首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
It was reported that avidin and streptavidin induce lysis of prebiotinylated red blood cells via the alternative pathway of both homologous and heterologous complement. Both of these proteins have four biotin-binding sites, providing a polyvalent interaction with biotinylated components of the erythrocyte membrane. We have compared the effects of mono- and multipoint avidin attachment on the sensitivity of biotinylated erythrocytes to lysis by the complement system. In the presence of anti-avidin antibody, avidin-bearing biotinylated erythrocytes were rapidly lysed by heterologous serum. This lysis was independent from the mode of avidin attachment, implying that complement activation by the classical pathway triggered by interaction between C1 and avidin-bound antibody on the erythrocyte surface is independent from the avidin's ability of polyvalent (multipoint) binding with biotinylated membrane components. In the absence of anti-avidin antibody, biotinylated erythrocytes bearing polyvalently attached avidin were lysed by homologous complement better than cells bearing avidin, which possesses reduced ability for multipoint binding with biotinylated erythrocyte. Two independent approaches to reduce avidin's ability of multipoint binding were used: decrease in surface density of biotin on the erythrocyte membrane and blockage of biotin-binding sites of avidin. Both methods result in reduced lysis of avidin-bearing erythrocytes as compared with erythrocytes bearing an equal amount of polyvalent-bound avidin. Thus the activation of homologous complement via the alternative pathway depends on avidin's ability to 'cross-link' to the biotinylated components of the erythrocyte membrane.  相似文献   

2.
A sensitive enzyme assay for biotin, avidin, and streptavidin   总被引:6,自引:0,他引:6  
Reciprocal enzyme assays are described for the vitamin biotin and for the biotin-binding proteins avidin and streptavidin. The assays are based on the following steps: (a) biotinylated bovine serum albumin is adsorbed onto microtiter plates; (b) streptavidin (or avidin) is bound to the biotin-coated plates; (c) biotinylated enzyme (in this case alkaline phosphatase) is then interacted with the free biotin-binding sites on the immobilized protein. For biotin assay, competition between the free vitamin and the biotinylated enzyme is carried out between steps (b) and (c). The method takes advantage of the four biotin-binding sites which characterize both avidin and streptavidin. The method is extremely versatile and accurate over a concentration range exceeding three orders of magnitude. The lower limits of detection are approximately 2 pg/ml (0.2 pg/sample) for biotin and less than 100 ng/ml (10 ng/sample) for either avidin or streptavidin.  相似文献   

3.
A colorimetric competitive inhibition assay for avidin, streptavidin and biotin was developed. The method for avidin or streptavidin was based on the competitive binding between avidin or streptavidin and a streptavidin-enzyme conjugate for biotinylated dextrin immobilized on the surface of a microtitre plate. For biotin quantitation the competition is between free biotin and the immobilized biotin for the streptavidin-enzyme conjugate. The limits of detection which was determined as the concentration of competitor required to give 90% of maximal absorbency (100% inhibition) was approximately 20 ng/100 microl per assay for avidin and streptavidin and 0.4 pg/100 microl per assay for biotin. The methods are simple, rapid, highly sensitive and adaptable to high throughput analysis.  相似文献   

4.
DNA labeled with the chemically cleavable biotinylated nucleotide Bio-12-SS-dUTP was chromatographed on biotin cellulose affinity columns using either avidin or streptavidin as the affinity reagent. Although both proteins were equally effective in binding the Bio-12-SS-DNA to the affinity resin, two important differences were found. First, nonbiotinylated DNA bound to avidin, but not to streptavidin, in buffers containing 50 mM NaCl. Second, Bio-12-SS-DNA was released much more slowly from the streptavidin affinity column than from the avidin column upon washing with buffer containing dithiothreitol. This difficulty in reducing the disulfide bond of Bio-12-SS-DNA bound to streptavidin is most likely due to steric protection of the disulfide bond by the protein. This conclusion is supported by our finding that DNA labeled with another biotinylated nucleotide analog, Bio-19-SS-dUTP, is rapidly and efficiently recovered from a streptavidin column. In Bio-19-SS-DNA, the distance between the disulfide bond and the biotin group is approximately 10 A greater than that in Bio-12-SS-DNA. Therefore, Bio-19-SS-dUTP and streptavidin form the basis of an efficient affinity system for the isolation and subsequent recovery of biotinylated DNA in the presence of low ionic strength buffers.  相似文献   

5.
Monomeric forms of avidin and streptavidin [(strept)avidin] have many potential applications. However, generation of monomeric (strept)avidin in sufficient quantity is a major limiting factor. We report the successful intracellular production of an improved version of monomeric streptavidin (M4) in a soluble and functional state at a level of approximately 70 mg/L of an Escherichia coli shake flask culture. It could be affinity purified in one step using biotin agarose with 70% recovery. BIAcore biosensor analysis using biotinylated bovine serum albumin confirmed its desirable kinetic properties. Two biotinylated proteins with different degrees of biotinylation (5.5 and 1 biotin per protein) pre-mixed with cellular extracts from Bacillus subtilis were used to examine the use of M4-agarose in affinity purification of protein. Both biotinylated proteins could be purified in high purity with 75-80% recovery. With the mild elution and matrix regeneration conditions, the M4-agarose had been reused four times without any detectable loss of binding capability. The relatively high-level overproduction and easy purification of M4, excellent kinetic properties with biotinylated proteins and mild procedure for protein purification make vital advancements in cost-effective preparation of monomeric streptavidin affinity matrix with desirable properties for purification of biotinylated molecules.  相似文献   

6.
H Qin  Z Liu    S F Sui 《Biophysical journal》1995,68(6):2493-2496
Two-dimensional crystals of avidin were obtained on mixed lipid monolayers containing biotinylated lipids (N-biotinyl-dipalmitoyl-L-alpha-phosphatidyl ethanolamine and dioleoyl phosphatidyl choline) by specific interaction. Image analysis of electron micrographs of these crystals revealed p2 symmetry with the unit cell parameters a = 66 +/- 2 A, b = 68 +/- 1 A, and gamma = 121 +/- 4 degrees. The projection map showed, at a resolution of about 27 A, that the four subunits within one avidin molecule are separated into two parts. Comparison between avidin and streptavidin reveals that avidin molecule binds to the lipid monolayer in an orientation similar to that of streptavidin.  相似文献   

7.
The interaction between thermostable direct hemolysin produced by Vibrio parahaemolyticus WP-1 and human erythrocytes was studied. The lysis of human erythrocytes by the hemolysin was dependent of temperature and no hemolysis occurred at low temperature (0-4 C), but the hemolysin was adsorbed on human erythrocytes even at low temperature. No hemolysis was observed when antihemolysin antiserum was mixed with the hemolysin and human erythrocytes at zero time. On the other hand, lysis of the cells by hemolysin was not completely inhibited when the antiserum was added during the lag time and the inhibitory effect decreased with delay in the time of addition of antiserum. The inhibitory effect of the antiserum decreased with increase in the incubation temperature, increase in the concentration of divalent cations, and decrease in pH. These results suggest that lysis of human erythrocytes by the hemolysin is at least a two-step process consisting of adsorption of the hemolysin to human erythrocytes and the step(s) following adsorption.  相似文献   

8.
We have studied the structural elements that affect ligand exchange between the two high affinity biotin-binding proteins, egg white avidin and its bacterial analogue, streptavidin. For this purpose, we have developed a simple assay based on the antipodal behavior of the two proteins toward hydrolysis of biotinyl p-nitrophenyl ester (BNP). The assay provided the experimental basis for these studies. It was found that biotin migrates unidirectionally from streptavidin to avidin. Conversely, the biotin derivative, BNP, is transferred in the opposite direction, from avidin to streptavidin. A previous crystallographic study (Huberman, T., Eisenberg-Domovich, Y., Gitlin, G., Kulik, T., Bayer, E. A., Wilchek, M., and Livnah, O. (2001) J. Biol. Chem. 276, 32031-32039) provided insight into a plausible explanation for these results. These data revealed that the non-hydrolyzable BNP analogue, biotinyl p-nitroanilide, was almost completely sheltered in streptavidin as opposed to avidin in which the disordered conformation of a critical loop resulted in the loss of several hydrogen bonds and concomitant exposure of the analogue to the solvent. In order to determine the minimal modification of the biotin molecule required to cause the disordered loop conformation, the structures of avidin and streptavidin were determined with norbiotin, homobiotin, and a common long-chain biotin derivative, biotinyl epsilon-aminocaproic acid. Six new crystal structures of the avidin and streptavidin complexes with the latter biotin analogues and derivatives were thus elucidated. It was found that extending the biotin side chain by a single CH(2) group (i.e. homobiotin) is sufficient to result in this remarkable conformational change in the loop of avidin. These results bear significant biotechnological importance, suggesting that complexes containing biotinylated probes with streptavidin would be more stable than those with avidin. These findings should be heeded when developing new drugs based on lead compounds because it is difficult to predict the structural and conformational consequences on the resultant protein-ligand interactions.  相似文献   

9.
The effects of the incubation temperature and bovine serum albumin on hemolysis induced by short-chain phosphatidylcholine were examined. The rate of hemolysis of human, monkey, rabbit, and rat erythrocytes by dilauroylglycerophosphocholine showed biphasic temperature-dependence: hemolysis was rapid at 5-10 degrees C and above 40 degrees C, but slow at around 25 degrees C. In contrast, the rate of lysis of cow, calf, sheep, pig, cat, and dog erythrocytes did not show biphasic temperature-dependence, but increased progressively with increase in the incubation temperature. Bovine serum albumin increased the hemolysis of human erythrocytes induced by dilauroylglycerophosphocholine or didecanoylglycerophosphocholine: it shortened the lag time of lysis and reduced the amount of phosphatidylcholine required for lysis. A shift-down of the incubation temperature from 40 to below 10 degrees C also shortened the lag time of lysis of human erythrocytes induced by dilauroylglycerophosphocholine and reduced the amount of phosphatidylcholine required for lysis.  相似文献   

10.
Sea urchin fibropellins are epidermal growth factor homologues that harbor a C-terminal domain, similar in sequence to hen egg-white avidin and bacterial streptavidin. The fibropellin sequence was used as a conceptual template for mutation of designated conserved tryptophan residues in the biotin-binding sites of the tetrameric proteins, avidin and streptavidin. Three different mutations of avidin, Trp-110-Lys, Trp-70-Arg and the double mutant, were expressed in a baculovirus-infected insect cell system. A mutant of streptavidin, Trp-120-Lys, was similarly expressed. The homologous tryptophan to lysine (W-->K) mutations of avidin and streptavidin were both capable of binding biotin and biotinylated material. Their affinity for the vitamin was, however, significantly reduced: from K(d) approximately 10(-15) M of the wild-type tetramer down to K(d) approximately 10(-8) M for both W-->K mutants. In fact, their binding to immobilized biotin matrices could be reversed by the presence of free biotin. The Trp-70-Arg mutant of avidin bound biotin very poorly and the double mutant (which emulates the fibropellin domain) failed to bind biotin at all. Using a gel filtration fast-protein liquid chromatography assay, both W-->K mutants were found to form stable dimers in solution. These findings may indicate that mimicry in the nature of the avidin sequence and fold by the fibropellins is not designed to generate biotin-binding, but may serve to secure an appropriate structure for facilitating dimerization.  相似文献   

11.
The design and fabrication of protein biochips requires characterization of blocking agents that minimize nonspecific binding of proteins or organisms. Nonspecific adsorption of Escherichia coli, Listeria innocua, and Listeria monocytogenes is prevented by bovine serum albumin (BSA) or biotinylated BSA adsorbed on SiO(2) surfaces of a biochip that had been modified with a C(18) coating. Biotinylated BSA forms a protein-based surface that in turn binds streptavidin. Because streptavidin has multiple binding sites for biotin, it in turn anchors other biotinylated proteins, including antibodies. Hence, biotinylated BSA simultaneously serves as a blocking agent and a foundation for binding an interfacing protein, avidin or streptavidin, which in turns anchors biotinylated antibody. In our case, the antibody is C11E9, an IgG-type antibody that binds Listeria spp. Nonspecific adsorption of another bacterium, Escherichia coli, is also minimized due to the blocking action of the BSA. The blocking characteristics of BSA adsorbed on C(18)-derivatized SiO(2) surfaces for construction of a protein biochip for electronic detection of pathogenic organisms is investigated.  相似文献   

12.
Biotin is an essential vitamin that binds streptavidin or avidin with high affinity and specificity. As biotin is a small molecule that can be linked to proteins without affecting their biological activity, biotinylation is applied widely in biochemical assays. In our laboratory, IgM enzyme immuno assays (EIAs) of μ-capture format have been set up against many viruses, using as antigen biotinylated virus like particles (VLPs) detected by horseradish peroxidase-conjugated streptavidin. We recently encountered one serum sample reacting with the biotinylated VLP but not with the unbiotinylated one, suggesting in human sera the occurrence of biotin-reactive antibodies. In the present study, we search the general population (612 serum samples from adults and 678 from children) for IgM antibodies reactive with biotin and develop an indirect EIA for quantification of their levels and assessment of their seroprevalence. These IgM antibodies were present in 3% adults regardless of age, but were rarely found in children. The adverse effects of the biotin IgM on biotinylation-based immunoassays were assessed, including four inhouse and one commercial virus IgM EIAs, showing that biotin IgM do cause false positivities. The biotin can not bind IgM and streptavidin or avidin simultaneously, suggesting that these biotin-interactive compounds compete for the common binding site. In competitive inhibition assays, the affinities of biotin IgM antibodies ranged from 2.1×10(-3) to 1.7×10(-4 )mol/L. This is the first report on biotin antibodies found in humans, providing new information on biotinylation-based immunoassays as well as new insights into the biomedical effects of vitamins.  相似文献   

13.
To expand the application of the streptavidin-biotin technology for reversible affinity purification of biotinylated proteins, a novel form of monomeric streptavidin was engineered and produced using Bacillus subtilis as the expression host. By changing as little as two amino acid residues (T90 and D128) to alanine, the resulting mutant streptavidin designated DM3 was produced 100% in the monomeric form as a soluble functional protein via secretion. It remained in the monomeric state in the presence or absence of biotin. Interaction of purified monomeric streptavidin with biotin was studied by surface plasmon resonance-based BIAcore biosensor. Its on-rate is comparable to that of monomeric avidin while its off-rate is seven times lower. The dissociation constant was determined to be 1.3 x 10(-8)M. These properties make it an attractive agent for affinity purification of biotinylated proteins. An affinity matrix with immobilized DM3 mutein was prepared and applied to purify biotinylated cytochrome c from a crude extract. Biotinylated cytochrome c could be purified to homogeneity in one step and was shown to retain full biological activity. Advantages of using DM3 mutein over other traditional methods in the purification of biotinylated proteins are discussed.  相似文献   

14.
The pentadecapeptide gramicidin A, which is known to form highly conductive ion channels in a bilayer lipid membrane by assembling as transmembrane head-to-head dimers, can be modified by attaching a biotin group to its C-terminus through an aminocaproyl spacer. Such biotinylated gramicidin A analogues also form ion channels in a hydrophobic lipid bilayer, exposing the biotin group to the aqueous bathing solution. Interaction of the biotinylated gramicidin channels with (strept)avidin has previously been shown to result in the appearance of a long-lasting open state with a doubled transition amplitude in single-channel traces and a deceleration of the macroscopic current kinetics as studied by the sensitized photoinactivation method. Here this interaction was studied further by using streptavidin mutants with weakened biotin binding affinities. The Stv-F120 mutant, having a substantially reduced biotin binding affinity, exhibited an efficacy similar to that of natural streptavidin in inducing both double-conductance channel formation and deceleration of the photoinactivation kinetics of the biotinylated gramicidin having a long linker arm. The Stv-A23D27 mutant with a severely weakened biotin binding affinity was ineffective in eliciting the double-conductance channels, but decelerated noticeably the photoinactivation kinetics of the long linker biotinylated gramicidin. However, the marked difference in the effects of the mutant and natural streptavidins was smaller than expected on the basis of the substantially reduced biotin binding affinity of the Stv-A23D27 mutant. This may suggest direct interaction of this mutant streptavidin with a lipid membrane in the process of its binding to biotinylated gramicidin channels. The role of linker arm length in the interaction of biotinylated gramicidins with streptavidin was revealed in experiments with a short linker gramicidin. This gramicidin analogue appeared to be unable to form double-conductance channels, though several lines of evidence were indicative of its binding by streptavidin. The data obtained show the conditions under which the interaction of streptavidin with biotinylated gramicidin leads to the formation of the double-conductance tandem channels composed of two cross-linked transmembrane dimers.  相似文献   

15.
The high-affinity binding of biotin to avidin, streptavidin, and related proteins has been exploited for decades. However, a disadvantage of the biotin/biotin-binding protein interaction is that it is essentially irreversible under physiological conditions. Desthiobiotin is a biotin analogue that binds less tightly to biotin-binding proteins and is easily displaced by biotin. We synthesized an amine-reactive desthiobiotin derivative for labeling proteins and a desthiobiotin-agarose affinity matrix. Conjugates labeled with desthiobiotin are equivalent to their biotinylated counterparts in cell-staining and antigen-labeling applications. They also bind to streptavidin and other biotin-binding protein-based affinity columns and are recognized by anti-biotin antibodies. Fluorescent streptavidin conjugates saturated with desthiobiotin, but not biotin, bind to a cell-bound biotinylated target without further processing. Streptavidin-based ligands can be gently stripped from desthiobiotin-labeled targets with buffered biotin solutions. Thus, repeated probing with fluorescent streptavidin conjugates followed by enzyme-based detection is possible. In all applications, the desthiobiotin/biotin-binding protein complex is easily dissociated under physiological conditions by either biotin or desthiobiotin. Thus, our desthiobiotin-based reagents and techniques provide some distinct advantages over traditional 2-iminobiotin, monomeric avidin, or other affinity-based techniques.  相似文献   

16.
A study on the effect of retinolin vitro on the hemolysis of vitamin E deficient rat red blood cells showed that retinol enhanced the lysis of the E deficient cells as compared to the lysis of normal cells. The lipid peroxidation present during hydrogen peroxide induced lysis of E deficient cells was however markedly inhibited in the presence of retinol without affecting the rate of lysis. In an actively peroxidising system of non-enzymatic lipid peroxidation of rat liver or brain homogenates and of brain lysosomes incubated with human erythrocytes, no lysis was obtained; incorporation of retinol in such systems resulted in lysis but no peroxidation. Hydrogen peroxide generating substances almost completely inhibited the lysis of normal human erythrocytes by retinol, but linoleic acid hydroperoxide and auto-oxidised liver or brain homogenates and ox-brain liposomes increased the lysis. It is concluded that vitamin E deficient erythrocyte hemolysis may be augmented by retinol, an anti-oxidant, having a lytic function without the peroxidation of stromal lipids  相似文献   

17.
A magnetoelastic bioaffinity sensor coupled with biocatalytic precipitation is described for avidin detection. The non-specific adsorption characteristics of streptavidin on different functionalized sensor surfaces are examined. It is found that a biotinylated poly(ethylene glycol) (PEG) interface can effectively block non-specific adsorption of proteins. Coupled with the PEG immobilized sensor surface, alkaline phosphatase (AP) labeled streptavidin is used to track specific binding on the sensor. This mass-change-based signal is amplified by the accumulation on the sensor of insoluble products of 5-bromo-4-chloro-3-indolyl phosphate catalyzed by AP. The resulting mass loading on the sensor surface in turn shifts the resonance frequency of the magnetoelastic sensors, with an avidin detection limit of approximately 200 ng/ml.  相似文献   

18.
Frozen solutions of biotinylated glucose-6-phosphate dehydrogenase and fluorescently tagged avidin were exposed to high energy ionizing radiation. Parallel experiments with peroxidase coupled to streptavidin and with biotinylated phycoerythrin were also performed. The loss of function of each compound was analyzed according to target theory. Target analysis revealed that the radiation-sensitive mass associated with the enzymatic activity and that associated with the fluorescence were unchanged by irradiation in the strongly coupled state. Therefore the noncovalent bonds between biotin and avidin do not permit the transfer of radiation-deposited energy in amounts sufficient to destroy the activity of apposing molecule.  相似文献   

19.
Streptavidin substituted with mannose residues increased by 20-fold the intracellular concentration of a biotinylated dodecakis(alpha-deoxythymidylate) in macrophages by comparison with the uptake of free oligodeoxynucleotide. Streptavidin, the bacterial homologue of the very basic avidin, which does not contain any carbohydrate moieties and is a neutral protein, was substituted with 12 mannose residues in order to be recognized and internalized by mannose-specific lectins on the surface of macrophages. A 3'-biotinylated and 5'-fluoresceinylated dodecakis (alpha-deoxythymidylate) was synthesized and bound onto mannosylated streptavidin. The conjugate was isolated, and by using flow cytometry, it was shown that the uptake of fluoresceinylated oligodeoxynucleotides bound to mannosylated streptavidin by macrophages is 20-fold higher than that of free oligodeoxynucleotides and that the uptake was competively inhibited by mannosylated serum albumin. Glycosylated streptavidin conjugates recognizing specific membrane lectins on different cells provide the possibility to target biotinylated antisense oligodeoxynucleotides and to increase the biological effect of these chemotherapeutic agents.  相似文献   

20.
A dot-blot method for quantification of apurinic/apyrimidinic (AP) sites in genomic DNA (calf thymus DNA) is described using an avidin-modified glass slip and biotinylated liposomes containing sulforhodamine B as a fluorescence marker. Aldehyde reactive probe (ARP)-tagged DNA was found to be strongly adsorbed on an avidin slip, even if treated with ethanolamine and biotin, with an efficiency of 51% due to the positive surface charge of avidin, and unbound ARP was easily washed out of the surface with Milli-Q water. In the assay protocol, calf thymus DNA containing AP sites is reacted with ARP in solution and immobilized on an ethanolamine- and biotin-treated avidin slip (EAB-avidin slip), followed by incubation with streptavidin. The AP sites were finally quantified with biotinylated liposomes containing 1.5 mM sulforhodamine B as a fluorescence marker. The mean fluorescence intensity over the surface of the slip was an analytically relevant measure of the amount of AP sites in calf thymus DNA. By using the dot-blot assay, 1-5 AP sites per 10(4) nucleotides in 5 and 100 ng of DNA were quantified. The current dot-blot method has potential for quantification of AP sites in genomic DNA at a level of several nanograms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号