首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
Ankyrin repeats are well-known structural modules that mediate interactions between a wide spectrum of proteins. The regulatory factor X with ankyrin repeats (RFXANK) is a subunit of a tripartite RFX complex that assembles on promoters of major histocompatibility complex class II (MHC II) genes. Although it is known that RFXANK plays a central role in the nucleation of RFX, it was not clear how its ankyrin repeats mediate the interactions within the complex and with other proteins. To answer this question, we modeled the RFXANK protein and determined the variable residues of the ankyrin repeats that should contact other proteins. Site-directed alanine mutagenesis of these residues together with in vitro and in vivo binding studies elucidated how RFXAP and CIITA, which simultaneously interact with RFXANK in vivo, bind to two opposite faces of its ankyrin repeats. Moreover, the binding of RFXAP requires two separate surfaces on RFXANK. One of them, which is located in the ankyrin groove, is severely affected in the FZA patient with the bare lymphocyte syndrome. This genetic disease blocks the expression of MHC II molecules on the surface of B cells. By pinpointing the interacting residues of the ankyrin repeats of RFXANK, the mechanism of this subtype of severe combined immunodeficiency was revealed.  相似文献   

4.
5.
6.
7.
8.
Histone deacetylases (HDACs) regulate chromatin status and gene expression, and their inhibition is of significant therapeutic interest. To date, no biological substrate for class IIa HDACs has been identified, and only low activity on acetylated lysines has been demonstrated. Here, we describe inhibitor-bound and inhibitor-free structures of the histone deacetylase-4 catalytic domain (HDAC4cd) and of an HDAC4cd active site mutant with enhanced enzymatic activity toward acetylated lysines. The structures presented, coupled with activity data, provide the molecular basis for the intrinsically low enzymatic activity of class IIa HDACs toward acetylated lysines and reveal active site features that may guide the design of class-specific inhibitors. In addition, these structures reveal a conformationally flexible structural zinc-binding domain conserved in all class IIa enzymes. Importantly, either the mutation of residues coordinating the structural zinc ion or the binding of a class IIa selective inhibitor prevented the association of HDAC4 with the N-CoR.HDAC3 repressor complex. Together, these data suggest a key role of the structural zinc-binding domain in the regulation of class IIa HDAC functions.  相似文献   

9.
MHC II类分子表达调控的研究进展   总被引:1,自引:0,他引:1  
MHCII类分子提呈经过加工的抗原给CD4 T淋巴细胞 ,在诱发免疫反应中起重要作用。MHCII类分子不正常表达会引起严重的免疫缺陷疾病 ,如裸淋巴细胞综合征 (BLS)等。目前已识别出四种不同的MHCII调控基因。这些基因分别编码RFXANK、RFX5、RFXAP和CIITA。其中 ,前三个是RFX复合物的亚基 ,RFX是一种结合于所有MHCII类基因启动子上的泛式表达的因子。CIITA是MHCII类分子表达的主要调控因子 ,其严密调控的表达模式决定了MHCII类分子表达的细胞特异性 ,及能否被诱导且在何种水平上表达。本文着重介绍近年来国内外对MHCII类分子表达及其调控研究的新进展  相似文献   

10.
11.
Class IIa histone deacetylases (HDACs) are found both in the cytoplasm and in the nucleus where they repress genes involved in several major developmental programs. In response to specific signals, the repressive activity of class IIa HDACs is neutralized through their phosphorylation on multiple N-terminal serine residues and 14-3-3-mediated nuclear exclusion. Here, we demonstrate that class IIa HDACs are subjected to signal-independent nuclear export that relies on their constitutive phosphorylation. We identify EMK and C-TAK1, two members of the microtubule affinity-regulating kinase (MARK)/Par-1 family, as regulators of this process. We further show that EMK and C-TAK1 phosphorylate class IIa HDACs on one of their multiple 14-3-3 binding sites and alter their subcellular localization and repressive function. Using HDAC7 as a paradigm, we extend these findings by demonstrating that signal-independent phosphorylation of the most N-terminal serine residue by the MARK/Par-1 kinases, i.e., Ser155, is a prerequisite for the phosphorylation of the nearby 14-3-3 site, Ser181. We propose that this multisite hierarchical phosphorylation by a variety of kinases allows for sophisticated regulation of class IIa HDACs function.  相似文献   

12.
13.
Epigenetic control plays an important role in gene regulation through chemical modifications of DNA and post-translational modifications of histones. An essential post-translational modification is the histone acetylation/deacetylation-process which is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). The mammalian zinc dependent HDAC family is subdivided into three classes: class I (HDACs 1-3, 8), class II (IIa: HDACs 4, 5, 7, 9; IIb: HDACs 6, 10) and class IV (HDAC 11). In this review, recent studies on the biological role and regulation of class IIa HDACs as well as their contribution in neurodegenerative diseases, immune disorders and cancer will be presented. Furthermore, the development, synthesis, and future perspectives of selective class IIa inhibitors will be highlighted.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Class IIa histone deacetylases (HDACs) -4, -5, -7 and -9 undergo signal-dependent nuclear export upon phosphorylation of conserved serine residues that are targets for 14-3-3 binding. Little is known of other mechanisms for regulating the subcellular distribution of class IIa HDACs. Using a biochemical purification strategy, we identified protein kinase C-related kinase-2 (PRK2) as an HDAC5-interacting protein. PRK2 and the related kinase, PRK1, phosphorylate HDAC5 at a threonine residue (Thr-292) positioned within the nuclear localization signal (NLS) of the protein. HDAC7 and HDAC9 contain analogous sites that are phosphorylated by PRK, while HDAC4 harbors a non-phosphorylatable alanine residue at this position. We provide evidence to suggest that the unique phospho-acceptor cooperates with the 14-3-3 target sites to impair HDAC nuclear import.

Structured summary

MINT-7710106:HDAC5 (uniprotkb:Q9UQL6) physically interacts (MI:0915) with PRK2 (uniprotkb:Q16513) by pull down (MI:0096)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号