首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fergusobia nematodes and Fergusonina flies are mutualists that cause a variety of gall types on myrtaceous plant buds and young leaves. The biology of an isolate of the gall complex was studied in its native range in Australia for possible use in southern Florida as a biological control agent against the invasive broad-leaved paperbark tree, Melaleuca quinquenervia. Timed studies with caged Fergusonina flies on young branches of M. quinquenervia revealed that females are synovigenic with lifetime fecundities of 183 ± 42 (standard error; SE) eggs and longevities of 17 ± 2 days. None of the male flies but all dissected female flies contained parasitic female nematodes (range = 3-15), nematode eggs (12-112), and nematode juveniles (78-1,750). Female flies deposited eggs (34 ± 6; 8-77 per bud) and nematode juveniles (114 ± 15; 44-207 per bud) into bud apices within 15 days. Histological sections of shoot buds suggested that nematodes induce the formation of hypertrophied, uninucleate plant cells prior to fly larval eclosion. Enlarged size, granular cytoplasm, and enlarged nucleus and nucleolus characterized these cells, which appeared similar to those of other species galled by nematodes in the Anguinidae. Observations of ovipositional behavior revealed that female Fergusonina sp. create diagnostic oviposition scars. The presence of these scars may facilitate recognition of host use during specificity screening.  相似文献   

2.
Nematode-insect associations have evolved many times in the phylum Nematoda, but these lineages involve plant parasitism only in the Secernentean orders Aphelenchida and Tylenchida. In the Aphelenchida (Aphelenchoidoidea), Bursaphelenchus xylophilus (Pine wood nematode), B. cocophilus (Red ring or Coconut palm nematode) (Parasitaphelenchidae), and the many potential host-specific species of Schistonchus (fig nematodes) (Aphelenchoididae) nematode-insect interactions probably evolved independently from dauer-forming, mycophagous ancestors that were phoretically transmitted to breeding sites of their insect hosts in plants. Mycophagy probably gave rise to facultative or obligate plant-parasitism because of opportunities due to insect host switches or peculiarities in host behavior. In the Tylenchida, there is one significant radiation of insect-associated plant parasites involving Fergusobia nematodes (Fergusobiinae: Neotylenchidae) and Fergusonina (Fergusoninidae) flies as mutualists that gall myrtaceous plant buds or leaves. These dicyclic nematodes have different phases that are parasitic in either the insect or the plant hosts. The evolutionary origin of this association is unclear.  相似文献   

3.
In Australia, galls develop on Melaleuca quinquenervia (Cav.) S.T. Blake (Myrtaceae) as a result of the mutualistic association between the fly Fergusonina turneri Taylor (Diptera: Fergusoninidae) and its obligate nematode Fergusobia quinquenerviae Davies & Giblin-Davis (Tylenchida: Sphaerulariidae). The nematode induces gall formation, whereas the fly promotes gall maturation. Together they exploit M. quinquenervia buds and may inhibit stem elongation and flower formation. We delimited the physiological host range of this pair to determine their suitability as biological control agents of invasive M. quinquenervia populations in Florida, USA. Host use was assessed for eight species of Myrtaceae native to Florida, eight phylogenetically related ornamental species and oviposition alone on five non-myrtaceous species. Although oviposition was less specific, galls developed and matured only on M. quinquenervia. After establishment, galls are predicted to prevent flower and seed production, thereby reducing the regenerative potential of M. quinquenervia. This is the first example of an insect/nematode mutualism released as biological control agents of an invasive plant.  相似文献   

4.
The gall-inducing fly family Fergusoninidae, in association with a mutualist nematode, induces galls on Myrtaceae. Each fly species typically targets a particular site on its host plant, giving rise to a range of gall types, and one plant species may host at least four fly species. While incongruent fly–host evolutionary time scales preclude early cospeciation, it is possible that Fergusoninidae have been diverging with their host plants more recently at correspondingly finer taxonomic levels, such as within host subgenera. To test this possibility, we reduced the scale of our analysis and focussed on a clade of ten Eucalyptus species, sampling intensively and using a phylogenetic approach to compare the relationships between these plant hosts and their associated flies. We also took advantage of the fact that three different gall types, each with its own clade of Fergusonina flies, could be sampled on this focal host clade, in effect giving us three different host/fly association tests on the one set of hosts. The phylogenies of flies from the three different gall types were estimated using Bayesian analysis of mtCOI sequences and compared with an existing phylogeny of the eucalypt host clade. While each gall type showed a different pattern of host relationships, heuristic and quantitative analyses showed that there was little correspondence between plant and fly phylogenies and we conclude that host switching is prevalent in this system. There was more host fidelity in the flower bud gallers on this group of eucalypts, and there was least in the leaf blade gallers, with the shoot bud gallers demonstrating an intermediate level of host fidelity. We discuss the possible factors which may have led to their patterns of host association. This is the first study of Fergusonina to focus on one clade of Eucalyptus L’Hérit. (Myrtaceae) with intensive sampling and shows that each host plant species is commonly used by multiple fergusoninid species. This has provided us with the opportunity to study in detail the host relationships of three separate clades of Fergusonina from different plant tissue types, and has revealed many previously unrecorded host plant/gall site associations.  相似文献   

5.
A unique obligate mutualism occurs between species of Fergusonina Malloch flies (Diptera: Fergusoninidae) and nematodes of the genus Fergusobia Currie (Nematoda: Neotylenchidae). These mutualists together form different types of galls on Myrtaceae, mainly in Australia. The galling association is species‐specific, and each mutualism in turn displays host specificity. This tritrophic system represents a compelling arena to test hypotheses about coevolution between the host plants, parasitic nematodes and the fergusoninid flies, and the evolution of these intimate mutualisms. We have a basic knowledge of the interactions between the host plant, fly and nematode in this system, but a more sophisticated understanding will require a much more intensive and coordinated research effort. Summaries of the known Fergusonina/Fergusobia species associations and gall type terminology are presented. This paper identifies the key advantages of the system and questions to be addressed, and proposes a number of predictions about the evolutionary dynamics of the system given our understanding of the biology of the mutualists. Future research will profitably focus on (1) gall cecidogenesis and phenology, (2) the interaction between the fly larva and the nematode in the gall, and between the adult female fly and the parasitic nematode, (3) the means by which the fly and nematode life cycles are coordinated, (4) a targeted search of groups in the plant family Myrtaceae that have not yet been identified as gall hosts, and (5) establishment and comparison of the phylogenetic relationships of the host plants, fly species and nematodes. Recently derived phylogenies and divergence time estimation studies of the Diptera and the Myrtaceae show that the fly family Fergusoninidae is less than half the age of the Myrtaceae, discounting the hypothesis of cospeciation and coradiation of the fly/nematode mutualism and the plants at the broadest levels. However, cospeciation may have occurred at shallower levels in the phylogeny, following the establishment of the fly/nematode mutualism on the Myrtaceae. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 699–718.  相似文献   

6.
Fergusobia nematodes (Tylenchida: Fergusobiinae) and Fergusonina flies (Diptera: Fergusoninidae) are putative mutualists that develop together in galls formed in meristematic tissues of many species of the plant family Myrtaceae in Australasia. Fergusobia nematodes were sampled from a variety of myrtaceous hosts and gall types from Australia and one location in New Zealand between 1999 and 2006. Evolutionary relationships of these isolates were inferred from phylogenetic analyses of the DNA sequences of the nuclear ribosomal DNA near-full length small subunit (up to 1689bp for 21 isolates), partial large subunit D2/D3 domain (up to 889bp for 87 isolates), partial mitochondrial cytochrome oxidase subunit I (618 bp for 82 isolates), and combined D2/D3 and mtCOI (up to 1497bp for 66 isolates). The SSU data supported a monophyletic Fergusobia genus within a paraphyletic Howardula. A clade of Drosophila-associated Howardula, including Howardula aoronymphium, was the closest sequenced sister group. Phylogenetic analysis of sequences from D2/D3 and mtCOI, separately and combined, revealed many monophyletic clades within Fergusobia. The relationships inferred by D2/D3 and mtCOI were congruent with some exceptions. Well-supported clades were generally consistent with host plant species and gall type. However, phylogenetic analysis suggested host switching or putative hybridization events in many groups, except the lineage of shoot bud gallers on the broad-leaved Melaleuca species complex.  相似文献   

7.
A Russian knapweed (Acroptilon repens) shoot culture system, initiated from shoot tip culture, was used to generate a source of host plant tissue for the rearing of the nematode Subanguina picridis, a biocontrol agent for Russian knapweed. Young shoots growing on solid B5G medium in petri dishes developed galls on leaves, petioles, and shoot tips 7 days after release of 50 nematodes onto the surface of the medium. After 3 months of culturing, each petri dish yielded 7,000-10,000 nematodes. In vitro cultured Subanguina picridis were virulent on greenhouse-grown Russian knapweed plants. Galls were first found on seedlings 12 days after infestation; after 2 months, 90% of seedlings were galled on leaves, petioles, and shoot tips, with 1-6 galls per seedling. Three months after shoot emergence, 64% of vegetative shoots originating from root segments were also galled by the cultured nematodes. Similarly, vegetatively regenerated shoots of Russian knapweed were also susceptible to infestation by cultured nematodes.  相似文献   

8.
Many phytophagous insects have an ability to manipulate plant tissue and induce galls, but the mechanism is not yet fully understood. Some insects have multivoltine life cycles, and each generation induces galls on different plant species or different organs in the same host. Such host-use patterns are interesting study subjects to clarify the gall-inducing mechanisms of insects. We focused on a multivoltine and gall-inducing psyllid Stenopsylla nigricornis Kuwayama (Hemiptera: Psylloidea: Triozidae), which is associated with Symplocos lucida Sieb. (Symplocaceae). Based on periodic field surveys in Kyushu, Japan, S. nigricornis is revealed to have a bivoltine life history. Then, we revealed that the spring generation induces galls on leaves, while the autumn generation does so on flower buds and overwintering leaf buds. We also analyzed phytohormones in normal plant tissue, S. nigricornis nymphs, and their galls. As a result, nymphs were discovered to contain much higher concentrations of isopentenyladenosine and its possible precursor, isopentenyladenosine riboside than plant tissues, strongly suggesting that the phytohormone is involved in gall induction by S. nigricornis. Because flower bud galls contained significantly lower concentrations of abscisic acid (ABA) than normal flower bud, the autumn generation nymphs are considered to regulate the ABA level and to promote the earlier opening of host flower buds.  相似文献   

9.
Four types of prosoplasmatic galls induced by Daphnephila midges are found on leaves of Machilus zuihoensis, a species endemic to Taiwan: urn- and small urn-shaped, obovate, and hairy oblong galls. In addition to containing nutritive tissues, these galls are lined with fungal hyphae. The objective of this study was to describe and compare the structural organization of the various gall morphologies and to examine the ultrastructure of the nutritive and fungal cells lining the gall chambers. The morphology and ultrastructure of mature-stage galls were examined by light, scanning electron, and transmission electron microscopy. Diverse epidermal cell shapes and wax textures were observed in the leaves and galls of M. zuihoensis. In small urn-shaped, obovate, and hairy oblong galls vascular bundles extend from the gall base to near the centre of the gall top. In contrast, vascular bundles in urn-shaped galls are distributed in the gall wall and extend to close to the outer gall top. Trichomes were present only abaxially on leaves and on hairy oblong gall surfaces. Starch granules, tannins, and mucilage were distributed differently among the four gall types. Further, fungal mycelia spread in the interior gall wall and partially passed through the intercellular spaces of nutritive cells and reached the sclerenchyma. Histological analyses revealed that the surface structure of galls differs from that of the leaf and that the epidermal organization differs among the four gall types. Different types of leaf galls on the same plant have different patterns of tissue stratification and contain different ergastic substances. The results of this study will contribute to the understanding of tritrophic relationships and the complex interactions among parasitic gall-inducing insects, mutualistic fungi, and host plants.  相似文献   

10.
Acacia cyclops (Fabaceae) is an Australian species which was introduced into South Africa in the nineteenth century. Because of its invasive status in South Africa, a gall midge, Dasineura dielsi (Diptera: Cecidomyiidae), was released in 2001 in order to impact its reproduction by inducing galls on the flowers and thereby preventing seed set. Nothing is known about the cues used by D. dielsi for locating its host flowers. As part of an initial investigation into whether or not chemical cues might play a role in host finding, we analysed headspace samples of Acacia cyclops volatiles from leaves and reproductive parts at different stages (early bud, late bud, early flowering, and senescing flowering stages) using gas chromatography–mass spectrometry (GC–MS). In total, 72 different compounds were detected of which 62 were identified. The analyses showed that open flowers, the stage used by D. dielsi for oviposition, and yellow buds had similar odour compositions with (Z)-3-hexen-1-ol acetate, 4-oxoisophorone, (Z)-β-ocimene, an unknown aliphatic compound, heptadecane, and nonadecane dominating in open flowers. Leaf volatiles were distinct from those in the reproductive plant parts by their high relative amount of (Z)-β-ocimene. (Z)-3-Hexen-1-ol acetate had its maximum relative amount in the green bud samples and was much lower in the later floral stages. In contrast, 4-oxoisophorone peaked in yellow buds and open flowers with little or none of it found in younger or older stages. The volatile compounds of the different flower stages and leaves are discussed in relation to their potential role as attractants used by the biocontrol agent D. dielsi to locate its host plant.  相似文献   

11.
Two different defined growth media were used to culture aseptically the root-knot nematode, Meloidogyne incognita, on excised roots of tomato, Lycopersicon esculentum cv ''Marglobe.'' One of these media, STW, was a formulation by Skoog, Tsui, and White and the other, MS, a formulation by Murashige and Skoog. From 1 through 4 weeks, inoculated tissues were fractured to observe root infection, giant-cell formation, and nematode development with the scanning electron microscope (SEM). Four weeks after inoculation, the fresh weights of roots and developmental stages of nematodes were recorded. SEM observations indicated that roots cultured on the STW medium had normal growth and infection sites with galls that supported the development of mature females by 4 weeks. Roots cultured on the MS medium were less vigorous and had infection sites with galls containing only one to four syncytialike cells that did not support the development of mature females. Eighty percent of the larvae infecting roots cultured on the MS medium failed to develop into mature females. To determine which factor(s) affected root growth and nematode development, inoculated and uninoculated roots were grown on media consisting of different combinations of the organic and inorganic fractions of the STW and MS formulations. These experiments indicated that the organic fraction of STW was essential for normal root growth; however, the inorganic fraction of MS inhibited normal gall formation and nematode development. Further testing of the inorganic fractions revealed that the high concentration of ammonium nitrate in the MS medium was a factor that inhibited giant-cell formation and nematode development.  相似文献   

12.
Some studies suggest that entomopathogenic nematodes (EPN) affect plant-parasitic nematode populations. Here, the effects of live and dead IJ of Heterorhabditis bacteriophora JPM4, H. baujardi LPP7, Steinernema feltiae SN and S. carpocapsae All were evaluated against eggs and J2 of the plant-parasitic nematode Meloidogyne mayaguensis. According to treatment, 100 IJ were applied with 350 eggs, 350 J2 or 175 eggs + 175 J2 to tomato plants. Bioassays were conducted in March to May and repeated in September to November 2005. Both experiments lasted 9 weeks, and the variable evaluated was number of galls per plant. When eggs were used for infections in the first trial, plants exhibited lower gall number compared to control when live and dead H. baujardi IJ and live S. feltiae IJ were added (9.7, 4.5, 7.3 and 85.7 galls, respectively). In the second trial, live S. feltiae and S. carpocapasae IJ influenced gall formation compared to control (14.33, 14.57 and 168.02 galls, respectively). When J2 were used for infections, plants with live H. baujardi IJ presented less galls when compared to control in both trials (38.3 and 355.7 galls in the first trial and 145.2 and 326.2 in the second one, respectively). Infection with a mixture of J2 and eggs resulted in fewer galls than when live S. feltiae IJ were present in both trials, compared to control (38.3 and 44.2 galls vs. 275.3 and 192.2 galls, respectively). We conclude that H. baujardi and S. feltiae apparently may be inhibiting egg hatching and J2 infection.  相似文献   

13.
The wide variety of plant architectures is largely based on diverse and flexible modes of axillary shoot development. In Arabidopsis, floral transition (flowering) stimulates axillary bud development. The mechanism that links flowering and axillary bud development is, however, largely unknown. We recently showed that FLOWERING LOCUS T (FT) protein, which acts as florigen, promotes the phase transition of axillary meristems, whereas BRANCHED1 (BRC1) antagonizes the florigen action in axillary buds. Here, we present evidences for another possible role of florigen in axillary bud development. Ectopic overexpression of FT or another florigen gene TWIN SISTER OF FT (TSF) with LEAFY (LFY) induces ectopic buds at cotyledonary axils, confirming the previous proposal that these genes are involved in formation of axillary buds. Taken together with our previous report that florigen promotes axillary shoot elongation, we propose that florigen regulates axillary bud development at multiple stages to coordinate it with flowering in Arabidopsis.  相似文献   

14.
《Annals of botany》1995,75(2):199-205
Flower bud development in Rosa hybrida cv. 'Mercedes' was studied in shoots grown at different irradiances and sprouting from axillary buds at different branch positions. Cryo-scanning electron microscopy and light microscopy were used to visualize, characterize and determine flower morphogenesis during early shoot development. Up to the moment of visible flower bud appearance on the plant, flower morphogenesis was divided into nine stages. This classification was based on external and internal characteristics of the primordium. All shoots of the rose 'Mercedes' whether positioned uppermost or second on a branch and whether grown at 300 or 150 μmol m-2 s-1 PAR (12 h d-1) developed equally up to flower stage 7, i.e. the stage just before visible initiation of stamen and pistils. Signs of flower bud abortion were the compactness of the flower bud at developmental stage 7 (height/width < 1·5) and the sprouting of axillary buds positioned just below the flower bud primordium. It was concluded that once a flower bud has reached a height to width ratio larger than 1·5, and once stamen and pistil developmental has started, it has passed the critical developmental stage in which abortion may occur. Flower developmental stage was closely related to shoot length. This relationship was not affected by irradiance level nor by shoot position on a branch. Therefore, cultivation treatments aimed to improve flower production by reducing flower abortion, such as supplementary lighting, will be most effective when applied during the first 2 weeks of shoot growth in which the flower develops up to stage 7.  相似文献   

15.

Background and Aims

Spring geophytes require a period of low temperature for proper flower development but the mechanism that underlies the relationship between cold treatment and flowering remains unknown. The present study aims to compare the developmental anatomy and carbohydrate content of the tuberous geophyte Corydalis bracteata growing under natural winter conditions from 10 to −10 °C (field-grown) and under a mild temperature regime of 18 °C (indoor-grown plants).

Methods

Samples were studied under light and electron microscopy. A histochemical test (periodic acid – Schiff''s) was employed to identify starch in sectioned material. Sugars were analysed by capillary gas chromatography. Apoplastic wash fluid was prepared.

Key Results

Under natural conditions, shoots were elongated, and buds gained in dry mass and developed normally. For indoor-grown plants, these parameters were lower in value and, from December, a progressive necrosis of flower buds was observed. The tuber consisted of the new developing one, which was connected to the bud, and the old tuber with its starch reserve. Due to the absence of plasmodesmata between new and old tuber cells, sugar transport cannot be through the symplast. Thus, a potential apoplastic route is proposed from old tuber phloem parenchyma cells to the adjacent new tuber cells. Sugar content in buds during the autumn months (September–November) was lower for indoor-grown plants than control plants, whereas the sugar content in tubers during the same period was similar for plants from both temperature treatments. However, the amount of apoplastic sugars in tubers of field-grown plants was almost 15-fold higher than in indoor-grown tubers.

Conclusions

The results suggest that low temperature activates the apoplastic route of sugar transport in C. bracteata tubers and a consequent carbohydrate delivery to the bud. In the absence of cold treatment, the carbohydrate reserve is locked in old tuber cells so the nutrient supply to the buds is suppressed, possibly leading to bud abortion.  相似文献   

16.
The epidemiology of Anguina agrostis was investigated in field plots of Colonial bentgrass (cv. Highland), Agrostis tenuis, near Corvallis, Oregon. Each October from 1990-92, nylon mesh pouches, each containing 10 galls, were buried in the field or placed on the soil surface in microplots. Pouches were collected monthly or bimonthly between December and June and nematodes per gall counted. Nematode egression from galls began in late March and was completed by mid-May, corresponding to the period of floral initiation in bentgrass. In 1991 and 1992, 0.09-m² plots were inoculated with 0, 1, 5, 15, 50, 120, or 200 galls/plot. The disease severity (number of galls) and disease incidence (% seed heads with galls) increased linearly at inoculum densities below 50 galls/ plot. At higher inoculum densities, disease increase approached an asymptote. In 1991, plots were established to determine the characteristics of disease spread. Disease foci were established by placing 0, 5, 50, or 500 galls along 30-cm sections of row in the fall. In July 1992, seed heads were harvested at 30 and 60 cm from each focus within and across plant rows. Most infestations were found within 30 cm of foci at all inoculum levels. At high inoculum densities, the distribution of galls was aggregated with the majority of galls located on less than 10% of the seed heads. These disease spread and incidence data suggest populations of A. agrostis increase slowly in bentgrass in Oregon.  相似文献   

17.
D. E. Berube 《BioControl》1978,23(1):69-82
The immature stages ofTephritis dilacerata Loew are described. Newly emerged males become sexually mature in about 1 week; females in 2–5 weeks. Courtship is described. Mated females lay eggs in groups of 6–7 into unopenedSonchus arvensis L. flower buds. The fly weaves the ovipositor between the bracts into the bud so that the release of latex is avoided. The length of the ovipositor corresponds to the length of the oviposition route. At 24 °C the eggs hatch in 4–5 days and the larvae mature in an additional 9–10 days. The larvae transform the bud into a simple gall and consume developing ovaries and receptacle. Attacked buds rarely flower and therefore do not produce seed. Pupation lasts about 2 weeks. The flies overwinter as adults in Europe, but no diapause occurred in the laboratory. The growth of the gall affects larval survival and when food is scarce some larvae develop at the expense of others. The European distribution of the fly is illustrated.T. dilacerata is considered a promising biocontrol agent forS. arvensis in Canada.  相似文献   

18.
The Columbia root-knot nematode Meloidogyne chitwoodi parasitizes several plant species, including grasses that have been developed for semiarid environments, and substantially reduces the productivity of cereals and the longevity of perennial grasses growing under semiarid conditions throughout the intermountain region. Thirty-two auto- and allotetraploid (2n = 28) taxa in the perennial Triticeae were evaluated as possible sources of resistance to M. chitwoodi. Low levels of root galling were observed on roots of all accessions; root-gall indices ranged from 0 (no galls) to 1.95 in the grasses compared to 4.67 for the susceptible ''Ranger'' alfalfa check on a scale of 1 to 6. Even though the gall ratings were low, significant (P < 0.01) differences among accessions of the same species, among species, and among genera with different genomes were observed. Within the reproductive indices, which ranged from 0.01 to 1.20 in the grasses compared to 65.38 for the alfalfa check, there was no difference among genera with different genomes and accessions within the same species and genome; however, there was a significant (P < 0.05) difference among species with the same genomes. This variation can be traced to Thinopyrum nodosum (Jaaska-19), which was the only accession with a reproductive factor greater than 1.00. Based on the data, all auto- and allotetraploids are considered resistant to M. chitwoodi.  相似文献   

19.
Apical and axillary buds of Guizotia abyssinica Cass., isolated from seedlings raised in vitro, were cultured. High frequency of shoot regeneration was achieved on MS medium with BAP (1 mgl−1). Effect of BAP, Kn and GA3 applied successively in culture on shoot regeneration and flower bud formation has been studied. The shoots differentiated in cultures elongated on this medium. These rooted subsequently on half strength MS medium. The shoots flowered in vitro on MS medium with a combination of BAP (0.1mgl−1) + GA3 (0.1 mgl−1). The plantlets thus formed were successfully hardened with 90 % survival.  相似文献   

20.
Two grape cultivars, susceptible French Colombard and tolerant Rubired, and four nematodes, Meloidogyne incognita, Pratylenchus vulnus, Tylenchulus semipenetrans, and Xiphinema index, were used to quantify the equilibrium between root (R) and shoot (S) growth. Root and shoot growth of French Colombard was retarded by M. incognita, P. vulnus, and X. index but not by T. semipenetrans. Although the root growth of Rubired was limited by all the nematodes, the shoot growth was limited only by X. index. The R:S ratios of Rubired were higher than those of French Colombard. The reduced R:S ratios of Rubired were primarily an expression of reduction in root systems without an equal reduction in shoot growth, whereas in French Colombard the reduced R:S ratios were due to a reduction in both shoot growth and root growth and to a greater reduction in root growth than shoot growth. All nematodes reproduced equally well on both cultivars. Both foliage and root growth of French Colombard were significantly reduced by M. incognita and P. vulnus. Nematodes reduced the shoot length by reducing the internode length. Accumulative R:S ratios in inoculated plants were significantly smaller than those in controls in all nematode treatments but not at individual harvest dates. Bud break was delayed by X. index and was initiated earlier by P. vulnus and M. incognita. All buds in nematode treatments were less vigorous than in controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号