首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We compared the organization of satellite DNA (stDNA) and its chromosomal allocation inMus domesticus and inMus musculus. The two stDNAs show similar restriction fragment profiles after digestion (probed withM. domesticus stDNA) with some endonucleases of which restriction sequences are present in the 230–240 bp repetitive unit of theM. domesticus stDNA. In contrast, EcoRI digestion reveals thatM. musculus stDNA lacks most of the GAATTC restriction sites, particularly at the level of the half-monomer. The chromosome distribution of stDNA (revealed by anM. domesticus stDNA probe) shows different patterns in theM. domesticus andM. musculus karyotypes, with about 60% ofM. domesticus stDNA retained in theM. musculus genome. It is particularly noteworthy that the pericentromeric regions ofM. musculus chromosomes 1 and X are totally devoid ofM. domesticus stDNA sequences. In both groups, the differences in energy transfer between the stDNA-bound fluorochromes Hoechst 33258 and propidium iodide suggest that AT-rich repeated sequences have a much more clustered array in theM. domesticus stDNA, as if they are organized in tandem repeats longer than those ofM. musculus. Considering the data as a whole, it seems likely that the evolutionary paths of the two stDNAs diverged after the generation of the ancestral 230–240 bp stDNA repetitive unit through the amplification, in theM. domesticus genome, of a family repeat which included the EcoRI GAATTC restriction sequence.  相似文献   

2.
Summary Another satellite DNA repeat (type IV) in the genome of Cucumis sativus (cucumber) was found and investigated with respect to DNA sequence, methylation, and evolution. This satellite shows a repeat length of 360 bp and a GC-content of 47%. The repeats of type IV are highly conserved among each other. Evidence for CG and CNG methylation is presented. By comparison to the previously described satellites (type I/II and type III) from cucumber, it is evident that this repeat is created by an insertion of a 180 bp DNA sequence similar to type I–III into another DNA sequence (or vice versa), and subsequent amplification forming a new satellite repeat. The different satellites of the type I/II, type III, and the 180 bp insert of type IV show a sequence homology of 60%–70%, indicating that the complex satellite DNA of cucumber is originated from a common progenitor by mutation, additional insertion, and amplification events. Copies of a sequence similar to a part of type IV are present in the genome of the related species Cucumis melo (melon).  相似文献   

3.
In this paper the satellite DNA (stDNA) of the phytophagous beetle Xanthogaleruca luteola is analyzed. It is organized in a tandem repeat of 149-bp-long monomers, has an AT content of 59%, and presents inverted internal repeats. Restriction analysis of the total DNA with methylation-sensitive enzymes suggests that this repetitive DNA is not methylated. Analysis of the electrophoretic mobility of stDNA on non-denaturing polyacrylamide gels showed that this stDNA is not curved. In situ hybridization with a biotinylated probe of the stDNA revealed a pericentromeric localization of these sequences in the majority of the meiotic bivalents. We have studied the stDNA of X. luteola from two populations with very distinct geographical origins. The sequence and phylogenetic analysis of monomers from these two populations showed that the repetitive element is conserved within the species. Putative gene conversion tracts are identified when the different monomers of the same population are compared. These results could indicate the existence of processes of homogenization that would extend these mutations to all the satellite repeats.  相似文献   

4.
Two different satellite DNAs exist in the genus Cucurbita which are different with respect to repeat length (350 by and 170 bp), array size, and sequence homogenization. Whereas the 350-bp satellite DNA is prominent and very homogeneous in all species investigated except for C. maxima and C. lundelliana, the 170-bp satellite is rather evenly distributed in all species. In C. maxima and C. lundelliana the 350-bp satellite is present only in small amounts, but detectable by the sensitive PCR method. These repeats are also very homogeneous, reflecting a silent stage of satellite DNA. In contrast, the 170-bp satellite DNA is intra- and interspecifically heterogeneous. It is striking that the species with no detectable amount of 350-bp satellite contain 170-bp satellite DNA clusters with the highest degree of homogeneity. The evolution of satellite DNA repeats within cultivated and wild species in the genus Cucurbita is elucidated using the sequence data of both satellite DNAs from all species investigated. The value of satellite DNA for phylogenetic analysis between closely related species is discussed. Correspondence to: V. Hemleben  相似文献   

5.
Satellite DNAs are known for an unusual and nonuniform evolution characterized by rapid evolutionary change between species and concerted evolution leading to molecular homogeneity within species. In this paper we use satellite DNAs for phylogenetic analysis of a rapidly evolving lineage of spiders and compare the phylogeny with a hypothesis previously generated based on mitochondrial DNA and allozymes. The spiders examined include almost all species within a monophyletic clade of endemic Hawaiian Tetragnatha species, the spiny-leg clade. The phylogeny based on satellite sequences is largely congruent to those produced by mtDNA and allozymes, except that the satellite DNA yields much longer branches, with higher levels of support for any given node. Closely related species that have differentiated ecologically within an island are well resolved with satellite DNA but much less so with mtDNA. These results suggest that Tetragnatha stDNA repeats seem to be evolving gradually and cohesively during the diversification of these endemic Hawaiian spiders. The study also reveals gain–loss of satellite DNA copies during species diversification. We conclude that satellite DNA sequences may potentially be very useful for resolving relationships between rapidly evolving taxa within an adaptive radiation. In addition, satellite DNA as a nuclear marker suggests that hybridization or peripatry could play a possible role in species formation that cannot be revealed by mitochondrial markers due to its maternal inheritance.This article contains online supplementary data.Reviewing Editor: Dr. Rafael Zardoya  相似文献   

6.
The major satellites of the nine species of the subgenera Pimelia s. str. and Amblyptera characterised in this paper are composed of longer monomers (500 and 700 bp) than those described previously in 26 Pimelia s. str. taxa (357 bp, a sequence called PIM357). Sequence analysis reveals partial similarity among these satellites and with the PIM357 monomers. The discrepancy between the phylogeny obtained based on three mitochondrial and two nuclear markers and that deduced from satellite DNA (stDNA) sequences suggests that the different Pimelia satellites were already present in a common ancestor forming what has been called a 'satellite DNA library'. Thus, the satellite profiles in the living species result from a random amplification of sequences from that 'library' during diversification of the species. However, species-specific turnover in the sequences has occurred at different rates. They have included abrupt replacements, a gradual divergence and, in other cases, no apparent change in sequence composition over a considerable evolutionary time. The results also suggest a common evolutionary origin of all these Pimelia satellite sequences, involving several rearrangements. We propose that the repeat unit of about 500 bp has originated from the insertion of a DNA fragment of 141 bp into the PIM357 unit. The 705-bp repeats have originated from a 32-bp direct duplication and the insertion of a 141-bp fragment in inverted orientation relative to a basic structure of 533 bp.  相似文献   

7.
A family of repeated DNA sequences of about 1200 bp in length and bordered by well-conserved, 18 bp inverted repeats (VfB family) was found in the nuclear genome of Vicia faba. The structure, chromosomal organization, redundancy modulation and evolution of these sequences were investigated. They are enriched in A+T base pairs (about 40% G+C) and lack any obvious internally repeated motif. A 64%–73% nucleotide sequence identity was found when pairwise comparisons between VfB sequences were carried out (average 69%). Direct repeats were not found to flank the inverted repeats that border these DNA sequences. The results obtained by hybridizing VfB repeats to Southern blots of V. faba genomic DNA digested with EcoRI indicated that these DNA elements are interspersed in the genome. The appearance of bands in these Southern blots and comparison of the structure of the sequences that flank different VfB elements showed that these repeats might be part of other, longer repeated DNA sequences. A high degree of dispersion throughout the genome was confirmed by cytological hybridization, which showed VfB sequences to be scattered along the length of all chromosomes and to be absent or rare only at heterochromatic chromosomal regions. These sequences contribute to intraspecific alterations of genomic size. Indeed, dot-blot hybridizations proved that their redundancy, which is positively correlated with the overall amount of nuclear DNA in each accession, varies between V. faba land races (27×103–230×103 copies per 1C DNA). Southern blot hybridization of VfB repeats to restriction endonuclease-digested genomic DNAs of V. faba, V. narbonensis, V. sativa, Phaseolus coccineus, Populus deltoides, and Triticum durum revealed nucleotide sequence homology of these DNA elements, whatever the stringency conditions, only to the DNAs of Vicia species, and to a reduced extent to the DNAs of V. narbonensis and V. sativa compared with that of V. faba. It is concluded that VfB repeats might be descended from mobile DNA elements and contribute to change genomic size and organization during evolution. Received: 10 September 1998; in revised form: 12 May 1999 / Accepted: 19 May 1999  相似文献   

8.
Three satellite DNA families were identified in three species of burying beetles, Nicrophorus orbicollis, N. marginatus, and N. americanus. Southern hybridization and nucleotide sequence analysis of individual randomly cloned repeats shows that these satellite DNA families are highly abundant in the genome, are composed of unique repeats, and are species-specific. The repeats do not have identifiable core elements or substructures that are similar in all three families, and most interspecific sequence similarity is confined to homopolymeric runs of A and T. Satellite DNA from N. marginatus and N. americanus show single-base-pair indels among repeats, but single-nucleotide substitutions characterize most of the repeat variability. Although the repeat units are of similar lengths (342, 350, and 354 bp) and A + T composition (65%, 71%, and 71%, respectively), the average nucleotide divergence among sequenced repeats is very low (0.18%, 1.22%, and 0.71%, respectively). Transition/transversion ratios from the consensus sequence are 0.20, 0.69, and 0.70, respectively.   相似文献   

9.
Knowledge about the composition and structure of centromeres is critical for understanding how centromeres perform their functional roles. Here, we report the sequences of one centromere-associated bacterial artificial chromosome clone from a Coix lacryma-jobi library. Two Ty3/gypsy-class retrotransposons, centromeric retrotransposon of C. lacryma-jobi (CRC) and peri-centromeric retrotransposon of C. lacryma-jobi, and a (peri)centromere-specific tandem repeat with a unit length of 153 bp were identified. The CRC is highly homologous to centromere-specific retrotransposons reported in grass species. An 80-bp DNA region in the 153-bp satellite repeat was found to be conserved to centromeric satellite repeats from maize, rice, and pearl millet. Fluorescence in situ hybridization showed that the three repetitive sequences were located in (peri-)centromeric regions of both C. lacryma-jobi and Coix aquatica. However, the 153-bp satellite repeat was only detected on 20 out of the 30 chromosomes in C. aquatica. Immunostaining with an antibody against rice CENH3 indicates that the 153-bp satellite repeat and CRC might be both the major components for functional centromeres, but not all the 153-bp satellite repeats or CRC sequences are associated with CENH3. The evolution of centromeric repeats of C. lacryma-jobi during the polyploidization was discussed.  相似文献   

10.
The genomic DNA of the grasshopper (Oxya hyla intricata) was subjected to electrophoresis after digestion with HaeIII, and the result showed two bands of highly repetitive DNA, approximately 200 and 400 bp in length. The 200-bp HaeIII-digested fragment was cloned and characterized by sequencing and fluorescence in situ hybridization (FISH). The results showed the presence of two distinct satellite DNA (stDNA) families: one consisting of a 169-bp repeated element having an A+T content of 60.9% and the other consisting of a 204-bp repeated element having an A+T content of 53.9%. No significant homology between the two stDNA families was observed. FISH showed that the chromosomal locations of these families are different from each other. The 169-bp element was located in the C-band-positive regions of the short arms of most of the chromosomes, whereas the 204-bp element was located in the centromeric regions of three chromosome pairs. These results imply that the origins of these two DNA families are different. The results of zoo-blot hybridization to the genomic DNA from four Oxya species, O. hyla intricata, O. japonica japonica, O. chinensis formosana, and O. yezoensis, suggest that the two stDNA families found in the present study are species-specific for O. hyla intricata.  相似文献   

11.
The subgeneric subdivision of the genus Formica is still open. In this article, we make a phylogenetic study on several species of the genus Formica and of its closely related genera, Polyergus and Proformica, using sequences of nuclear satellite DNA (stDNA) and the mitochondrial rrnL as molecular markers. Our goal was to shed light on their phylogenetic relationships and particularly on the systematic position of F. subrufa. This species was first included in the subgenus Serviformica, but afterwards a new subgenus (Iberoformica) was established to include only this species. The results show that a stDNA family previously reported in Formica species, with a repetitive unit 129 bp long, is also found in Polyergus rufescens and P. samurai but not in Proformica longiseta. This is the first case of presence of a stDNA family in two different ant genera. In F. subrufa, this stDNA is very divergent relative to those isolated in the remaining Formica species and in the genus Polyergus. The Bayesian analysis of mitochondrial rrnL sequences shows three highly supported groups: F. subrufa, the remaining Formica species studied, and the genus Polyergus, suggesting that parasites (Polyergus species) and hosts (Formica species) are closely related but not sibling species. The combined analysis of nuclear stDNA sequences and mitochondrial rrnL showed their phylogenetic congruence despite their distinct evolutionary dynamics. This analysis did not discriminate between the remaining Formica species that were not grouped according to the subgeneric classification. According to these results, it can no longer be assumed that F. subrufa belongs to the subgenus Serviformica or of the fusca species group. This differentiation was also supported by previous studies based on the morphological characters, molecular and cytogenetic data. Therefore, taking into consideration these arguments and others explained in detail in this article, we propose that the taxon Iberoformica, formerly synonymized subgenus, be raised to a genus status. This genus would be monotypic and only composed, up to the moment, by Iberoformica subrufa (= F. subrufa Roger, 1859 ).  相似文献   

12.
Two AT-rich satellite DNAs are present in the genome of Glyptotendipes barbipes. The two satellites have densities of 1.680 g/cm3 (=21% GC) and of 1.673 g/cm3 (=13% GC) in neutral CsCl-density gradients. The main band DNA has a density of 1.691 g/cm3 (=32% GC). This value is in agreement with the 33% GC-content of G. barbipes DNA calculated from thermal denaturation (TM=83° C). — In brain DNA as well as in salivary gland DNA the two satellite sequences together comprise 12–15% of the total G. barbipes DNA. Comparisons of the density profiles of DNA extracted from polytene and non-polytene larval tissue gave no hints for underreplication of the satellite DNAs during polytenization. — The two satellite DNAs have been isolated from total DNA by Hoechst 33258-CsCl density centrifugation and then localized in the polytene salivary gland chromosomes by in situ hybridization. Both satellite sequences hybridize to all heterochromatic centromere bands of all four chromosomes of G. barbipes. Satellite I (1.673 g/cm3) hybridizes mainly with the middle of the heterochromatin, satellite II (1.680 g/cm3) hybridizes with two bands at the margin of the heterochromatin. In situ hybridization with polytene chromosomes of Chironomus thummi revealed the presence of G. barbipes satellite sequences also in the Ch. thummi genome at various locations, mainly the centromere regions.  相似文献   

13.
The primary structure of the Citrus ichangensis satellite DNA repeating unit has been estimated. The repeat is 181 bp long and contains four pentanucleotides of adenine residues. Oligomer forms of the stDNA repeating unit were detected by a partial hydrolysis of the C ichangensis stDNA by BspI restriction endonuclease. Experiments on comparative mobility of oligomers in agarose and polyacrylamide gels evidenced a certain retardation of those in polyacrylamide gel indicating to a slight bend in the repeating unit. The BEN computer program [9] was employed to calculate the spatial positions of monomer and oligomer axes of the satellite DNA repeating unit of Citrus ichangensis, mouse and African green monkey, and to plot their two-dimensional projections. The bends in the monomer for higher oligomer form proved to result in a hypothetical solenoid-like structure, termed coiled double helix (CDH).  相似文献   

14.
A family of repetitive DNA elements of approximately 350 bp—Sat350—that are members of Toxoplasma gondii satellite DNA was further analyzed. Sequence analysis identified at least three distinct repeat types within this family, called types A, B, and C. B repeats were divided into the subtypes B1 and B2. A search for internal repetitions within this family permitted the identification of conserved regions and the design of PCR primers that amplify almost all these repetitive elements. These primers amplified the expected 350-bp repeats and a novel 680-bp repetitive element (Sat680) related to this family. Two additional tandemly repeated high-order structures corresponding to this satellite DNA family were found by searching the Toxoplasma genome database with these sequences. These studies were confirmed by sequence analysis and identified: (1) an arrangement of AB1CB2 350-bp repeats and (2) an arrangement of two 350-bp-like repeats, resulting in a 680-bp monomer. Sequence comparison and phylogenetic analysis indicated that both high-order structures may have originated from the same ancestral 350-bp repeat. PCR amplification, sequence analysis and Southern blot showed that similar high-order structures were also found in the Toxoplasma-sister taxon Neospora caninum. The Toxoplasma genome database ( ) permitted the assembly of a contig harboring Sat350 elements at one end and a long nonrepetitive DNA sequence flanking this satellite DNA. The region bordering the Sat350 repeats contained two differentially expressed sequence-related regions and interstitial telomeric sequences.  相似文献   

15.
A species-specific satellite DNA (Lb-MspISAT) was isolated from the North African rodent Lemniscomys barbarus. This DNA is highly homogeneous in the sequence of different repeats and shows no internal repetitions. Filter and in situ hybridizations demonstrated that it is tandemly repeated at the centromeres of all chromosomes of the complement. A 19-bp CENP-B-like motif was found in Lb-MspISAT which conserves 12 of the 17-bp of the human CENP-B box, but only 5 of the 9-bp of the canonical sequence that is necessary to bind the CENP-B protein. Compared with the human CENP-B box, nucleotide substitutions and insertions increase the palindromic structure of this motif. The possibilities that it may be involved in centromeric function or in homogenization of the Lb-MspISAT sequence are discussed.  相似文献   

16.
Due to a high evolutionary turnover many satellite DNAs are restricted to a group of closely related species. Here we demonstrate that the satellite DNA family PSUB, abundant in the beetle Palorus subdepressus, is distributed in a low number of copies among diverse taxa of Coleoptera (Insecta), some of them separated for an evolutionary period of up to 60 Myr. Comparison of PSUB cloned from the species Tribolium brevicornis with the PSUB family previously characterized in Palorus subdepressus revealed high sequence conservation and absence of fixed species-specific mutations. The most polymorphic sites are those with ancestral mutations shared among clones of both species. Since the ancestral mutations contribute significantly to overall diversity, it could be proposed that a similar mutational profile already existed in an ancestral species. The pattern of variability along the satellite monomer is characterized by the presence of conserved and variable regions. The nonrandom pattern of variability as well as the absence of sequence divergence is also discerned for PRAT satellite DNA, cloned previously from two Palorus species and a distantly related Pimelia elevata. Since PRAT and PSUB are present in parallel in diverse taxa of Coleoptera, we propose that their long evolutionary preservation suggests a possible functional significance. This indication is additionally supported not only by the high evolutionary conservation of the sequences, but also by the presence of significantly conserved and variable regions along the monomers. [Reviewing Editor: Dr. Jerzy Jurka]  相似文献   

17.
Kawabe A  Nasuda S 《Genetica》2006,126(3):335-342
The chromosomal localizations of repetitive DNA clusters (ribosomal DNA and centromere satellites) were analyzed by fluorescent in situ hybridization in five strains of Arabidopsis halleri ssp. gemmifera. All five A. gemmifera strains have three chromosome pairs with 45S (5.8S-16S-26S) rDNA loci, and one pair with both 5S and 45S rDNA loci. These localizations are different from that of A. thaliana. Very unusually, there are three families of centromeric satellite DNAs (pAa, pAge1, and pAge2), and they showed polymorphism among the five strains studied. Overall, we found four different centromere satellite compositions. A plant from Fumuro was heterozygous for the chromosome specificities of centromere satellite families, possibly due to a reciprocal translocation involving centromere regions. Changes of centromeric satellite repeats appear to be rapid and frequent events in the history of A. gemmifera, and seem to occur by exchanging clusters as units.  相似文献   

18.
19.
Public sequence databases provide a rapid, simple and cost-effective source of microsatellite markers. We analyzed 1,532 bamboo (Phyllostachys pubescens) sequences available in public domain DNA databases, and found 3,241 simple sequence repeat (SSR) loci comprising repeats of two or more nucleotides in 920 genomic survey sequences (GSSs) and 68 cDNA sequences. This corresponded to one SSR per 336 bp of GSS DNA and one SSR per 363 bp of cDNA. The SSRs consisted of 76.6 and 74.5% dinucleotide repeats, 20.0 and 22.3% trinucleotide repeats, and 3.4 and 3.2% higher-number repeats in the GSS DNA and cDNA sequences, respectively. The repeat motif AG/CT (or GA/TC) was the most abundant. Nineteen microsatellite markers were developed from Class I and Class II SSRs, showing that the limited polymorphism in Ph. pubescens cultivars and provenances could be attributed to clonal propagation of the bamboo plant. The transferability of the microsatellites reached 75.3%, and the polymorphism of loci successfully transferred was 66.7% for six additional Phyllostachys species. Microsatellite PBM014 transferred successfully to all six species, showed rich polymorphism, and could serve as species-specific alleles for the identification of Phyllostachys interspecies hybrids.  相似文献   

20.
William S. Modi 《Chromosoma》1993,102(7):484-490
A novel satellite DNA family (called MSAT-2570) was isolated and characterized from the rodent Microtus chrotorrhinus. With a length of 2,570 bp the repeat unit is among the largest yet reported in mammals and comprises a series of short direct and inverted repeats. These repeat motifs may prevent nucleosome formation or represent an endless source of genetic variation. Restriction enzyme digestion using the two pairs of isoschizomers HpaII/MspI and MboI/Sau3AI demonstrated tissue specific differences in satellite DNA methylation that may reflect variable chromatin conformation or differences in patterns of gene expression. The sex chromosomes of M. chrotorrhinus are unusually large in size among mammals, comprising 15%–20% of the karyotype and containing large blocks of heterochromatin. In situ hybridization of the satellite DNa revealed chromosomal localization predominantly to sex chromosome heterochromatin. A survey of related rodents including three congeneric species also with giant sized sex chromosomes demonstrated that MSAT-2570 is present only in the genome of M. chrotorrhinus. However, another previously reported satellite DNA also isolated from M. chrotorrhinus has been shown to reside on sex chromosome heterochromatin in one of the other three species, indicating that these giant blocks of heterochromatin are complex in structure and comprise multiple, unrelatined satellite DNA families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号