaelis kinetics with a Km of 10?5 M. Each enzyme molecule contained four molecules of FAD.  相似文献   

20.
Actinoplanes sp. No. 1700, a sporangium-forming, filamentous, soil bacterium possesses a β-D-glucosidase (β-D-glucoside glucohydrolase, E.C. 3.2.1.21). The enzyme was induced to higher concentrations by addition of methyl or phenyl β-D-glucopyranoside, gentiobiose, or salicin to growing cultures. Addition of D-glucose, lactate, or acetate repressed enzyme induction back to the constitutive level, but never below it. The properties of this inducible system place it in the semi-constitutive category.Both the constitutive and the inducible enzyme were purified 60-fold; their properties were compared and found to be identical. Their pH optima lay between 5.8 and 6.0; the enzymes were stable for 2 h at 30° at pH 5.5 to 7.3. Rapid inactivation occurred at temperatures above 50°. The enzymes were inactivated by 100μM CU2+, Hg2+, Pb2+, and Ag+.Each of these β-D-glucosidases was inhibited by p-chloromercuribenzoate (100 μ/M); this effect was overcome by cysteine or 2-mercaptoethanol, indicating that the β-D-glucosidase is a sulfhydryl enzyme. Kinetic determinations with chromogenic p-nitrophenyl β-D-glucopyranoside established a Km. of 2.5 x 10-4 and an Arrhenius activation-energy of 8.5 kcal.mole-1. The molecular weight of the induced enzyme was 165,000 as determined by elution from Sephadex G-200. Chromatographic studies showed the enzyme to be a hydrolase, not a transferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号