首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 276 毫秒
1.
Method of high-precision microsample blood and plasma mass densitometry   总被引:2,自引:0,他引:2  
The reliability of the mechanical oscillator technique (MOT) for blood and plasma mass density measurements on small samples is quantified in this paper. Sources of measurement errors that can reduce both the accuracy and precision of density determinations include storage of plasma samples, inhomogeneity of blood samples, and density reading before adequate temperature equilibration. Measurements on fractions from identical samples and repeated samplings from test subjects under steady-state conditions revealed a 10(-2) g/l reproducibility of density readings. The mean plasma density (PD) readings did not change significantly after up to 1-wk storage at +4 degrees C or up to 2 mo storage at -20 degrees C. The variability of the PD findings increased with storage time and were generally higher with storage at -20 degrees C, compared with +4 degrees C. Densitometers of different sizes were used to evaluate rheological influences on blood density (BD) readings. Linear correlations between PD and plasma protein concentration, between BD and blood hemoglobin concentration, and between erythrocyte density and mean corpuscular hemoglobin concentration were significant (P less than 0.001). Rapid density measurements with up to 10(-2) g/l reliability on small (less than 0.1 ml) volumes of biological fluids and continuous blood densitometry can be performed with use of the MOT.  相似文献   

2.
Cryogel is a physical gel formed by heterophilic aggregation of extra domain A containing fibronectin [EDA(+)FN], plasma fibronectin (pFN), fibrinogen (Fbg) and heparin (Hep), which are found in high concentrations in the blood of patients suffering from rheumatoid arthritis. In this study, we clarify the specific interactions between cryogel components in terms of the affinity constant (K(A)), obtained by surface plasmon resonance (SPR). It is found that Fbg self-interactions occur at lower temperatures, and that K(A) of Fbg-Hep changes with temperature. Specifically, K(A) (2.0 x 10(8) [M(-1)]) of Fbg-Hep at 5 degrees C increases significantly from that (1.0x10(7) [M(-1)]) at 40 degrees C. K(A) of EDA(+)FN-Hep increases with temperature, by approximately 100-fold between 40 degrees C (K(A)=10(12) [M(-1)]) and 20 degrees C (K(A)=10(10) [M(-1)]). Although K(A) of the FN fragments of Hep-binding domain containing an EDA region [EDA(+)HBD(+)] and Hep increases with temperatures above 30 degrees C, K(A)s of HBD(+)-Hep and EDA(+)-Hep are not temperature-dependent. Therefore, EDA(+)HBD(+), formed as a special structure for high Hep affinity, exhibits temperature-dependent interaction with Hep. These results suggest that the main role of EDA(+)FN in cryogelation is to support the interaction with Hep.  相似文献   

3.
Using the patch-clamp method temperature dependences of the chord conductance of single potential--dependent slow and fast K+ channels in mollusk neurons were studied. Under control conditions (20 degrees C, 0 mV, [K+]o = 1.5 mM and [K+]i = 100 mM) the conductances of the fast and slow K+ channels were equal to 20-25 pS and 30-40 pS, respectively. Besides, the temperature dependences of the currents through the K+ channels of lesser conductance (5-20 pS) were studied. Some of these channels may be regarded as subtypes of the fast and slow K+ channels named above. It was found that for the channels of all types single channel currents arise with temperature. However, in the range of 10-20 degrees C an anomalous conductance decrease at temperature elevation was observed. For all channels except for the fast one at temperatures above 20 degrees C activation energy (delta Ea) calculated from the Arrhenius plots of the currents was about 4 kcal/mol. At the temperatures below 10 degrees C delta Ea was equal to about 12 kcal/mol. In this temperature range delta Ea had a pronounced potential dependency. Temperature dependences of the fast K+ channel conductance were opposite to those of the slow K+ channel to some extent.  相似文献   

4.
In rat-brain synaptic membranes at a fixed temperature (37 degrees C), amiodarone dose-dependently inhibits the Na+/K+ ATPase activity (IC50 approximately equal to 2.10(-5)M) and produces a linear increase in the degree of fluorescence depolarization (P) of 1,6-diphenylhexatriene embedded in the lipid matrix. Amiodarone has no effect on Mg++ ATPase and K+PNPase activity up to 3.10(-4)M. Studies carried out at different temperatures indicate that 10(-5)M amiodarone inhibits the Na+/K+ ATPase and decreases the lipid fluidity at all the temperatures studied (9 - 40 degrees C). The compound significantly displaces the temperature of transition observed around 20 degrees C in both Na+/K+ ATPase activity and lipid fluidity to 24 degrees C with no changes in slopes. The results suggest that part of the selective inhibition of Na+/K+ ATPase activity by amiodarone could be due to the effects of the drug on lipid dynamics.  相似文献   

5.
Effect of different concentration of K+ in perfusion fluid ([K+]) (5.9 mM, 3.6 mM, 2.38 mM) and the heart temperatures of 20 degrees C and below on the rat heart rate in the Langendorf preparations, were examined in conditions of retrograde perfusion with a modified Krebs-Henseleit buffer at constant perfusion volume. The lowering of [K+] diminished the temperature/heart rate ratio and depressed the heart standstill temperature from 12.3 +/- 0.6 degrees C at [K+] 5.9 mM (n = 12) to 6.7 +/- 0.6 degrees C at [K+] 3.6 mM (n = 5) and to 2.24 +/- 0.40 degrees C at [K+] 2.38 mM (n = 5). Temperature of the cold heart standstill had the liner relationship to Ig[K+]. Change the perfusion fluid with 5.9 mM K+ after heart cold standstill by the perfusion fluid with 3.6 mM K+ restored the heart beats to the rate of 40-50 min-1 in some experiments. The second heart standstill was at the mean temperature 3.6 degrees C lower than the first one.  相似文献   

6.
The secondary structure of native human plasma fibronectin, based on circular dichroic spectra, has been estimated to contain 79% beta sheet and 21% beta turn structures (Osterlund, E., Eronen, I., Osterlund, K. and Vuento, M. (1985) Biochemistry 24, 2661-2667). In this work changes in the secondary structure of the protein molecule are followed as a function of different temperatures and pH values by using circular dichroic spectroscopy in far- and near-ultraviolet regions. Conformational changes are reversible when raising the temperature quickly to 55 degrees C, and then cooling slowly to 20 degrees C. A few percent of alpha-helix is apparent, when the temperature is raised to 58.5 degrees C, but only about 9% random coil is formed, when the temperature is raised up to 70 degrees C. The largest conformational change is taking place, when fibronectin samples are heated from 57 to 58.5 degrees C. According to this study more than 90% of the secondary structure of the fibronectin molecule is preserved throughout the whole temperature range studied from 20 to 70 degrees C, and this is a fact even at pH as low as 3.0, when samples are fresh and not denatured by preparative procedures.  相似文献   

7.
The temperature-induced structural transitions of the full length Alzheimer amyloid beta-peptide [A(beta)(1-40) peptide] and fragments of it were studied using CD and 1H NMR spectroscopy. The full length peptide undergoes an overall transition from a state with a prominent population of left-handed 3(1) (polyproline II; PII)-helix at 0 degrees C to a random coil state at 60 degrees C, with an average DeltaH of 6.8 +/- 1.4 kJ.mol(-1) per residue, obtained by fitting a Zimm-Bragg model to the CD data. The transition is noncooperative for the shortest N-terminal fragment A(beta)(1-9) and weakly cooperative for A(beta)(1-40) and the longer fragments. By analysing the temperature-dependent 3J(HNH(alpha)) couplings and hydrodynamic radii obtained by NMR for A(beta)(1-9) and A(beta)(12-28), we found that the structure transition includes more than two states. The N-terminal hydrophilic A(beta)(1-9) populates PII-like conformations at 0 degrees C, then when the temperature increases, conformations with dihedral angles moving towards beta-strand at 20 degrees C, and approaches random coil at 60 degrees C. The residues in the central hydrophobic (18-28) segment show varying behaviour, but there is a significant contribution of beta-strand-like conformations at all temperatures below 20 degrees C. The C-terminal (29-40) segment was not studied by NMR, but from CD difference spectra we concluded that it is mainly in a random coil conformation at all studied temperatures. These results on structural preferences and transitions of the segments in the monomeric form of A(beta) may be related to the processes leading to the aggregation and formation of fibrils in the Alzheimer plaques.  相似文献   

8.
Water disinfection systems utilizing electrolytically generated copper and silver ions (200 and 20, 400 and 40, or 800 and 80 micrograms/liter) and low levels of free chlorine (0.1 to 0.4 mg/liter) were evaluated at room (21 to 23 degrees C) and elevated (39 to 40 degrees C) temperatures in filtered well water (pH 7.3) for their efficacy in inactivating Legionella pneumophila (ATCC 33155). At room temperature, a contact time of at least 24 h was necessary for copper and silver (400 and 40 micrograms/liter) to achieve a 3-log10 reduction in bacterial numbers. As the copper and silver concentration increased to 800 and 80 micrograms/liter, the inactivation rate significantly (P less than or equal to 0.05) increased from K = 2.87 x 10(-3) to K = 7.50 x 10(-3) (log10 reduction per minute). In water systems with and without copper and silver (400 and 40 micrograms/liter), the inactivation rates significantly increased as the free chlorine concentration increased from 0.1 mg/liter (K = 0.397 log10 reduction per min) to 0.4 mg/liter (K = 1.047 log10 reduction per min). Compared to room temperature, no significant differences were observed when 0.2 mg of free chlorine per liter with and without 400 and 40 micrograms of copper and silver per liter was tested at 39 to 40 degrees C. All disinfection systems, regardless of temperature or free chlorine concentration, showed increase inactivation rates when 400 and 40 micrograms of copper and silver per liter was added; however, this trend was significant only at 0.4 mg of free chlorine per liter.  相似文献   

9.
Voltage-dependent calcium channels (VDCC) in ventricular myocytes from rainbow trout (Oncorhynchus mykiss) were investigated in vitro using the perforated patch-clamp technique, which maintains the integrity of the intracellular milieu. First, we characterized the current using barium as the charge carrier and established the doses of various pharmacological agents to use these agents in additional studies. Second, we examined the current at several physiological temperatures to determine temperature dependency. The calcium currents at 10 degrees C (acclimation temperature) were identified as L-type calcium currents based on their kinetic behavior and response to various calcium channel agonists and antagonists. Myocytes were chilled (4 degrees C) and warmed (18 and 22 degrees C), and the response of VDCC to varying temperatures was observed. There was no significant dependency of the current amplitude and kinetics on temperature. Amplitude decreased 25-36% at 4 degrees C (Q(10) approximately 1.89) and increased 18% at 18 degrees C (Q(10) approximately 1.23) in control, Bay K8644 (Bay K)-, and forskolin-enhanced currents. The inactivation rates (tau(i)) did not demonstrate a temperature sensitivity for the VDCC (Q(10) 1.23-1. 92); Bay K treatment, however, increased temperature sensitivity of tau(i) between 10 and 18 degrees C (Q(10) 3.98). The low Q(10) values for VDCC are consistent with a minimal temperature sensitivity of trout myocytes between 4 and 22 degrees C. This low-temperature dependency may provide an important role for sarcolemmal calcium channels in adaptation to varying environmental temperatures in trout.  相似文献   

10.
A high-performance liquid chromatography method for the quantitative determination of telithromycin in biological fluids is described. The method is suitable for plasma and microdialysates from the interstitial space fluid of skeletal muscle and subcutaneous adipose tissue. Plasma samples were deproteinised with trichloroacetic acid and neutralised with sodium hydroxide. Microdialysates were analysed without further preparation step. Telithromycin was separated isocratically on a reverse-phase column using acetonitrile-0.03 M ammonium acetate, pH 5.2 (43:57, v/v) at a flow rate of 0.8 mlmin(-1), and fluorescence detection (excitation 263 nm, emission 460 nm). The calibration curve was linear from 0.01 to 5 microgml(-1). Within- and between-day imprecision and inaccuracy was < or =10%. The limits of quantification were 0.02 and 0.015 microgml(-1) for plasma and microdialysates, respectively. Since telithromycin is decomposed in aqueous solution at ambient temperature, it is strongly recommended to store samples frozen at -80 degrees C, to maintain the temperature at 4 degrees C during all preparation steps, and to analyse samples within 120 min after thawing.  相似文献   

11.
Microwave dielectric measurements of erythrocyte suspensions.   总被引:1,自引:1,他引:0       下载免费PDF全文
J Z Bao  C C Davis    M L Swicord 《Biophysical journal》1994,66(6):2173-2180
Complex dielectric constants of human erythrocyte suspensions over a frequency range from 45 MHz to 26.5 GHz and a temperature range from 5 to 40 degrees C have been determined with the open-ended coaxial probe technique using an automated vector network analyzer (HP 8510). The spectra show two separate major dispersions (beta and gamma) and a much smaller dispersion between them. The two major dispersions are analyzed with a dispersion equation containing two Cole-Cole functions by means of a complex nonlinear least squares technique. The parameters of the equation at different temperatures have been determined. The low frequency behavior of the spectra suggests that the dielectric constant of the cell membrane increases when the temperature is above 35 degrees C. The real part of the dielectric constant at approximately 3.4 GHz remains almost constant when the temperature changes. The dispersion shifts with temperature in the manner of a thermally activated process, and the thermal activation enthalpies for the beta- and gamma-dispersions are 9.87 +/- 0.42 kcal/mol and 4.80 +/- 0.06 kcal/mol, respectively.  相似文献   

12.
The interaction of different saccharides with the snake gourd (Trichosanthes anguina) seed lectin (SGSL) was investigated by fluorescence spectroscopy. Binding of 4-methylumbelliferyl-beta-D-galactopyranoside (MeUmb beta Gal) to SGSL resulted in a significant increase in the fluorescence emission intensity of the sugar at 376 nm, and this change was used to estimate the association constants for the binding interaction. Interestingly, the increase in emission intensity changed with a change in temperature, increasing from 19.2% at 20 degrees C to 80.2% at 40 degrees C. At 20 degrees C the association constant, K(a), for the MeUmb beta Gal-SGSL interaction was found by fluorescence titration to be 5.8 x 10(4) M(-1). From the temperature dependence of the association constants, the changes in enthalpy (Delta H) and entropy (Delta S) associated with binding of MeUmb beta Gal to SGSL were estimated to be -80.85 kJ.mol(-1) and -184.0 J.mol(-1).K(-1), respectively. Binding of unlabeled sugars was investigated by monitoring the decrease in fluorescence intensity when they were added to a mixture of SGSL and MeUmb beta Gal. The Ka values for different sugars were determined at several temperatures, and Delta H and Delta S were determined from the van't Hoff plots. Enthalpy-entropy compensation was noticed in all cases. The results indicate that saccharide binding to SGSL is enthalpy-driven and the negative contribution from entropy is, in general, quite high.  相似文献   

13.
The effect of pressure on the conformational structure of amyloid beta (1-40) peptide (A beta(1-40)), exacerbated with or without temperature, was determined by Fourier transform infrared (FT-IR) microspectroscopy. The result indicates the shift of the maximum peak of amide I band of intact solid A beta(1-40) from 1655 cm(-1) (alpha-helix) to 1647-1643 cm(-1) (random coil) with the increase of the mechanical pressure. A new peak at 1634 cm(-1) assigned to beta-antiparallel sheet structure was also evident. Furthermore, the peak at 1540 cm(- 1) also shifted to 1527 (1529) cm(-1) in amide II band. The former was assigned to the combination of alpha-helix and random coil structures, and the latter was due to beta-sheet structure. Changes in the composition of each component in the deconvoluted and curve-fitted amide I band of the compressed A beta(1-40) samples were obtained from 33% to 22% for alpha-helix/random coil structures and from 47% to 57% for beta-sheet structure with the increase of pressure, respectively. This demonstrates that pressure might induce the conformational transition from alpha-helix to random coil and to beta- sheet structure. The structural transformation of the compressed A beta(1-40) samples was synergistically influenced by the combined effects of pressure and temperature. The thermal-induced formation of beta-sheet structure was significantly dependent on the pressures applied. The smaller the pressure applied the faster the beta-sheet structure transformed. The thermal-dependent transition temperatures of solid A beta(1-40) prepared by different pressures were near 55-60 degrees C.  相似文献   

14.
We investigated the interaction of water temperature (10, 18 and 22 degrees C) and salinity (33.5 and 15 per thousand ) on the stress response of juvenile turbot. At each temperature/salinity combination, fish were subjected to 10 min enforced exercise. This induced a moderate stress response, which differed at the various temperature and salinity combinations. High temperatures caused more rapid increases in plasma cortisol and glucose, larger and more rapid increases in plasma lactate levels, which were also influenced by body weight, and a faster recovery in plasma Na(+) and Cl(-). Low salinity ameliorated cortisol responses at low but not at high temperatures. The magnitude of ionic disturbance was reduced at 15 per thousand. Plasma K(+) did not change at any temperature or salinity. The stress response involved activation of the brain-pituitary-interrenal axis, as indicated by the cortisol elevations. The low magnitude of glucose responses, the mild Na(+) and Cl(-) disturbances, and the lacking K(+)-responses indicated mild activation of the brain-sympathetic-chromaffin cell axis, and hence a low release of catecholamines, which seemed though to occur to a higher extent at higher temperatures. The relatively low catecholaminergic response of turbot may be linked to their inactive sedentary lifestyle. The higher responsiveness at higher water temperatures may reflect a higher overall adaptive capacity.  相似文献   

15.
Heating and cooling thermograms of unsaturated MGDG samples isolated from the leaves of Vicia faba are surprisingly featureless. This reflects the low enthalpies associated with phase transitions in highly unsaturated lipids and the fact that these transitions, in the case of MGDG, are to a large extent masked by those associated with the freezing and melting of ice. Careful choice of thermal heating/cooling regimes, combined with the use of real-time X-ray diffraction and freeze-fracture measurements, permits a detailed analysis of the phase behaviour of the system. The phase behaviour of unsaturated MGDG samples is shown to be basically similar to that seen in saturated MGDG samples. The lipid which exists in the inverted hexagonal (HexII) liquid crystal phase at room temperature forms a highly disordered lamellar gel (L beta) phase on cooling to temperatures below about -15 degrees C. On reheating, this first reorganizes at a temperature of about -10 degrees C to form a well-defined Lc1 phase. Above about -2 degrees C, this melts to re-form the HexII phase. Samples re-cooled from temperatures between -2 degrees C and 14 degrees C revert directly to the Lc1 phase while samples cooled from higher temperatures form the L beta phase. This reflects the fact that the former samples contain small amounts of unmelted Lc1 phase lipid. The implications of these observations are discussed in terms of the general problems associated with the measurement of low-temperature phase behaviour of membrane lipids.  相似文献   

16.
Intact fowl spermatozoa became almost immotile at 40 degrees C, but motility increased significantly at 30 degrees C. The oxygen consumption at both temperatures was 8-11 microliters O2/10(10) spermatozoa.min-1. The ATP concentration at 40 degrees C was higher than that at 30 degrees C but ADP concentration at 30 degrees C was higher than that at 40 degrees C. Consequently, the ATP/ADP ratio at 30 degrees C (1.9-2.2) increased to 3.5-3.7 at 40 degrees C. The motility of intact spermatozoa at 40 degrees C was effectively restored by 2 mM-Ca2+, 10% seminal plasma and 10% peritoneal fluid taken at the time of ovulation. In contrast, these effectors did not restore the motility of demembranated spermatozoa at 40 degrees C. Motility of demembranated spermatozoa was restored at 30 degrees C. These results suggest that the immobilization of fowl spermatozoa at 40 degrees C occurs due to a decrease in flagellar dynein ATPase activity. Furthermore, the action of effectors for motility such as Ca2+ may not be directly on the axoneme, but mediated by solubilized substances which have been removed by demembranation of the spermatozoa.  相似文献   

17.
Escherichia coli K12 cells grown at higher temperatures and then subjected to lower temperatures produce fatty acids with higher unsaturated/saturated ratios than cells completely adapted to the lower temperatures (Okuyama et al. (1982) J. Biol. Chem. 257, 4812-4817). This hyper-response was not an artefact of chloramphenicol treatment and was observed when the shift-down was more than 20 degrees C in the cells grown at either 40 degrees C or 35 degrees C. In contrast, cells grown at either 25 degrees C or 30 degrees C showed no appreciable hyper-response in terms of unsaturated/saturated ratio on temperature shifts to as low as 10 degrees C. By combining shift-down and shift-up experiments, we could show the presence of different types of temperature dependency in the fatty acid-synthesizing systems of cells grown at various temperatures. Contrary to wild-type cells which synthesized mainly cis-vaccenate on down-shift to 10 degrees C, a mutant strain lacking beta-ketoacyl acyl-carrier protein synthase II synthesized more palmitoleate (16:1) and less palmitate at 10 degrees C than at 40 degrees C. The average chain lengths of saturated and unsaturated fatty acids also changed, but differently, between the mutant and wild-type cells on shifts of temperature. Thus, the mutant strain has a temperature-dependent fatty acid-synthesizing system qualitatively different from that seen in a wild-type strain.  相似文献   

18.
An analysis of human peripheral blood intact mononuclear lymphocyte beta 2-adrenoreceptors showed that the hydrophilic radioligand 3H-CGP-12177 binds at various temperatures only to surface receptors. The density of receptors as determined by the binding of the lipophilic antagonist 125I-CYP at 37 degrees C is 2 times as high as that at 4 degrees C. The affinity of lymphocyte beta 2-adrenoceptors for 1-isoproterenol measured by the labeled ligand displacement at low (4 degrees C) temperatures is by two or three orders of magnitude higher than that at 37 degrees C. The thiol-alkylating agent, N-ethylmaleimide (NEM) causes oppositely directed changes in the density of beta 2-adrenoceptors on intact lymphocytes depending on their original density. NEM increases the affinity of beta 2-adrenoreceptors for the hormone (1.5-12-fold). The state and regulation of human peripheral blood lymphocyte beta 2-adrenoreceptors depend on the hormonal status of patients at the moment of blood sample collection.  相似文献   

19.
20.
Storage of neem (Azadirachta indica) seeds is difficult because of their sensitivity to chilling stress at moisture contents (MC) > or =10% or imbibitional stress below 10% MC. The hypothesis was tested that an elevated gel-to-liquid crystalline phase transition temperature (Tm) of membranes is responsible for this storage behaviour. To this end a spin probe technique, Fourier transform infrared microspectroscopy, and electron microscopy were used. The in situ Tm of hydrated membranes was between 10 degrees C and 15 degrees C, coinciding with the critical minimum temperature for germination. During storage, viability of fresh embryos was lost within two weeks at 5 degrees C, but remained high at 25 degrees C. The loss of viability coincided with an increased leakage of K+ from the embryos upon imbibition and with an increased proportion of cells with injured plasma membranes. Freeze-fracture replicas of plasma membranes from chilled, hydrated axes showed lateral phase separation and signs of the inverted hexagonal phase. Dehydrated embryos were sensitive to soaking in water, particularly at low temperatures, but fresh embryos were not. After soaking dry embryos at 5 degrees C (4 h) plus 1 d of further incubation at 25 degrees C, the axis cells were structurally disorganized and did not become turgid. In contrast, cells had a healthy appearance and were turgid after soaking at 35 degrees C. Imbibitional stress was associated with the loss of plasma membrane integrity in a limited number of cells, which expanded during further incubation of the embryos at 25 degrees C. It is suggested that the injuries brought about by storage or imbibition at sub-optimal temperatures in tropical seeds whose membranes have a high intrinsic Tm (10-15 degrees C), are caused by gel phase formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号