首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The photosynthetic capacity of Myriophyllum salsugineum A.E. Orchard was measured, using plants collected from Lake Wendouree, Ballarat, Victoria and grown subsequently in a glasshouse pond at Griffith, New South Wales. At pH 7.00, under conditions of constant total alkalinity of 1.0 meq dm−3 and saturating photon irradiance, the temperature optimum was found to be 30–35°C with rates of 140 μmol mg−1 chlorophyll a h−1 for oxygen production and 149 μmol mg−1 chlorophyll a h−1 for consumption of CO2. These rates are generally higher than those measured by other workers for the noxious Eurasian water milfoil, Myriophyllum spicatum L., of which Myriophyllum salsugineum is a close relative. The light-compensation point and the photon irradiance required to saturate photosynthetic oxygen production were exponentially dependent on water temperature. Over the temperature range 15–35°C the light-compensation point increased from 2.4 to 16.9 μmol (PAR) m−2 s−1 for oxygen production while saturation photon irradiance increased from 41.5 to 138 μmol (PAR) m−2 s−1 for oxygen production and from 42.0 to 174 μmol (PAR) m−2 s−1 for CO2 consumption. Respiration rates increased from 27.1 to 112.3 μmol (oxygen consumed) g−1 dry weight h−1 as temperature was increased from 15 to 35°C. The optimum temperature for productivity is 30°C.  相似文献   

2.
In recent decades, the production of palatinose has aroused great interest since this structural isomer of sucrose has a promising potential. Using immobilized in a hollow-fibre membrane reactor Serratia plymuthica cells, a complete conversion of concentrated sucrose solutions into palatinose was achieved. Under typical process conditions, the specific productivity of the membrane reactor was 16.8 g m−2 h−1 (flow rate 1.3 cm3 min−1 and substrate concentration 40%) in continuous mode of action. The activity of the biocatalyst (productivity of the system) decreased slowly with the increase of operation time until the 15th day and remained almost constant to the end of the experiment. The loss of activity was 11% after 90 days of continuous operation. Conversion rate of over 90% was reached for 36–48 h for all concentrations (40–60%) of the substrate solution in cycle mode of action of the bioreactor. The best productivity (18.1 g palatinose m−2 biocatalytic membrane) for the set period was observed during the recirculation of a 60% sucrose solution. The culture displayed a very good stability under the conditions of critical osmotic stress during the experiments. A microbiological analysis of the end product showed that the produced palatinose syrup measures up to the standards for products of this kind and can be used as an additive to different food products and functional foods.  相似文献   

3.
The growth of the freshwater microalga Scenedesmus obliquus was studied at 30°C in a mineral culture medium with phosphorus concentrations of between 0 and 372 μ . The values for the specific growth rates, between and , fitted a semistructured substrate-limitation model with μm1 = 0·0466 h−1, μm2 = 0·0256 h−1 and . The specific uptake rate of phosphorus reached a maximum value of qSm1 = 658·01 × 10−4 μmol P mg−1 biomass h−1.  相似文献   

4.
Relatively large (0.19 m column diameter, 2 m tall, 0.06 m3 working volume) outdoor bubble column and airlift bioreactors (a split-cylinder and a draft-tube airlift device) were compared for monoseptic fed-batch culture of the microalga Phaeodactylum tricornutum. The three photobioreactors produced similar biomass versus time profiles and final biomass concentration (4 kg m−3). The maximum specific growth rate observed within a daily illuminated period in the exponential growth phase, had a value of 0.08 h−1 on the third day of culture. Because of night-time losses of biomass, the specific growth rate averaged over the 4-days of exponential phase was 0.021 h−1 for the three reactors.

The biomass in the vertical column reactors did not experience photoinhibition under conditions (photosynthetically active daily averaged irradiance value of 1150±52 μE m−2 s−1) that are known to cause photoinhibition in conventional thin-tube horizontal loop reactors. Because of good gas-liquid mass transfer, the dissolved oxygen concentration in the reactors at peak photosynthesis remained <120% of air saturation; thus, oxygen inhibition of photosynthesis and photo-oxidation of the biomass did not occur. Carbohydrate accumulation (up to 13% w/w) by the biomass was favored during light-limited linear growth. A declining light intensity caused a more than five-fold increase in cellular carotenoids but the chlorophylls increased only by about 2.5-fold during the course of the culture. In the stationary phase, up to 2% of the biomass was chlorophylls and carotenoids constituted up to 0.5% of the biomass dry weight.  相似文献   


5.
A Bacillus subtilis strain isolated from a hot-spring was shown to produce xylanolytic enzymes. Their associative/synergistic effect was studied using a culture medium with oat spelts xylan as xylanase inducer. Optimal xylanase production of about 12 U ml−1 was achieved at pH 6.0 and 50°C, within 18 h fermentation. At 50°C, xylanase productivity obtained after 11 h in shake-flasks, 96,000 U l−1 h−1, and in reactor, 104,000 U l−1 h−1 was similar. Increasing temperature to 55°C a higher productivity was obtained in the batch reactor 45,000 U l−1 h−1, compared to shake-flask fermentations, 12,000 U l−1 h−1. Optimal xylanolytic activity was reached at 60°C on phosphate buffer, at pH 6.0. The xylanase is thermostable, presenting full stability at 60°C during 3 h. Further increase in the temperature caused a correspondent decrease in the residual activity. At 90°C, 20% relative activity remains after 14 min. Under optimised fermentation conditions, no cellulolytic activity was detected on the extract. Protein disulphide reducing agents, such as DTT, enhanced xylanolytic activity about 2.5-fold. When is used xylan as substrate, xylanase production decreased as function of time in contrast, with trehalose as carbon source, xylanase production in maintained constant for at least 80 h fermentation.  相似文献   

6.
The effect of changing dilution rate (D) on Bacillus sp. CCMI 1051 at dilution rates between 0.1 and 0.55 h−1 in a glucose-limited medium was studied. Biomass values varied between 0.88 and 1.1 g L−1 at D values of 0.15–0.35 h−1. Maximal biomass productivity was found to be 0.39 g L−1 h−1, obtained at D = 0.35 h−1 and corresponding to a 54.4% conversion of the carbon into cell mass. The highest rate of glucose consumption was 4.45 mmol g−1 h−1 occurring at D = 0.4 h−1. The glucose concentration inside the chemostat was below the detection level starting to accumulate around 0.4 h−1. Growth inhibition of fifteen strains of fungi by the broth of the steady-state cell-free supernatants was assessed. Results showed that the relative inhibition differ among the target species but was not influenced by the dilution rate changing.  相似文献   

7.
A selection programme to increase the cellular eicosapentaenoic acid (EPA) content has been carried out with the microalga Isochrysis galbana. The selection process involved two stages of single selection. EPA content continuously increased from 2·4% dry weight (d.w.) of the ‘parent’ culture to an average value of 5·3% d.w. in the final stage. The proportion of total EPA variation attributable to the genetic variation (heritability in a broad sense) was 0·99 showing the importance of the genome in the determination of this fatty acid. The growth and fatty acid profile of an EPA-rich isolate grown as a chemostat in a cylindrical photobioreactor have been studied. A decrease in EPA content was observed (5·21% w/w to 2·8% w/w) at the lowest dilution rate D = 0·024 h−1, up close to the maximum growth rate, D = 0·038 h−1. At the same time, the biomass concentration also decreased from 1015 mg/litre to 202 mg/litre over the abovementioned range of dilution rate (D). Nonetheless, the EPA productivity increases with D, with a maximum of 15·26 mg/litre/day at D = 0·0208 h−1. Furthermore, steady-state dilution rates may be related to average internal light intensity. Reverse-phase, high-pressure liquid chromatography (HPLC) on octadecylsilyl semi-preparative columns was used to separate stearidonic acid (SA), EPA and docosohexaenoic acid (DHA) in polyunsaturated fatty acid concentrate obtained by the urea complexation method from a fatty acid solution previously obtained by direct saponification of biomass. Isolate SA, EPA and DHA fraction purity was 94·8, 96·0 and 94·9%, respectively, with yields of 100·0, 99·6 and 94·0%.  相似文献   

8.
The bioconversion of propionitrile to propionamide was catalysed by nitrile hydratase (NHase) using resting cells of Microbacterium imperiale CBS 498-74 (formerly, Brevibacterium imperiale). This microorganism, cultivated in a shake flask, at 28 °C, presented a specific NHase activity of 34.4 U mgDCW−1 (dry cell weight). The kinetic parameters, Km and Vmax, tested in 50 mM sodium phosphate buffer, pH 7.0, in the propionitrile bioconversion was evaluated in batch reactor at 10 °C and resulted 21.6 mM and 11.04 μmol min−1 mgDCW−1, respectively. The measured apparent activation energy, 25.54 kJ mol−1, indicated a partial control by mass transport, more likely through the cell wall.

UF-membrane reactors were used for kinetic characterisation of the NHase catalysed reaction. The time dependence of enzyme deactivation on reaction temperature (from 5 to 25 °C), on substrate concentrations (from 100 to 800 mM), and on resting cell loading (from 1.5 to 200 μg  ml−1) indicated: lower diffusional control (Ea=37.73 kJ mol−1); and NHase irreversible damage caused by high substrate concentration. Finally, it is noteworthy that in an integral reactor continuously operating for 30 h, at 10 °C, 100% conversion of propionitrile (200 mM) was attained using 200 μg  ml−1 of resting cells, with a maximum volumetric productivity of 0.5 g l−1 h−1.  相似文献   


9.
The rates of respiratory O2 uptake have been studied in leaves, stems and whole shoots of several freshwater plants: 6 angiosperms, 2 bryophytes and one alga. For angiosperm leaves, rates varied widely with species (30–142 μmol O2 (gDW)−1 h−1), were correlated with chlorophyll content and were higher than those of the stems (13–71 μmol O2 (gDQ)−1 h−1). The rates for the shoots of bryophytes (53–66 μmol O2 (gDW)−1 h−1) and for the alga Cladophora glomerata (L.) Kütz. (96 μmol O2 (gDW)−1 h−1) were slightly higher than those of most angiosperm stems, but lower than those for most leaves.

These plants had a significant cyanide-resistant respiration, suggesting the existence of an alternative pathway to the “classic” cytochrome system. This pathway was found to be active in all the species studied, as judged by responses to a specific inhibitor, SHAM (salicylhydroxamic acid). Measurement of electron-transport system (ETS) activity showed that there is a large electron-transport capacity which is not normally used by respiration in vivo.  相似文献   


10.
Thermophilic methane-producing bacteria isolated from a wastewater treatment facility have been immobilized in acetylcellulose filter with agar. The immobilized cells produced methane from wastewaters in rich organic acid (acetic, propionic and butyric acids) at the rate of 1.4 μmol mg protein−1 h−1. The optimum conditions for methane production by immobilized whole cells were 52–55°C and pH 7.0–8.0. The immobilized cells retained 80% of the initial activity after exposure to air. The immobilized thermophilic bacteria produced methane continuously over 10 days at 52°C.  相似文献   

11.
Efficient anaerobic degradation may be completed only under low levels of dissolved hydrogen in the liquid surrounding the microorganisms. This restraint can be intensified by the limitations of liquid-to-gas H2 mass transfer, which results in H2 accumulation in the bulk liquid of the reactor. Dissolved hydrogen proved to be an interesting parameter for reactor monitoring by showing a good correlation with short-chain volatile fatty acid concentration, namely propionate, which was not the case for the H2 partial pressure. Biogas recycle was performed in a upflow anaerobic sludge bed and filter reactor. The effects of varying the ratio of recycled-to-produced gas from 2:1 (9 l/l reactor per day) to 8:1 (85 l/l reactor per day) were studied. By increasing the liquid—gas interface with biogas recycling, the dissolved hydrogen concentration could be lowered from 1.1 to 0.4 μ . Accordingly, the H2 sursaturation factor was also reduced, leading to an important improvement of the H2 mass transfer rate, which reached 20.86 h−1 (±9.79) at a 8:1 gas recycling ratio, compared to 0.72 h−1 (±0.24) for the control experiment. Gas recycling also lowered the propionate concentration from 655 to 288 mg l−1 and improved the soluble chemical oxygen demand removal by 10–15%. The main problem encountered was the shorter solid retention time, which could lead to undesirable biomass washout at high gas recycling ratio. This could be circumvented by improving the reactor design to reduce the turbulence within the biomass bed.  相似文献   

12.
Cross-linked waxy maize (CWM) starch dispersions (STDs) of concentration 50 g kg−1 were heated in sucrose solutions containing 0–600 g kg−1 (g sucrose/kg dispersion) at 85 °C at low shear and in intermittently agitated cans at 110 °C. The STDs heated in 0–300 g kg−1 sucrose exhibited antithixotropic behavior, while those heated in 400–600 g kg−1 sucrose exhibited thixotropic behavior. The mean starch granule diameter of the starch dispersions did not show strong dependence on sucrose concentration. The dispersions, especially those with high sucrose concentrations and heated at 110 °C, exhibited G′ versus frequency (ω) profiles of gels. The STDs exhibited first normal stress differences that increased in magnitude with the concentration of sucrose. Values of the first normal stress coefficient of canned dispersions calculated from dynamic rheological data plotted against ω and experimental values plotted against shear rate of some of the STDs overlapped.  相似文献   

13.
Continuous fermentations were performed in order to correlate the production of retamycin, an anthracycline antibiotic produced by Streptomyces olindensis in submerged cultures, with the dilution rate. Maximum retamycin production was achieved at a dilution rate of 0.05 h−1 (Dx=0.05 h−1), while higher dilution rates caused a decrease in antibiotic production, which ceased completely at a dilution rate of 0.30 h−1. Otherwise, biomass productivity was favoured by high dilution rates, achieving a maximum at D=0.25 h−1, whereas retamycin productivity reached a maximum at D=0.05 h−1. Dilution rate influenced morphology, which was assessed by image analysis. The percentage of clumps decreased with an increase in dilution rate, with a correspondent increase in pellet percentage.  相似文献   

14.

1. 1. The naked mole-rat (Heterocephalus glaber) is a poikilothermic mammal. During gestation metabolic shifts that differ from both mammalian and reptilian thermoregulatory patterns occurred.

2. 2. Body temperature was directly dependent on ambient temperature. At low ambient temperatures the temperature differential (TbTa) was approximately 3°C, whereas at higher ambient temperatures the temperature differential diminished.

3. 3. In early pregnancy (prior to week 3) oxygen consumption at low ambient temperatures was greater than that of non-reproductive animals. A maximal metabolic rate (3.2 ± 1.0 ml O2 . g−1 . h−1) occurred at an ambient temperature of 27°C. Thereafter the endothermic pattern of metabolism with increasing ambient temperatures was evident. Oxygen consumption decreased with increasing ambient temperature to minimal rates of 1.2 ± 0.1 ml O2 . g−1 . h−1 over the ambient temperature range of 31–34°C.

4. 4. Oxygen consumption in late pregnancy (1.8 ± 0.1 ml O2 . g−1 . h−1) was not correlated with ambient temperature over the entire ambient temperature range measured (24–36°C).

5. 5. Differences in thermoregulation in early and late pregnancy may be attributed to different rates of heat loss as a consequence of (a) changes in surface area and body mass or (b) vascular changes. Furthermore the thermoregulatory changes in late pregnancy may indicate that maximal overall metabolic capacity had been reached, for peak resting metabolism (expressed per animal rather than per gram body mass) in early pregnancy was similar to observed metabolism in late pregnancy.

6. 6. The dissociation of metabolism from both ambient temperature and body temperature in late pregnancy could confer an energetic advantage to this arid dwelling underground inhabitant; for it may enable the breeding female to partition a greater portion of available energy into reproduction.

Author Keywords: Body temperature; endothermy; eusocial; gestation; Heterocephalus glaber; metabolic changes; naked mole-rat; oxygen consumption; poikilothermy; pregnancy; rectal temperature; thermoregulation  相似文献   


15.
A membrane bioreactor was developed to perform an extractive bioconversion aimed at the production of isovaleraldehyde by isoamyl alcohol oxidation with whole cells of Gluconobacter oxydans. A liquid/liquid extractive system using isooctane as extractant and assisted by a hollow-fiber hydrophobic membrane was chosen to recover the product. The aqueous bioconversion phase and the organic phase were maintained apart with the aid of the membrane. The extraction of alcohol and aldehyde was evaluated by performing equilibrium and mass transfer kinetic studies. The bioprocess was then performed in a continuous mode with addition of the substrate to the aqueous phase. Fresh solvent was added to the organic phase and exhausted solvent was removed at the same flow rate. The extractive system enabled a fast and selective in situ removal of the aldehyde from the water to the organic phase. High conversions (72–90%) and overall productivity (2.0–3.0 g l−1 h−1) were obtained in continuous experiments performed with different rates of alcohol addition (1.5–3.5 g l−1 h−1). Cell deactivation was observed after 10–12 h of operation.  相似文献   

16.
Comparative measurements of bacterial total counts and volumes of flow cytometry (FCM), transmission electron (TEM), and epifluorescence microscopy (EFM), were undertaken during a four week mesocosm experiment. Total counts of bacteria measured by TEM, EFM, and FCM were in the range of 1 · 106−6 cells ml−1, 1 · 106−3 · 1016 cells ml−1, and 5 · 105 cells ml−1 respectively. The mean volume of the bacterial community, measured by means of EFM and TEM, increased from 0.12–0.15 μm3 at the start of the experiment to 0.39–0.53 μm3 at the end. Generally, there was good agreement between the two methods and regression analyses gave r = 0.87 (p < < 0.01) for cell volume and r = 0.97 (p < < 0.01) for cell number. DAPI stained bacteria with volumes less than 0.2 μm3 were not detected by flow cytometry and these were generally an order of magnitude lower than counts made by TEM and EFM. For samples where the mean bacterial cell volume was longer than 0.3 μm3, all three methods were in agreement both with respect to counts and volume estimates.  相似文献   

17.
A novel immobilized biocatalyst with invertase activity was prepared by adhesion of yeast cells to wool using glutaraldehyde. Yeast cells could be immobilized onto wool by treating either the yeast cells or wool or both with glutaraldehyde. Immobilized cells were not desorbed by washing with 1 M KCl or 0.1 M buffers, pH 3.5–7.5. The biocatalyst shows a maximum enzyme activity when immobilized at pH 4.2–4.6 and 7.5–8.0. The immobilized biocatalyst was tested in a tubular fixed-bed reactor to investigate its possible application for continuous full-scale sucrose hydrolysis. The influence of temperature, sugar concentration and flow rate on the productivity of the reactor and on the specific productivity of the biocatalyst was studied. The system demonstrates a very good productivity at a temperature of 70 °C and a sugar concentration of 2.0 M. The increase of the volume of the biocatalyst layer exponentially increases the productivity. The productivity of the immobilized biocatalyst decreases no more than 50% during 60 days of continuous work at 70 °C and 2.0 M sucrose, but during the first 30 days it remains constant. The cumulative biocatalyst productivity for 60 days was 4.8 × 103kg inverted sucrose/kg biocatalyst. The biocatalyst was proved to be fully capable of continuous sucrose hydrolysis in fixed-bed reactors. Received: 8 November 1996 / Received revision: 31 January 1997 / Accepted: 31 January 1997  相似文献   

18.

1. 1. The response of oxygen consumption (VO2), thermal conductance (Cd and Cmin, body temperature (Tb), and evaporative water loss (EWL) of Tatera leucogaster and Desmodillus auricularis were measured over the range of ambient temperatures (Ta) from 5–35°C.

2. 2. Basal metabolic rate (BMR) of T. leucogaster was 0.841 ± 0.049 ml O2 g−1 h−1 and lower than predicted, while that of D. auricularis was similar to the expected value (1.220 ± 0.058 ml O2 g−1 h−1). D. auricularis had a high, narrow thermoneutral zone (TNZ) typical of nocturnal, xerophilic, burrowing rodents.

3. 3. D. auricularis and T. leucogaster regulated Tb over the range Ta = 5–35°C and kept EWL and dry thermal conductance at a minimum below the TNZ. However, the EWL of T. leucogaster increased rapidly above Ta = 30°C.

4. 4. After comparison with data from other species, it was concluded that there is an optimum size for xeric, nocturnal, burrowing rodents.

Author Keywords: thermoregulation; BMR; gerbil  相似文献   


19.
Conscious rats with chronic gastric fistula were trained for drinking a 14-ml milk meal. The activity of an intestinal hormone, oxyntomodulin (OXM), was studied in this model and compared to that observed when histamine was the stimulus. Under histamine (0.25 mg·kg−1·h−1) stimulation, OXM at doses (60–120 pmol·kg−1·h−1) that induced physiological circulating levels inhibited gastric acid secretion up to 50%. Under meal stimulation, OXM reduced up to 29% acid secretion at doses (1–1.5 nmol·kg−1·h−1) inducing supraphysiological levels. We conclude that at physiological concentrations OXM cannot counteract the complex processes triggered by a meal. OXM would be a component of enterogastrone, a combination of several intestinal hormones acting in synergy. The OXM action is related to pathways recognizing the C-terminal 19–37 moiety of the molecule.  相似文献   

20.
The fungus Mortierella alpina LPM 301, a producer of arachidonic acid (ARA), was found to possess a unique property of a growth-coupled lipid synthesis. An increase in specific growth rate (μ) from 0.03 to 0.05 h−1 resulted in a two-fold increase in the specific rate of lipid synthesis (milligram lipid (gram per lipid-free biomass) per hour). Under batch cultivation in glucose-containing media with urea or potassium nitrate as nitrogen sources, the ARA content was 46.0 and 60.4% of lipid; 16.4 and 18.8% of dry biomass; and 4.2 and 4.5 g l−1, respectively. Under continuous cultivation of the strain, the productivity of ARA synthesis was 16.2 and 19.2 mg l−1 h−1 at μ=0.05 and 0.03 h−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号