首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, we describe the characterization of the [2Fe-2S] clusters of arsenite oxidases from Rhizobium sp. NT-26 and Ralstonia sp. 22. Both reduced Rieske proteins feature EPR signals similar to their homologs from Rieske-cyt b complexes, with g values at 2.027, 1.88, and 1.77. Redox titrations in a range of pH values showed that both [2Fe-2S] centers have constant Em values up to pH 8 at ∼+210 mV. Above this pH value, the Em values of both centers are pH-dependent, similar to what is observed for the Rieske-cyt b complexes. The redox properties of these two proteins, together with the low Em value (+160 mV) of the Alcaligenes faecalis arsenite oxidase Rieske (confirmed herein), are in line with the structural determinants observed in the primary sequences, which have previously been deduced from the study of Rieske-cyt b complexes. Since the published Em value of the Chloroflexus aurantiacus Rieske (+100 mV) is in conflict with this sequence analysis, we re-analyzed membrane samples of this organism and obtain a new value (+200 mV). Arsenite oxidase activity was affected by quinols and quinol analogs, which is similar to what is found with the Rieske-cyt b complexes. Together, these results show that the Rieske protein of arsenite oxidase shares numerous properties with its counterpart in the Rieske-cyt b complex. However, two cysteine residues, strictly conserved in the Rieske-cyt b-Rieske and considered to be crucial for its function, are not conserved in the arsenite oxidase counterpart. We discuss the role of these residues.  相似文献   

2.
SoxAX enzymes couple disulfide bond formation to the reduction of cytochrome c in the first step of the phylogenetically widespread Sox microbial sulfur oxidation pathway. Rhodovulum sulfidophilum SoxAX contains three hemes. An electrochemical cell compatible with magnetic circular dichroism at near infrared wavelengths has been developed to resolve redox and chemical properties of the SoxAX hemes. In combination with potentiometric titrations monitored by electronic absorbance and EPR, this method defines midpoint potentials (Em) at pH 7.0 of approximately +210, −340, and −400 mV for the His/Met, His/Cys, and active site His/CysS-ligated heme, respectively. Exposing SoxAX to S2O42−, a substrate analog with Em ∼−450 mV, but not Eu(II) complexed with diethylene triamine pentaacetic acid (Em ∼−1140 mV), allows cyanide to displace the cysteine persulfide (CysS) ligand to the active site heme. This provides the first evidence for the dissociation of CysS that has been proposed as a key event in SoxAX catalysis.  相似文献   

3.
Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (∼5). Hydrogen production by biocathodes poised at −600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ∼5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ∼6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at −765 mV (0.065 mA/cm2 sterile control at −800 mV) by the Acetobacterium-dominated community. Supplying −800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).  相似文献   

4.
The effect of CN and N2 on the electrical membrane potential (Em) was compared with that of CN on the ATP levels in cotyledons of Gossypium hirsutum and in Lemna gibba L. In mature cotton tissue, CN depolarized Em to the energy-independent diffusion potential (ED) in the dark. In the light Em recovered transiently. The same was observed in leaves of Nicotiana, Avena, Impatiens, Kalanchoë, and in Lemna. In contrast, in young cotton cotyledons and tobacco leaves and, to a large extent, in +sucrose-grown Lemna, Em was depolarized to ED also in the light in a similar way as in the dark.

In Lemna grown without sucrose, the energy-dependent component of Em was only partially depolarized by CN in dark or light. Cyanide plus salicylhydroxamic acid completely reduced Em to ED, abolished respiration and photosynthesis, and severely diminished the ATP level. This suggests the operation of a CN-insensitive respiration in uninjured Lemna. The initial CN-induced decay of the ATP level in cotton and Lemna was more rapid than the decay of Em. CN-induced oscillations of the ATP level were followed by similar but slower oscillations of Em. This supports the view of a general dependence of Em on ATP. Discrepancies between inhibitor-induced changes of Em and ATP levels are suggested to result from additional regulation of Em by the cytoplasmatic pH value.

A comparison of ED in young and mature cotton cotyledons in the dark and in the light suggests that in growing young cotyledons the different effect of CN in the light is due to a less effective photosynthesis together with high mitochondrial respiration. In Lemna and in mature cotton tissue, Em in the light is maintained by noncyclic photophosphorylation and photosystem II, which is only partly inhibited by CN, thus resulting in an incomplete depolarization and recovery of Em. Complete inhibition of photosynthetic O2 evolution and membrane depolarization by CN plus salicylhydroxamic acid are suggested to result from photooxidation.

  相似文献   

5.
The redox potential of the Rieske Fe-S protein has been investigated using circular dichroism (CD)-spectroscopy. The CD features characteristic of the purified bc1 complex and membranes of Rhodobacter sphaeroides were found in the region between 450 and 550 nm. The difference between reduced and oxidized CD-spectra shows a negative band at about 500 nm with a half of width 30 nm that corresponds to the specific dichroic absorption of the reduced Rieske protein (Fee, J.A. et al. (1984) J. Biol. Chem. 259, 124–133; Degli Esposti, M. et al. (1987) Biochem. J. 241, 285–290; Rich, P.R. and Wiggins, T.E. (1992) Biochem. Soc. Trans. 20, 241S). It was found that the redox potential at pH 7.0 for the Rieske center in the isolated bc1 complex and in chromatophore membranes from the R-26 strain of Rb. sphaeroides is 300±5 mV. In chromatophores from the BC17C strain of Rb. sphaeroides, the Em value measured for the Rieske iron-sulfur protein (ISP) was higher (315±5 mV), but the presence of carotenoids made measurement less accurate. The Em varied with pH in the range above pH 7, and the pH dependence was well fit either by one pK at 7.5 in the range of titration, or by two pK values, pK1=7.6 and pK2=9.8. Similar titrations and pK values were found for the Rieske Fe-S protein in the isolated bc1 complex and membranes from the R-26 strain of Rb. sphaeroides. The results are discussed in the context of the mechanism of quinol oxidation by the bc1 complex, and the role of the iron sulfur protein in formation of a reaction complex at the Qo-site.  相似文献   

6.
7.
We test the hypothesis that pyranopterin (PPT) coordination plays a critical role in defining molybdenum active site redox chemistry and reactivity in the mononuclear molybdoenzymes. The molybdenum atom of Escherichia coli nitrate reductase A (NarGHI) is coordinated by two PPT-dithiolene chelates that are defined as proximal and distal based on their proximity to a [4Fe-4S] cluster known as FS0. We examined variants of two sets of residues involved in PPT coordination: (i) those interacting directly or indirectly with the pyran oxygen of the bicyclic distal PPT (NarG-Ser719, NarG-His1163, and NarG-His1184); and (ii) those involved in bridging the two PPTs and stabilizing the oxidation state of the proximal PPT (NarG-His1092 and NarG-His1098). A S719A variant has essentially no effect on the overall Mo(VI/IV) reduction potential, whereas the H1163A and H1184A variants elicit large effects (ΔEm values of −88 and −36 mV, respectively). Ala variants of His1092 and His1098 also elicit large ΔEm values of −143 and −101 mV, respectively. An Arg variant of His1092 elicits a small ΔEm of +18 mV on the Mo(VI/IV) reduction potential. There is a linear correlation between the molybdenum Em value and both enzyme activity and the ability to support anaerobic respiratory growth on nitrate. These data support a non-innocent role for the PPT moieties in controlling active site metal redox chemistry and catalysis.  相似文献   

8.
The arsenite oxidase (Aio) from the facultative autotrophic Alphaproteobacterium Rhizobium sp. NT-26 is a bioenergetic enzyme involved in the oxidation of arsenite to arsenate. The enzyme from the distantly related heterotroph, Alcaligenes faecalis, which is thought to oxidise arsenite for detoxification, consists of a large α subunit (AioA) with bis-molybdopterin guanine dinucleotide at its active site and a 3Fe-4S cluster, and a small β subunit (AioB) which contains a Rieske 2Fe-2S cluster. The successful heterologous expression of the NT-26 Aio in Escherichia coli has resulted in the solution of its crystal structure. The NT-26 Aio, a heterotetramer, shares high overall similarity to the heterodimeric arsenite oxidase from A. faecalis but there are striking differences in the structure surrounding the Rieske 2Fe-2S cluster which we demonstrate explains the difference in the observed redox potentials (+225 mV vs. +130/160 mV, respectively). A combination of site-directed mutagenesis and electron paramagnetic resonance was used to explore the differences observed in the structure and redox properties of the Rieske cluster. In the NT-26 AioB the substitution of a serine (S126 in NT-26) for a threonine as in the A. faecalis AioB explains a −20 mV decrease in redox potential. The disulphide bridge in the A. faecalis AioB which is conserved in other betaproteobacterial AioB subunits and the Rieske subunit of the cytochrome bc 1 complex is absent in the NT-26 AioB subunit. The introduction of a disulphide bridge had no effect on Aio activity or protein stability but resulted in a decrease in the redox potential of the cluster. These results are in conflict with previous data on the betaproteobacterial AioB subunit and the Rieske of the bc 1 complex where removal of the disulphide bridge had no effect on the redox potential of the former but a decrease in cluster stability was observed in the latter.  相似文献   

9.
An NADP-dependent methylene tetrahydromethanopterin (H4MPT) dehydrogenase has recently been proposed to be involved in formaldehyde oxidation to CO2 in Methylobacterium extorquens AM1. We report here on the purification of this novel enzyme to apparent homogeneity. Via the N-terminal amino acid sequence, it was identified to be the mtdA gene product. The purified enzyme catalyzed the dehydrogenation of methylene H4MPT with NADP+ rather than with NAD+, with a specific activity of approximately 400 U/mg of protein. It also catalyzed the dehydrogenation of methylene tetrahydrofolate (methylene H4F) with NADP+. With methylene H4F as the substrate, however, the specific activity (26 U/mg) and the catalytic efficiency (Vmax/Km) were approximately 20-fold lower than with methylene H4MPT. Whereas the dehydrogenation of methylene H4MPT (E0 = −390 mV) with NADP+ (E0 = −320 mV) proceeded essentially irreversibly, the dehydrogenation of methylene H4F (E0 = −300 mV) was fully reversible. Comparison of the primary structure of the NADP-dependent dehydrogenase from M. extorquens AM1 with those of methylene H4F dehydrogenases from other bacteria and eucarya and with those of methylene H4MPT dehydrogenases from methanogenic archaea revealed only marginally significant similarity (<15%).  相似文献   

10.
Evapotranspiration (E) and CO2 flux (Fc) in the growing season of an unusual dry year were measured continuously over a Scots pine forest in eastern Finland, by eddy covariance techniques. The aims were to gain an understanding of their biological and environmental control processes. As a result, there were obvious diurnal and seasonal changes in E, Fc, surface conductance (gc), and decoupling coefficient (Ω), showing similar trends to those in radiation (PAR) and vapour pressure deficit (δ). The maximum mean daily values (24-h average) for E, Fc, gc, and Ω were 1.78 mmol m−2 s−1, −11.18 µmol m−2 s−1, 6.27 mm s−1, and 0.31, respectively, with seasonal averages of 0.71 mmol m−2 s−1, −4.61 µmol m−2 s−1, 3.3 mm s−1, and 0.16. E and Fc were controlled by combined biological and environmental variables. There was curvilinear dependence of E on gc and Fc on gc. Among the environmental variables, PAR was the most important factor having a positive linear relationship to E and curvilinear relationship to Fc, while vapour pressure deficit was the most important environmental factor affecting gc. Water use efficiency was slightly higher in the dry season, with mean monthly values ranging from 6.67 to 7.48 μmol CO2 (mmol H2O)−1 and a seasonal average of 7.06 μmol CO2 (μmol H2O)−1. Low Ω and its close positive relationship with gc indicate that evapotranspiration was sensitive to surface conductance. Mid summer drought reduced surface conductance and decoupling coefficient, suggesting a more biotic control of evapotranspiration and a physiological acclimation to dry air. Surface conductance remained low and constant under dry condition, supporting that a constant value of surface constant can be used for modelling transpiration under drought condition.  相似文献   

11.
A new bound iron-sulfur protein has been identified in spinach chloroplasts. In the reduced form, this protein has an electron paramagnetic resonance spectrum at 20°K with g-values of 2.02 and 1.90. The midpoint oxidation-reduction potential (Em) of the protein, which is pH-independent, is +290 mV. These properties are similar to those of the “Rieske” g = 1.90 iron-sulfur protein of mitochondrial Complex III.  相似文献   

12.
The isolation and properties of the protein calliphorin   总被引:2,自引:2,他引:0       下载免费PDF全文
1. A procedure for the isolation of the protein calliphorin from larvae and pupae of the blowfly Calliphora erythrocephala is described. 2. The calliphorin preparation shows a single component in the ultracentrifuge at pH6.3 and gives a single band when stained for protein after agar-gel or starch-gel electrophoresis at pH6.3 or 8.6. Immunoelectrophoresis yields only one arc, associated with the stained spot, to a rabbit antiserum known to react with 13 other soluble components of Calliphora pupae. 3. Calliphorin has s020,w 19.4S, D020,w 3.25×10−7cm2·s−1 and f/f0 1.22, indicating a molecular weight of 528000 and a compact symmetrical structure. The molecular weight determined by the meniscus-depletion sedimentation-equilibrium method is 529000. 4. In 6.2m-guanidine hydrochloride calliphorin dissociates into six components each with a molecular weight of about 87000. Calliphorin reversibly dissociates into components with sedimentation coefficients of about 7S as the pH is raised progressively above pH6.5. 5. Calliphorin has an unusually high tyrosine and phenylalanine content (442 and 400mol/mol of protein respectively), a relatively high methionine content (162mol/mol of protein) and very little cystine or cysteine (18mol/mol of protein). The E280/E250 ratio is 3.2. The pure protein contains 0.4–0.5% carbohydrate. 6. When examined in the electron microscope by the negative staining technique the protein is seen to consist of particles which are right prisms, being 105Å wide and 65Å high, rectangular in side view and curvilinear equilateral triangles in surface view.  相似文献   

13.
Two critical cysteine residues in the copper-A site (CuA) on subunit II (CoxB) of bacterial cytochrome c oxidase lie on the periplasmic side of the cytoplasmic membrane. As the periplasm is an oxidizing environment as compared with the reducing cytoplasm, the prediction was that a disulfide bond formed between these cysteines must be eliminated by reduction prior to copper insertion. We show here that a periplasmic thioredoxin (TlpA) acts as a specific reductant not only for the Cu2+ transfer chaperone ScoI but also for CoxB. The dual role of TlpA was documented best with high-resolution crystal structures of the kinetically trapped TlpA-ScoI and TlpA-CoxB mixed disulfide intermediates. They uncovered surprisingly disparate contact sites on TlpA for each of the two protein substrates. The equilibrium of CoxB reduction by TlpA revealed a thermodynamically favorable reaction, with a less negative redox potential of CoxB (E0 = −231 mV) as compared with that of TlpA (E0 = −256 mV). The reduction of CoxB by TlpA via disulfide exchange proved to be very fast, with a rate constant of 8.4 × 104 m−1 s−1 that is similar to that found previously for ScoI reduction. Hence, TlpA is a physiologically relevant reductase for both ScoI and CoxB. Although the requirement of ScoI for assembly of the CuA-CoxB complex may be bypassed in vivo by high environmental Cu2+ concentrations, TlpA is essential in this process because only reduced CoxB can bind copper ions.  相似文献   

14.
We describe a simple method for the determination of heme protein reduction potentials. We use the method to determine the reduction potentials for the PAS-A domains of the regulatory heme proteins human NPAS2 (Em = −115 mV ± 2 mV, pH 7.0) and human CLOCK (Em = −111 mV ± 2 mV, pH 7.0). We suggest that the method can be easily and routinely applied to the determination of reduction potentials across the family of heme proteins.  相似文献   

15.
Peter R. Rich  Derek S. Bendall 《BBA》1980,591(1):153-161
1. In fresh chloroplasts, three b-type cytochromes exist. These are b-559HP (λmax, 559 nm; Em at pH 7, +370 mV; pH-independent Em), b-559LP (λmax, 559 nm; Em at pH 7, +20 mV; pH-independent Em) and b-563 (λmax, 563 nm; Em at pH 7, ?110 mV; pH-independent Em). b-559HP may be converted to a lower potential form (λmax, 559 nm; Em at pH 7, +110 mV; pH-independent Em).2. In catalytically active b-f particle preparations, three cytochromes exist. These are cytochrome f (λmax, 554 nm; Em at pH 7, +375 mV, pK on oxidised cytochrome at pH 9), b-563 (λmax, 563 nm; Em at pH 7, ?90 mV, small pH-dependence of Em) and a b-559 species (λmax, 559 nm, Em at pH 7, +85 mV; pH-independent Em).3. A positive method of demonstration and estimation of b-559LP in fresh chloroplasts is described which involves the use of menadiol as a selective reductant of b-559LP.  相似文献   

16.
We purified a secreted fungal laccase from filtrates of Gaeumannomyces graminis var. tritici cultures induced with copper and xylidine. The active protein had an apparent molecular mass of 190 kDa and yielded subunits with molecular masses of 60 kDa when denatured and deglycosylated. This laccase had a pI of 5.6 and an optimal pH of 4.5 with 2,6-dimethoxyphenol as its substrate. Like other, previously purified laccases, this one contained several copper atoms in each subunit, as determined by inductively coupled plasma spectroscopy. The active enzyme catalyzed the oxidation of 2,6-dimethoxyphenol (Km = 2.6 × 10−5 ± 7 × 10−6 M), catechol (Km = 2.5 × 10−4 ± 1 × 10−5 M), pyrogallol (Km = 3.1 × 10−4 ± 4 × 10−5 M), and guaiacol (Km = 5.1 × 10−4 ± 2 × 10−5 M). In addition, the laccase catalyzed the polymerization of 1,8-dihydroxynaphthalene, a natural fungal melanin precursor, into a high-molecular-weight melanin and catalyzed the oxidation, or decolorization, of the dye poly B-411, a lignin-like polymer. These findings indicate that this laccase may be involved in melanin polymerization in this phytopathogen’s hyphae and/or in lignin depolymerization in its infected plant host.  相似文献   

17.
Reduction of Polymeric Azo and Nitro Dyes by Intestinal Bacteria   总被引:9,自引:6,他引:3       下载免费PDF全文
The O2-sensitive reduction of high-molecular-weight aromatic azo and nitro dyes by intestinal bacteria appears to be mediated by low-molecular-weight electron carriers with Eo′ = −200 to −350 mV. This process may allow the design of polymeric azo prodrugs for specific release of certain aromatic amines in the colon.  相似文献   

18.
The protein components of the 2-nitrotoluene (2NT) and nitrobenzene dioxygenase enzyme systems from Acidovorax sp. strain JS42 and Comamonas sp. strain JS765, respectively, were purified and characterized. These enzymes catalyze the initial step in the degradation of 2-nitrotoluene and nitrobenzene. The identical shared reductase and ferredoxin components were monomers of 35 and 11.5 kDa, respectively. The reductase component contained 1.86 g-atoms iron, 2.01 g-atoms sulfur, and one molecule of flavin adenine dinucleotide per monomer. Spectral properties of the reductase indicated the presence of a plant-type [2Fe-2S] center and a flavin. The reductase catalyzed the reduction of cytochrome c, ferricyanide, and 2,6-dichlorophenol indophenol. The ferredoxin contained 2.20 g-atoms iron and 1.99 g-atoms sulfur per monomer and had spectral properties indicative of a Rieske [2Fe-2S] center. The ferredoxin component could be effectively replaced by the ferredoxin from the Pseudomonas sp. strain NCIB 9816-4 naphthalene dioxygenase system but not by that from the Burkholderia sp. strain LB400 biphenyl or Pseudomonas putida F1 toluene dioxygenase system. The oxygenases from the 2-nitrotoluene and nitrobenzene dioxygenase systems each had spectral properties indicating the presence of a Rieske [2Fe-2S] center, and the subunit composition of each oxygenase was an α3β3 hexamer. The apparent Km of 2-nitrotoluene dioxygenase for 2NT was 20 μM, and that for naphthalene was 121 μM. The specificity constants were 7.0 μM−1 min−1 for 2NT and 1.2 μM−1 min−1 for naphthalene, indicating that the enzyme is more efficient with 2NT as a substrate. Diffraction-quality crystals of the two oxygenases were obtained.  相似文献   

19.
Rieske proteins and Rieske ferredoxins are present in the three domains of life and are involved in a variety of cellular processes. Despite their functional diversity, these small Fe–S proteins contain a highly conserved all-β fold, which harbors a [2Fe–2S] Rieske center. We have identified a novel subtype of Rieske ferredoxins present in hyperthermophilic archaea, in which a two-cysteine conserved SKTPCX(2–3)C motif is found at the C-terminus. We establish that in the Acidianus ambivalens representative, Rieske ferredoxin 2 (RFd2), these cysteines form a novel disulfide bond within the Rieske fold, which can be selectively broken under mild reducing conditions insufficient to reduce the [2Fe–2S] cluster or affect the secondary structure of the protein, as shown by visible circular dichroism, absorption, and attenuated total reflection Fourier transform IR spectroscopies. RFd2 presents all the EPR, visible absorption, and visible circular dichroism spectroscopic features of the [2Fe–2S] Rieske center. The cluster has a redox potential of +48 mV (25 °C and pH 7) and a pK a of 10.1 ± 0.2. These shift to +77 mV and 8.9 ± 0.3, respectively, upon reduction of the disulfide. RFd2 has a melting temperature near the boiling point of water (T m = 99 °C, pH 7.0), but it becomes destabilized upon disulfide reduction (ΔT m = −9 °C, ΔC m = −0.7 M guanidinium hydrochloride). This example illustrates how the incorporation of an additional structural element such as a disulfide bond in a highly conserved fold such as that of the Rieske domain may fine-tune the protein for a particular function or for increased stability.  相似文献   

20.
The quiescin sulfhydryl oxidase (QSOX) family of enzymes generates disulfide bonds in peptides and proteins with the reduction of oxygen to hydrogen peroxide. Determination of the potentials of the redox centers in Trypanosoma brucei QSOX provides a context for understanding catalysis by this facile oxidant of protein thiols. The CXXC motif of the thioredoxin domain is comparatively oxidizing (E0 of −144 mV), consistent with an ability to transfer disulfide bonds to a broad range of thiol substrates. In contrast, the proximal CXXC disulfide in the ERV (essential for respiration and vegetative growth) domain of TbQSOX is strongly reducing (E0 of −273 mV), representing a major apparent thermodynamic barrier to overall catalysis. Reduction of the oxidizing FAD cofactor (E0 of −153 mV) is followed by the strongly favorable reduction of molecular oxygen. The role of a mixed disulfide intermediate between thioredoxin and ERV domains was highlighted by rapid reaction studies in which the wild-type CGAC motif in the thioredoxin domain of TbQSOX was replaced by the more oxidizing CPHC or more reducing CGPC sequence. Mixed disulfide bond formation is accompanied by the generation of a charge transfer complex with the flavin cofactor. This provides thermodynamic coupling among the three redox centers of QSOX and avoids the strongly uphill mismatch between the formal potentials of the thioredoxin and ERV disulfides. This work identifies intriguing mechanistic parallels between the eukaryotic QSOX enzymes and the DsbA/B system catalyzing disulfide bond generation in the bacterial periplasm and suggests that the strategy of linked disulfide exchanges may be exploited in other catalysts of oxidative protein folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号