首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Encapsulation of antibodies isolated from chicken egg yolk (IgY) in egg lecithin/cholesterol liposomes was attempted. IgY was successfully encapsulated into the liposomes by using the dehydration-rehydration method. Electron microscopic observation demonstrated that the liposomes prepared by this method were large multilamellar vesicles with a diameter of several μm. The encapsulation efficiency was improved by increasing the rehydration temperature to 60°C. The cholesterol/lecithin ratio also affected the efficiency, giving the highest value at a ratio of 1/4 (mol/mol). Some efflux of glucose through the liposomal membranes was observed, particularly for the liposome with a low cholesterol content, but that of IgY was not detected, irrespective of the cholesterol content. Encapsulation reduced the activity loss of the IgY antibodies under acidic conditions. IgY encapsulated in the liposomes was also markedly resistant to pepsin hydrolysis, which usually results in complete loss of activity with unencapsulated IgY, suggesting that liposomal encapsulation is an effective means for protecting IgY under gastric conditions.  相似文献   

2.
A novel liposomal formulation was developed for the encapsulation of the oligopeptide leuprolide (GlpHisTrpSerTyr-D-LeuLeuArgProNHEt), a potent analogue of gonadotropin releasing hormone used in the treatment of advanced prostate cancer, endometriosis and precocious puberty. Leuprolide was synthesized using solid phase methodology on a {3-[(ethyl-Fmoc-amino)-methyl]-1-indol-1-yl}-acetyl AM resin and Fmoc/tBu chemistry. The new liposomal formulation, called 'liposomes in liposomes' is composed of egg phosphatidylcholine:dipalmitoylphosphatidylglycerol in a molar ratio of 98.91:1.09 (internal liposomes) and egg phosphatidylcholine:dipalmitoylphosphatidylglycerol:cholesterol in a molar ratio of 68.71:0.76:30.53 (external liposomes). It offers high encapsulation efficiency (73.8% for leuprolide); it can provide new delivery characteristics and it may have possible advantages in future applications regarding the encapsulation and delivery of bioactive peptides to target tissues. Furthermore, the physicochemical characteristics (size distribution and zeta-potential) of the liposomal formulations and the thermal effects on leuprolide in model lipidic bilayers composed of dipalmitoylphosphatidylcholine were studied using differential scanning calorimetry. Finally, the dynamic effects of leuprolide in an egg phosphatidylcholine/cholesterol system were examined using solid state 13C MAS NMR spectroscopy.  相似文献   

3.
The activity of tyrosine phenol-layse a chemotherapeutic enzyme with a dissociable pyridoxal phosphate cofactor, was studied after incorporation into multilamellar positively charged liposomes. Tyrosine phenol-lyase activity was assessed in the presence and absence of exogenous pyridoxal phosphate. A maximum of 75% total enzyme activity was associated with liposomes when prepared from a molar lipid ratio of egg lecithin, cholesterol, stearylamine (7 : 2 : 1, w/w). The total tyrosine phenol-lyase activity was comprised of 25% membrane-associated enzyme and 50% encapsulated enzyme. Encapsulation increased the stability of the enzyme under the in vitro conditions of cold storage at 4°C for 3 weeks and under elevated temperatures up to 61°C. Liposomal encapsulation afforded little protection against trypsin and no protection against whole mouse plasma in vitro. Heat-treated plasma (100°C for 1 h) had little effect on the activity of free and encapsulated tyrosine phenol-lyase. These results indicated that whole plasma contained a heat-labile factor(s) which destroyed both the liposomal and free tyrosine phenol-lyase activity. Plasma clearance after intraperitoneal injection of tyrosine phenol-lyase in B6D2F1 female mice was reduced by liposomal encapsulation, particularly when the animals were pre-treated with empty liposomes; however, only a small proportion of free and liposomal tyrosine phenol-lyase was absorbed. The free enzyme rapidly lost holoenzyme activity after absorption but the liposomes maintained holoenzyme activity. Even though liposomes preserved holo-tyrosine phenol-lyase activity, the holoenzyme was not present in sufficient concentration to sustain a reduced plasma tyrosine level.  相似文献   

4.
5.
The present studies were focused on the preparation and characterization of stericaly stabilized liposomes (SLs) encapsulating a recombinant organophosphorus hydrolyzing phosphotriesterase (OPH) enzyme for the antagonism of organophosphorus intoxication. Earlier results indicate that the liposomal carrier system provides an enhanced protective effect against the organophosphorus molecule paraoxon, presenting a more effective therapy with less toxicity than the most commonly used antidotes. Physicochemical characterization of the liposomal OPH delivery system is essential in order to get information on its in vitro stability and in vivo fate. Osmolarity, pH, viscosity, and encapsulation efficiency of the SL preparation and the surface potential of the vesicles were determined. The membrane rigidity and the impact of OPH enzyme on it was studied by electron-paramagnetic resonance spectroscopy, using spin probes. The in vitro stability of the liposomal preparations, the vesicle size distribution, and its alteration during a 3-week storage were followed by dynamic light-scattering measurements. Further, the stability of encapsulated and nonencapsulated OPH was compared in puffer and plasma.  相似文献   

6.
The results of liposome drug encapsulation of aclarubicin (aclacinomycin A), an antitumor antibiotic, are presented. The method of flow detergent dialysis was applied. Conditions providing maximum encapsulation of aclarubicin (the ratio of lipid components and the lipid/detergent ratio), as well as conditions providing stability of liposomal emulsion (the presence of antioxidants, stearic acid and cholesterol) were defined.  相似文献   

7.
A liposomal delivery system that coordinates the release of irinotecan and floxuridine in vivo has been developed. The encapsulation of floxuridine was achieved through passive entrapment while irinotecan was actively loaded using a novel copper gluconate/triethanolamine based procedure. Coordinating the release rates of both drugs was achieved by altering the cholesterol content of distearoylphosphatidylcholine (DSPC)/distearoylphosphatidylglycerol (DSPG) based formulations. The liposomal retention of floxuridine in plasma after intravenous injection was dramatically improved by decreasing the cholesterol content of the formulation below 20 mol%. In the case of irinotecan, the opposite trend was observed where increasing cholesterol content enhanced drug retention. Liposomes composed of DSPC/DSPG/Chol (7:2:1, mole ratio) containing co-encapsulated irinotecan and floxuridine at a 1:1 molar ratio exhibited matched leakage rates for the two agents so that the 1:1 ratio was maintained after intravenous administration to mice. The encapsulation of irinotecan was optimal when copper gluconate/triethanolamine (pH 7.4) was used as the intraliposomal buffer. The efficiency of irinotecan loading was approximately 80% with a starting drug to lipid molar ratio of 0.1/1. Leakage of floxuridine from the liposomes during irinotecan loading at 50 degrees C complicated the ability to readily achieve the target 1:1 irinotecan/floxuridine ratio inside the formulation. As a result, a procedure for the simultaneous encapsulation of irinotecan and floxuridine was developed. This co-encapsulation method has the advantage over sequential loading in that extrusion can be performed in the absence of chemotherapeutic agents and the drug/drug ratios in the final formulation can be more precisely controlled.  相似文献   

8.
Previously, we showed that the encapsulation and release properties of a liposomal ciprofloxacin formulation could be modified post manufacture, by addition of surfactant in concert with osmotic swelling of the liposomes. This strategy may provide more flexibility and convenience than the alternative of manufacturing multiple batches of liposomes differing in composition to cover a wide range of release profiles. The goal of this study was to develop a surfactant-associated liposomal ciprofloxacin (CFI) formulation possessing good long-term stability which could be delivered as an inhaled aerosol. Preparations of 12.5 mg/ml CFI containing 0.4% polysorbate 20 were formulated between pH 4.7 and 5.5. These formulations, before and after mesh nebulization, and after refrigerated storage for up to 2 years, were characterized in terms of liposome structure by cryogenic transmission electron microscopy (cryo-TEM) imaging, vesicle size by dynamic light scattering, pH, drug encapsulation by centrifugation-filtration, and in vitro release (IVR) performance. Within the narrower pH range of 4.9 to 5.2, these formulations retained their physicochemical stability after 2-year refrigerated storage, were robust to mesh nebulization, and formed respirable aerosols with a volume mean diameter (VMD) of 3.7 μm and a geometric standard deviation (GSD) of 1.7. This study demonstrates that it may be possible to provide a range of release profiles by simple addition of surfactant to a liposomal formulation post manufacture, and that these formulations may retain their physicochemical properties after long-term refrigerated storage and following aerosolization by mesh nebulizer.KEY WORDS: ciprofloxacin, drug delivery, liposome, nebulized aerosol, surfactant  相似文献   

9.
Abstract

A simple method has been developed to prepare liposomes containing large amounts of DNA. The procedure consisted of three cycles of freeze-thawing a mixture of sonicated liposomes and DNA. The encapsulation efficiency depended on the size of DNA. For a small plasmid (2.7 kb), approximately 40% of input DNA was entrapped with an efficiency of 16 μgDNA/μmol lipid. For larger plasmids, the encapsulation efficiency decreased considerably. Transfection of cultured mouse L929 cells mediated by the DNA-containing liposomes was assayed with a plasmid containing the E. coli chloramphenicol acetyl transferase gene. The transfection activity of the liposome was primarily determined by its pH sensitivity. Acid-sensitive liposomes transfected cells efficiently, whereas pH-insensitive liposomes were much less active. The level of the expression of the exogenous gene in the treated cells could be further modulated by protein kinase C (PKC) activators that were incorporated into the liposomal membrane as a minor lipid component. Transfection conditions were optimized with respect to DNA, lipid, and PKC activator concentrations. The results of the current study may help the use of liposomal delivery system for applications in gene therapy.  相似文献   

10.
A liposomal delivery system that coordinates the release of irinotecan and floxuridine in vivo has been developed. The encapsulation of floxuridine was achieved through passive entrapment while irinotecan was actively loaded using a novel copper gluconate/triethanolamine based procedure. Coordinating the release rates of both drugs was achieved by altering the cholesterol content of distearoylphosphatidylcholine (DSPC)/distearoylphosphatidylglycerol (DSPG) based formulations. The liposomal retention of floxuridine in plasma after intravenous injection was dramatically improved by decreasing the cholesterol content of the formulation below 20 mol%. In the case of irinotecan, the opposite trend was observed where increasing cholesterol content enhanced drug retention. Liposomes composed of DSPC/DSPG/Chol (7:2:1, mole ratio) containing co-encapsulated irinotecan and floxuridine at a 1:1 molar ratio exhibited matched leakage rates for the two agents so that the 1:1 ratio was maintained after intravenous administration to mice. The encapsulation of irinotecan was optimal when copper gluconate/triethanolamine (pH 7.4) was used as the intraliposomal buffer. The efficiency of irinotecan loading was approximately 80% with a starting drug to lipid molar ratio of 0.1/1. Leakage of floxuridine from the liposomes during irinotecan loading at 50 °C complicated the ability to readily achieve the target 1:1 irinotecan/floxuridine ratio inside the formulation. As a result, a procedure for the simultaneous encapsulation of irinotecan and floxuridine was developed. This co-encapsulation method has the advantage over sequential loading in that extrusion can be performed in the absence of chemotherapeutic agents and the drug/drug ratios in the final formulation can be more precisely controlled.  相似文献   

11.
The design and construction of delivery vectors with high stability and effective cellular uptake efficiency is very important. In this study, a novel polymeric liposomes (PLs) formed from PEGylated octadecyl‐quaternized lysine modified chitosan (OQLCS) and cholesterol with higher size stability and cellular uptake efficiency has been synthesized successfully. Compared to conventional liposomes (CLs; phosphatidyl choline/cholesterol), the calcein‐loaded PLs exhibited a multi‐lamellar structure with homogenous size diameter (200 nm) and high calcein encapsulation efficiency (about 92%). PLs could be stored at different temperature (25, 4, and ?20°C) and different medium (deionized water, phosphate‐buffered saline, and human plasma solution) for up to 4 weeks without significant size change. The spectrophotometer fluorometry analysis and the flow cytometry analysis indicated that in comparison with CL, PLs with positive zeta potential facilitates the uptake of calcein by MCF‐7 tumor cells. The data suggests that PLs may provide a new method to overcome the stability and enhance the uptake efficiency of CLs. Biotechnol. Bioeng. 2010;106: 952–962. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
The preparation of fused materials using liposomes has been examined for several decades as a tool for the stabilization of heterogeneous enzymes. We investigated the liposomal encapsulation of lysosomal enzymes extracted from Saccharomyces cerevisiae. Liposomes were formed with L-α-phosphatidylcholine from egg yolk and cholesterol. To encapsulate whole lysosomal enzymes in liposomes made with and without cholesterol, L-α-phosphatidylcholine and cholesterol were added to chloroform at a ratio of 10:0 (L-α-phosphatidylcholine:cholesterol) and then evaporated for 10 min at 4°C. The residue after evaporation was mixed with lysosomal enzymes at the same ratio and then vortexed for 1 min and sonicated for 5 sec to encapsulate the enzymes. Liposome-encapsulated lysosomal enzymes were created using various amounts of lysosomal enzymes and cholesterol. The results indicated that the optimal encapsulation conditions were lipid:cholesterol ratios of 7:3 and 8:2. Liposome formation was confirmed by TEM imaging. After 1 day, two types of liposomes released small amounts of lysosomal enzymes. However, after 6 days, liposomes formed from mixtures of lipid and cholesterol did not exhibit any changes, whereas liposomes formed from only lipids released high amounts of lysosomal enzymes. Lysosomal enzymes encapsulated in liposomes have potential as important drug delivery carriers, as liposomes are able to control drug release and bioavailability.  相似文献   

13.
Thermodynamical techniques are applied for determining the thermal stress of medicinal compounds of the excipients as well as their interactions during the formulation process. The physicochemical properties and the stability of the medicinal products could be measured as a function of temperature or time using thermal analysis. Differential Scanning Calorimetry (DSC) is a suitable thermal analysis technique for determining the purity, the polymorphic forms and the melting point of a sample in the Pharmaceutical Industry. It is also considered as a tool to study the thermal behavior of lipid bilayers and of lipidic drug delivery systems, like liposomes by measuring thermodynamic parameters (i.e. DeltaH and Tm), which affect the stability of the liposomal suspension under given storage conditions.  相似文献   

14.
The purpose of this study was to prepare and characterize an ocular effective prolonged-release liposomal hydrogel formulation containing ciprofloxacin. Reverse-phase evaporation was used for preparation of liposomes consisting of soybean phosphatidylcholine (PC) and cholesterol (CH). The effect of PC/CH molar ratio on the percentage drug encapsulation was investigated. The effect of additives such as stearylamine (SA) or dicetyl phosphate (DP) as positive and negative charge inducers, respectively, were studied. Morphology, mean size, encapsulation efficiency, and in vitro release of ciprofloxacin from liposomes were evaluated. For hydrogel preparation, Carbopol 940 was applied. In vitro transcorneal permeation through excised albino rabbit cornea was also determined. Optimal encapsulation efficiency of 73.04 ± 3.06% was obtained from liposomes formulated with PC/CH at molar ratio of 5:3 and by increasing CH content above this limit, the encapsulation decreased. Positively charged liposomes showed superior entrapment efficiency (82.01 ± 0.52) over the negatively charged and the neutral liposomes. Hydrogel containing liposomes with lipid content PC, CH, and SA in molar ratio 5:3:1, respectively, showed the best release and transcorneal permeation with the percentage permeation of 30.6%. These results suggest that the degree of encapsulation of ciprofloxacin into liposomes and prolonged in vitro release depend on composition of the vesicles. In addition, the polymer hydrogel used in preparation ensure steady and prolonged transcorneal permeation. In conclusion, ciprofloxacin liposomal hydrogel is a suitable delivery system for improving the ocular bioavailability of ciprofloxacin.  相似文献   

15.
The aim of this study was to evaluate whether temperature stress conditions affect the cellular uptake of liposomal doxorubicin, Doxil® (DXL; Ortho Biotech, Raritan, New Jersey, USA), and liposomal daunorubicin, DaunoXome® (DXM; Gilead Sciences, San Dimas, California, USA). Uptake of these cytotoxic compounds is essential for their pharmacological effect. Commercially available DXL and DXM were stressed for 6 days under altered temperature conditions of 22 and 50°C, as compared to storage in their buffered formulations at the labeled temperature of 4°C. The cellular uptake of the liposomal drugs was measured by fluorescence intensity in human ovarian SKOV-3 and murine macrophage J774A.1 cell lines following a 4-hour exposure to DXL or DXM. There was a 5- to 10-fold increase in the cellular uptake of DXL and DXM in both cell lines after stress exposure to 50°C. Exposure of DXL to 22°C stress decreased its uptake by SKOV-3 cells, when compared to exposure of DXL to 4°C control conditions. A cell-based uptake assay may provide a means to assess changes in the functional activity of liposomes in conjunction with evaluation of their physicochemical properties in order to evaluate the stability and integrity of liposomes.  相似文献   

16.
Thermodynamical techniques are applied for determining the thermal stress of medicinal compounds of the excipients as well as their interactions during the formulation process.

The physicochemical properties and the stability of the medicinal products could be measured as a function of temperature or time using thermal analysis.

Differential Scanning Calorimetry (DSC) is a suitable thermal analysis technique for determining the purity, the polymorphic forms and the melting point of a sample in the Pharmaceutical Industry. It is also considered as a tool to study the thermal behavior of lipid bilayers and of lipidic drug delivery systems, like liposomes by measuring thermodynamic parameters (i.e. ΔH and Tm), which affect the stability of the liposomal suspension under given storage conditions.  相似文献   

17.
Liposomal delivery systems for water-soluble bioactives were prepared using the pro-liposome and the microfluidization technologies. Iron, an essential micronutrient as ferrous sulfate and ascorbic acid, as an antioxidant for iron were encapsulated in the liposomes. Liposomes prepared by the microfluidization technology using 6% (w/w) concentration of the lipid encapsulated with ferrous sulfate and ascorbic acid had particle size distributions around 150 to 200 nm, whereas liposomes from the pro-liposome technology resulted in particle sizes of about 5 microm. The encapsulation efficiency of ferrous sulfate was 58% for the liposomes prepared by the microfluidization using 6% (w/w) lipid and 7.5% of ferrous sulfate concentrations, and it was 11% for the liposomes from pro-liposome technology using 1.5% (w/v) lipid and 15% of ferrous-sulfate concentration. Both the liposomes exhibited similar levels of oxidative stability, demonstrating the feasibility of microfluidization-based liposomal delivery systems for large-scale food/nutraceutical applications.  相似文献   

18.
Liposomal delivery systems for water-soluble bioactives were prepared using the pro-liposome and the microfluidization technologies. Iron, an essential micronutrient as ferrous sulfate and ascorbic acid, as an antioxidant for iron were encapsulated in the liposomes. Liposomes prepared by the microfluidization technology using 6% (w/w) concentration of the lipid encapsulated with ferrous sulfate and ascorbic acid had particle size distributions around 150 to 200 nm, whereas liposomes from the pro-liposome technology resulted in particle sizes of about 5 μm. The encapsulation efficiency of ferrous sulfate was 58% for the liposomes prepared by the microfluidization using 6% (w/w) lipid and 7.5% of ferrous sulfate concentrations, and it was 11% for the liposomes from pro-liposome technology using 1.5% (w/v) lipid and 15% of ferrous-sulfate concentration. Both the liposomes exhibited similar levels of oxidative stability, demonstrating the feasibility of microfluidization-based liposomal delivery systems for large-scale food/nutraceutical applications.  相似文献   

19.
Lu D  Hickey AJ 《AAPS PharmSciTech》2005,6(4):E641-E648
The purpose of this research was to develop liposomal dry powder aerosols for protein delivery. The delivery of stable protein formulations is essential for protein subunit vaccine delivery, which requires local delivery to macrophages in the lungs. β-Glucuronidase (GUS) was used as a model protein to evaluate dry powder liposomes as inhaled delivery vehicles. Dimyristoyl phosphatylcholine:cholesterol (7∶3) was selected as the liposome composition. The lyophilization of liposomes, micronization of the powders, aerosolization using a dry powder inhaler (DPI), and in vitro aerodynamic fine particle fraction upon collection in a twinstage liquid impinger were evaluated. After lyophilization and jet-milling, the total amount of GUS and its activity, representing encapsulation efficiency and stability, were evaluated. The GUS amount and activity were measured and compared with freshly-prepared liposomes in the presence of mannitol, 43% of initial GUS amount, 29% of GUS activity after lyophilization and 36% of GUS amount, 22% of activity after micronization were obtained. Emitted doses from dry powder inhaler were 53%, 58%, 66%, and 73% for liposome powder:mannitol carrier ratios of 1∶0, 1∶4, 1∶9, and 1∶19. Fifteen percent of the liposome particles were less than 6.4 μm in aerodynamic diameter. The results demonstrate that milled liposome powders containing protein molecules can be aerosolized effectively at a fixed flow rate. Influences of different cryoprotectants on lyophilization of protein liposome formulations are reported. The feasibility of using liposomal dry powder aerosols for protein delivery has been demonstrated but further optimization is required in the context of specific therapeutic proteins. Published: December 21, 2005  相似文献   

20.
The active loading of liposomes with dopamine in response to an ammonium sulfate gradient was studied. This method can be regarded as a mean to more efficiently improve the liposomal dopamine/lipids ratio in comparison to conventional methods of liposome preparation. Trapping efficiency of dopamine into liposomes exhibiting a transmembrane ammonium sulfate gradient was shown to be dependent on liposome lipid composition, lipid concentration and temperature. Dopamine-containing liposomes with α-tocopherol in the lipid bilayer were shown to be stable at least for three weeks. It has been found that intraperitoneal (i.p.) administration of conventionally prepared dopamine-containing liposomes as well as liposomes with increased dopamine/lipid ratio may efficiently suppress the expression of parkinsonian symptoms in C57BL/6 mice with experimental parkinsonian syndrome. On the other hand, only through increasing of liposomal dopamine/lipid ratio the complete compensation of dopamine deficiency in the mice brain was achieved. The obtained data may be considered as biochemical evidence in favor of liposomes' ability to act as a carrier system for the delivery of dopamine into the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号