首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flocs consisting of Anabaena and Zoogloea spp. were used as a model system for the study of planktonic phototroph-heterotroph interactions. In CO2-limited continuous culture (3.2 μmol of NaHCO3 liter−1 h−1, 1.5 μmol of glucose liter−1 h−1, pH 8.5, D = 0.026 h−1), the biomass of the phototroph increased 8.6-fold due to association. However, direct CO2 exchange accounted for only a 3.8-fold increase. When the glucose supply rate was increased to 7.5 μmol liter−1 h−1, there was a 26-fold increase in biomass. When CO2 was supplied in excess, there was no difference due to association. In batch culture, using the same medium, the specific growth rate was 0.029 h−1 for the phototroph alone and 0.047 h−1 for the phototroph in association with the heterotroph. The stimulatory effect of the heterotroph was found only under CO2-limiting conditions and was directly related to the concentration of organic matter supplied in the medium. Both the biomass and the growth rate of the Anabaena sp. were increased by association with the Zoogloea sp. Thus, dissolved organic matter may substitute for CO2 to maximize both growth rate and biomass production by phototrophs when heterotrophic bacteria are present.  相似文献   

2.
The effects of CO2-limited photosynthesis on 15NO3 uptake and reduction by maize (Zea mays, DeKalb XL-45) seedlings were examined in relation to concurrent effects of CO2 stress on carbohydrate levels and in vitro nitrate reductase activities. During a 10-hour period in CO2-depleted air (30 microliters of CO2/ per liter), cumulative 15NO3 uptake and reduction were restricted 22 and 82%, respectively, relative to control seedlings exposed to ambient air containing 450 microliters of CO2 per liter. The comparable values for roots of decapitated maize seedlings, the shoots of which had previously been subjected to CO2 stress, were 30 and 42%. The results demonstrate that reduction of entering nitrate by roots as well as shoots was regulated by concurrent photosynthesis. Although in vitro nitrate reductase activity of both tissues declined by 60% during a 10-hour period of CO2 stress, the remaining activity was greatly in excess of that required to catalyze the measured rate of 15NO3 reduction. Root respiration and soluble carbohydrate levels in root tissue were also decreased by CO2 stress. Collectively, the results indicate that nitrate uptake and reduction were regulated by the supply of energy and carbon skeletons required to support these processes, rather than by the potential enzymatic capacity to catalyze nitrate reduction, as measured by in vitro nitrate reductase activity.  相似文献   

3.
Light-induced acidification by the cyanobacterium Anabaena variabilis is biphasic (a fast phase I and slow phase II) and shown to be sodium-dependent with an optimum concentration of 40 to 60 millimolar Na+. Cells grown under low CO2 concentrations at pH 9 (i.e. mainly HCO3 present in the medium) exhibited the slow phase II of proton efflux only, while cells grown under low CO2 concentrations at pH 6.3 (i.e. CO2 and HCO3 present) exhibited both phases. Light-induced proton release of phase I was dependent on inorganic carbon available in the bathing medium with an apparent Km for CO2 of 20 to 70 micromolar. As was concluded from the CO2 dependence of acidification measured at different pH of the bathing medium, bicarbonate inhibited phase-I acidification noncompetetively. Acidification was inhibited by acetazolamide, an inhibitor of carbonic anhydrase. Apparently, acidification of phase I is due to a light-dependent uptake of CO2 being converted to HCO3 by a carbonic anhydrase-like function of the HCO3-transport system (M Volokita, D Zenvirth, A Kaplan, L Reinhold 1984 Plant Physiol 76: 599-602) before or during entering the cell, thus releasing one proton per CO2 converted to HCO3.  相似文献   

4.
The species of inorganic carbon (CO2 or HCO3) taken up a source of substrate for photosynthetic fixation by isolated Asparagus sprengeri mesophyll cells is investigated. Discrimination between CO2 or HCO3 transport, during steady state photosynthesis, is achieved by monitoring the changes (by 14C fixation) which occur in the specific activity of the intracellular pool of inorganic carbon when the inorganic carbon present in the suspending medium is in a state of isotopic disequilibrium. Quantitative comparisons between theoretical (CO2 or HCO3 transport) and experimental time-courses of 14C incorporation, over the pH range of 5.2 to 7.5, indicate that the specific activity of extracellular CO2, rather than HCO3, is the appropriate predictor of the intracellular specific activity. It is concluded, therefore, that CO2 is the major source of exogenous inorganic carbon taken up by Asparagus cells. However, at high pH (8.5), a component of net DIC uptake may be attributable to HCO3 transport, as the incorporation of 14C during isotopic disequilibrium exceeds the maximum possible incorporation predicted on the basis of CO2 uptake alone. The contribution of HCO3 to net inorganic carbon uptake (pH 8.5) is variable, ranging from 5 to 16%, but is independent of the extracellular HCO3 concentration. The evidence for direct HCO3 transport is subject to alternative explanations and must, therefore, be regarded as equivocal. Nonlinear regression analysis of the rate of 14C incorporation as a function of time indicates the presence of a small extracellular resistance to the diffusion of CO2, which is partially alleviated by a high extracellular concentration of HCO3.  相似文献   

5.
Short-term ion uptake into roots of Limnobium stoloniferum was followed extracellularly with ion selective macroelectrodes. Cytosolic or vacuolar pH, together with the electrical membrane potential, was recorded with microelectrodes both located in the same young root hair. At the onset of chloride, phosphate, and nitrate uptake the membrane potential transiently decreased by 50 to 100 millivolts. During Cl and H2PO4 uptake cytosolic pH decreased by 0.2 to 0.3 pH units. Nitrate induced cytosolic alkalinization by 0.19 pH units, indicating rapid reduction. The extracellular medium alkalinized when anion uptake exceeded K+ uptake. During fusicoccin-dependent plasmalemma hyperpolarization, extracellular and cytosolic pH remained rather constant. Upon K+ absorption, FC intensified extracellular acidification and intracellular alkalinization (from 0.31 to 0.4 pH units). In the presence of Cl FC induced intracellular acidification. Since H+ fluxes per se do not change the pH, recorded pH changes only result from fluxes of the stronger ions. The extra- and intracellular pH changes, together with membrane depolarization, exclude mechanisms as K+/A symport or HCO3/A antiport for anion uptake. Though not suitable to reveal the actual H+/A stoichiometry, the results are consistent with an H+/A cotransport mechanism.  相似文献   

6.
The product of pxcA (formerly known as cotA) is involved in light-induced Na+-dependent proton extrusion. In the presence of 2,5-dimethyl-p-benzoquinone, net proton extrusion by Synechocystis sp. strain PCC6803 ceased after 1 min of illumination and a postillumination influx of protons was observed, suggesting that the PxcA-dependent, light-dependent proton extrusion equilibrates with a light-independent influx of protons. A photosystem I (PS I) deletion mutant extruded a large number of protons in the light. Thus, PS II-dependent electron transfer and proton translocation are major factors in light-driven proton extrusion, presumably mediated by ATP synthesis. Inhibition of CO2 fixation by glyceraldehyde in a cytochrome c oxidase (COX) deletion mutant strongly inhibited the proton extrusion. Leakage of PS II-generated electrons to oxygen via COX appears to be required for proton extrusion when CO2 fixation is inhibited. At pH 8.0, NO3 uptake activity was very low in the pxcA mutant at low [Na+] (~100 μM). At pH 6.5, the pxcA strain did not take up CO2 or NO3 at low [Na+] and showed very low CO2 uptake activity even at 15 mM Na+. A possible role of PxcA-dependent proton exchange in charge and pH homeostasis during uptake of CO2, HCO3, and NO3 is discussed.  相似文献   

7.
The effect of pH, O2 concentration, and temperature on the CO2 compensation point (Г[CO2]) of isolated Asparagus sprengeri Regel mesophyll cells has been determined in a closed, aqueous environment by a sensitive gas-chromatographic technique. Measured values range between 10 and 100 microliters per liter CO2 depending upon experimental conditions. The Г(CO2) increases with increasing temperature. The rate of increase is dependent upon the O2 concentration and is more rapid at high (250-300 micromolar), than at low (30-60 micromolar), O2 concentrations. The differential effect of temperature on Г(CO2) is more pronounced at pH 6.2 than at pH 8.0, but this pH-dependence is not attributable to a direct, differential effect of pH on the relative rates of photosynthesis and photorespiration, as the O2-sensitive component of Г(CO2) remains constant over this range. The Г(CO2) of Asparagus cells at 25°C decreases by 50 microliters per liter when the pH is raised from 6.2 to 8.0, regardless of the prevailing O2 concentration. It is suggested that the pH-dependence of Г(CO2) is related to the ability of the cell to take up CO2 from the aqueous environment. The correlation between high HCO3 concentrations and low Г(CO2) at alkaline pH indicates that extracellular HCO3 facilitates the uptake of CO2, possibly by increasing the flux of inorganic carbon from the bulk medium to the cell surface. The strong O2− and temperature-dependence of Г(CO2) indicates that isolated Asparagus mesophyll cells lack an efficient means for concentrating intracellular CO2 to a level sufficient to reduce or suppress photorespiration.  相似文献   

8.
An O2 electrode system with a specially designed chamber for `whorl' cell complexes of Chara corallina was used to study the combined effects of inorganic carbon and O2 concentrations on photosynthetic O2 evolution. At pH = 5.5 and 20% O2, cells grown in HCO3 medium (low CO2, pH ≥ 9.0) exhibited a higher affinity for external CO2 (K½(CO2) = 40 ± 6 micromolar) than the cells grown for at least 24 hours in high-CO2 medium (pH = 6.5), (K½(CO2) = 94 ± 16 micromolar). With O2 ≤ 2% in contrast, both types of cells showed a high apparent affinity (K½(CO2) = 50 − 52 micromolar). A Warburg effect was detectable only in the low affinity cells previously cultivated in high-CO2 medium (pH = 6.5). The high-pH, HCO3-grown cells, when exposed to low pH (5.5) conditions, exhibited a response indicating an ability to fix CO2 which exceeded the CO2 externally supplied, and the reverse situation has been observed in high-CO2-grown cells. At pH 8.2, the apparent photosynthetic affinity for external HCO3 (K½[HCO3]) was 0.6 ± 0.2 millimolar, at 20% O2. But under low O2 concentrations (≤2%), surprisingly, an inhibition of net O2 evolution was elicited, which was maximal at low HCO3 concentrations. These results indicate that: (a) photorespiration occurs in this alga and can be revealed by cultivation in high-CO2 medium, (b) Chara cells are able to accumulate CO2 internally by means of a process apparently independent of the plasmalemma HCO3 transport system, (c) molecular oxygen appears to be required for photosynthetic utilization of exogenous HCO3: pseudocyclic electron flow, sustained by O2 photoreduction, may produce the additional ATP needed for the HCO3 transport.  相似文献   

9.
Early effects of salinity on nitrate assimilation in barley seedlings   总被引:13,自引:3,他引:10       下载免费PDF全文
The effect of NaCl and Na2SO4 salinity on NO3 assimilation in young barley (Hordeum vulgare L. var Numar) seedlings was studied. The induction of the NO3 transporter was affected very little; the major effect of the salts was on its activity. Both Cl and SO42− salts severely inhibited uptake of NO3. When compared on the basis of osmolality of the uptake solutions, Cl salts were more inhibitory (15-30%) than SO42− salts. At equal concentrations, SO42− salts inhibited NO3 uptake 30 to 40% more than did Cl salts. The absolute concentrations of each ion seemed more important as inhibitors of NO3 uptake than did the osmolality of the uptake solutions. Both K+ and Na+ salts inhibited NO3 uptake similarly; hence, the process seemed more sensitive to anionic salinity than to cationic salinity.

Unlike NO3 uptake, NO3 reduction was not affected by salinity in short-term studies (12 hours). The rate of reduction of endogenous NO3 in leaves of seedlings grown on NaCl for 8 days decreased only 25%. Nitrate reductase activity in the salt-treated leaves also decreased 20% but its activity, determined either in vitro or by the `anaerobic' in vivo assay, was always greater than the actual in situ rate of NO3 reduction. When salts were added to the assay medium, the in vitro enzymic activity was severely inhibited; whereas the anaerobic in vivo nitrate reductase activity was affected only slightly. These results indicate that in situ nitrate reductase activity is protected from salt injury. The susceptibility to injury of the NO3 transporter, rather than that of the NO3 reduction system, may be a critical factor to plant survival during salt stress.

  相似文献   

10.
Scenedesmus cells grown on high CO2, when adapted to air levels of CO2 for 4 to 6 hours in the light, formed two concentrating processes for dissolved inorganic carbon: one for utilizing CO2 from medium of pH 5 to 8 and one for bicarbonate accumulation from medium of pH 7 to 11. Similar results were obtained with assays by photosynthetic O2 evolution or by accumulation of dissolved inorganic carbon inside the cells. The CO2 pump with K0.5 for O2 evolution of less than 5 micromolar CO2 was similar to that previously studied with other green algae such as Chlamydomonas and was accompanied by plasmalemma carbonic anhydrase formation. The HCO3 concentrating process between pH 8 to 10 lowered the K0.5 (DIC) from 7300 micromolar HCO3 in high CO2 grown Scenedesmus to 10 micromolar in air-adapted cells. The HCO3 pump was inhibited by vanadate (Ki of 150 micromolar), as if it involved an ATPase linked HCO3 transporter. The CO2 pump was formed on low CO2 by high-CO2 grown cells in growth medium within 4 to 6 hours in the light. The alkaline HCO3 pump was partially activated on low CO2 within 2 hours in the light or after 8 hours in the dark. Full activation of the HCO3 pump at pH 9 had requirements similar to the activation of the CO2 pump. Air-grown or air-adapted cells at pH 7.2 or 9 accumulated in one minute 1 to 2 millimolar inorganic carbon in the light or 0.44 millimolar in the dark from 150 micromolar in the media, whereas CO2-grown cells did not accumulate inorganic carbon. A general scheme for concentrating dissolved inorganic carbon by unicellular green algae utilizes a vanadate-sensitive transporter at the chloroplast envelope for the CO2 pump and in some algae an additional vanadate-sensitive plasmalemma HCO3 transporter for a HCO3 pump.  相似文献   

11.
The effect of nitrogen form (NH4-N, NH4-N + NO3, NO3) on nitrate reductase activity in roots and shoots of maize (Zea mays L. cv INRA 508) seedlings was studied. Nitrate reductase activity in leaves was consistent with the well known fact that NO3 increases, and NH4+ and amide-N decrease, nitrate reductase activity. Nitrate reductase activity in the roots, however, could not be explained by the root content of NO3, NH4-N, and amide-N. In roots, nitrate reductase activity in vitro was correlated with the rate of nitrate reduction in vivo. Inasmuch as nitrate reduction results in the production of OH and stimulates the synthesis of organic anions, it was postulated that nitrate reductase activity of roots is stimulated by the released OH or by the synthesized organic anions rather than by nitrate itself. Addition of HCO3 to nutrient solution of maize seedlings resulted in a significant increase of the nitrate reductase activity in the roots. As HCO3, like OH, increases pH and promotes the synthesis of organic anions, this provides circumstantial evidence that alkaline conditions and/or organic anions have a more direct impact on nitrate reductase activity than do NO3, NH4-N, and amide-N.  相似文献   

12.
Ogawa T  Kaplan A 《Plant physiology》1987,83(4):888-891
The pH of the medium during CO2 uptake into the intracellular inorganic carbon (Ci) pool of a high CO2-requiring mutant (E1) and wild type of Anacystis nidulans R2 was measured. Experiments were performed under conditions where photosynthetic CO2 fixation is inhibited. There was an acidification of the medium during CO2 uptake in the light and an alkalization during CO2 efflux after darkening. A one to one stoichiometry existed between the amounts of H+ appearing in the medium and CO2 taken up into the intracellular Ci pool, regardless of the carbon species transported. The results indicate that (a) CO2 is taken up simultaneously with an efflux of equimolar H+, probably produced as a result of CO2 hydration during transport and (b) HCO3 produced by hydration of CO2 in the medium was transported into the cells without accompanying net flux of H+ or OH. The influx and efflux of Ci during Ci transport produced nonequilibrium between CO2 and HCO3 in the medium, with the concentration of HCO3 being higher than that expected under equilibrium conditions. The nonequilibrium was present even under the conditions where the influx of Ci is compensated by its efflux. The direction of this nonequilibrium suggested that efflux of HCO3 occurs during uptake of Ci.  相似文献   

13.
The influence of NO3 uptake and reduction on ionic balance in barley seedlings (Hordeum vulgare, cv. Compana) was studied. KNO3 and KCl treatment solutions were used for comparison of cation and anion uptake. The rate of Cl uptake was more rapid than the rate of NO3 uptake during the first 2 to 4 hours of treatment. There was an acceleration in rate of NO3 uptake after 4 hours resulting in a sustained rate of NO3 uptake which exceeded the rate of Cl uptake. The initial (2 to 4 hours) rate of K+ uptake appeared to be independent of the rate of anion uptake. After 4 hours the rate of K+ uptake was greater with the KNO3 treatment than with the KCl treatment, and the solution pH, cell sap pH, and organic acid levels with KNO3 increased, relative to those with the KCl treatment. When absorption experiments were conducted in darkness, K+ uptake from KNO3 did not exceed K+ uptake from KCl. We suggest that the greater uptake and accumulation of K+ in NO3-treated plants resulted from (a) a more rapid, sustained uptake and transport of NO3 providing a mobile counteranion for K+ transport, and (b) the synthesis of organic acids in response to NO3 reduction increasing the capacity for K+ accumulation by providing a source of nondiffusible organic anions.  相似文献   

14.
Anaerobic or microaerophilic chemolithoautotrophic bacteria have been considered to be responsible for CO2 dark fixation in different pelagic redoxclines worldwide, but their involvement in redox processes is still not fully resolved. We investigated the impact of 17 different electron donor/acceptor combinations in water of pelagic redoxclines from the central Baltic Sea on the stimulation of bacterial CO2 dark fixation as well as on the development of chemolithoautotrophic populations. In situ, the highest CO2 dark fixation rates, ranging from 0.7 to 1.4 μmol liter−1 day−1, were measured directly below the redoxcline. In enrichment experiments, chemolithoautotrophic CO2 dark fixation was maximally stimulated by the addition of thiosulfate, reaching values of up to 9.7 μmol liter−1 CO2 day−1. Chemolithoautotrophic nitrate reduction proved to be an important process, with rates of up to 33.5 μmol liter−1 NO3 day−1. Reduction of Fe(III) or Mn(IV) was not detected; nevertheless, the presence of these potential electron acceptors influenced the development of stimulated microbial assemblages. Potential chemolithoautotrophic bacteria in the enrichment experiments were displayed on 16S ribosomal complementary DNA single-strand-conformation polymorphism fingerprints and identified by sequencing of excised bands. Sequences were closely related to chemolithoautotrophic Thiomicrospira psychrophila and Maorithyas hadalis gill symbiont (both Gammaproteobacteria) and to an uncultured nitrate-reducing Helicobacteraceae bacterium (Epsilonproteobacteria). Our data indicate that this Helicobacteraceae bacterium could be of general importance or even a key organism for autotrophic nitrate reduction in pelagic redoxclines.  相似文献   

15.
16.
In soybean (Glycine max L. Merr. cv Kingsoy), NO3 assimilation in leaves resulted in production and transport of malate to roots (B Touraine, N Grignon, C Grignon [1988] Plant Physiol 88: 605-612). This paper examines the significance of this phenomenon for the control of NO3 uptake by roots. The net NO3 uptake rate by roots of soybean plants was stimulated by the addition of K-malate to the external solution. It was decreased when phloem translocation was interrupted by hypocotyl girdling, and partially restored by malate addition to the medium, whereas glucose was ineffective. Introduction of K-malate into the transpiration stream using a split root system resulted in an enrichment of the phloem sap translocated back to the roots. This treatment resulted in an increase in both NO3 uptake and C excretion rates by roots. These results suggest that NO3 uptake by roots is dependent on the availability of shoot-borne, phloem-translocated malate. Shoot-to-root transport of malate stimulated NO3 uptake, and excretion of HCO3 ions was probably released by malate decarboxylation. NO3 uptake rate increased when the supply of NO3 to the shoot was increased, and decreased when the activity of nitrate reductase in the shoot was inhibited by WO42−. We conclude that in situ, NO3 reduction rate in the shoot may control NO3 uptake rate in the roots via the translocation rate of malate in the phloem.  相似文献   

17.
Photosynthesis, stroma-pH, and internal K+ and Cl concentrations of isolated intact chloroplasts from Spinacia oleracea, as well as ion (K+, H+, Cl) movements across the envelope, were measured over a wide range of external KCl concentrations (1-100 millimolar).

Isolated intact chloroplasts are a Donnan system which accumulates cations (K+ or added Tetraphenylphosphonium+) and excludes anions (Cl) at low ionic strength of the medium. The internally negative dark potential becomes still more negative in the light as estimated by Tetraphenylphosphonium+ distribution. At 100 millimolar external KCl, potentials both in the light and in the dark and also the light-induced uptake of K+ or Na+ and the release of protons all become very small. Light-induced K+ uptake is not abolished by valinomycin suggesting that the K+ uptake is not primarily active. Intact chloroplasts contain higher K+ concentrations (112-157 millimolar) than chloroplasts isolated in standard media. Photosynthetic activity of intact chloroplasts is higher at 100 millimolar external KCl than at 5 to 25 millimolar. The pH optimum of CO2 fixation at high K+ concentrations is broadened towards low pH values. This can be correlated with the observation that high external KCl concentrations at a constant pH of the suspending medium produce an increase of stroma-pH both in the light and in the dark. These results demonstrate a requirement of high external concentrations of monovalent cations for CO2 fixation in intact chloroplasts.

  相似文献   

18.
Root respiration associated with nitrate assimilation by cowpea   总被引:2,自引:1,他引:1  
Nitrate uptake by roots of cowpea (Vigna unguiculata) was measured using 15NO3, and the energy cost to the root was estimated by respirometry. Roots of 8-day-old cowpea seedlings respired 0.6 to 0.8 milligram CO2 per plant per hour for growth and maintenance. Adding 10 millimolar NO3 to the root medium increased respiration by 20 to 30% during the following 6 hours. This increase was not observed if the shoots were in the dark. Removal of NO3 from the root medium slowed the increase of root respiration. The ratios of additional respiration to the total nitrogen uptake and reduced nitrogen content in roots were 0.4 gram C per gram N and 2.3 grams C per gram N, respectively. The latter value is close to theoretical estimates of nitrate assimilation, and is similar to estimates of 1 to 4 grams C per gram N for the respiratory cost of symbiotic N2 fixation.  相似文献   

19.
Suspension-cultured cells of Rosa damascena that have been irradiated with ultraviolet light (254 nanometers, 2.1 × 104 joules per square meter) rapidly lose K+ and HCO3 ions to the medium. If the HCO3 is derived from respiratory CO2 inside the cell, then loss of HCO3 should be accompanied by an acidification of the cytoplasm. Estimates of the pH of control and ultraviolet-irradiated cells by 31P-nuclear magnetic resonance spectroscopy indicated that, following irradiation, the pH of both cytoplasm and vacuole dropped by 0.2 to 0.3 units. This change was not as great as was predicted from the observed HCO3 loss. Analysis of nitrogenous compounds in the cell suggested that reduction of nitrate and synthesis of γ-aminobutyric acid absorbed some of the protons formed by the synthesis and dissociation of bicarbonate.  相似文献   

20.
Mass-spectrometric disequilibrium analysis was applied to investigate CO2 uptake and HCO3 transport in cells and chloroplasts of the microalgae Dunaliella tertiolecta and Chlamydomonas reinhardtii, which were grown in air enriched with 5% (v/v) CO2 (high-Ci cells) or in ambient air (low-Ci cells). High- and low-Ci cells of both species had the capacity to transport CO2 and HCO3, with maximum rates being largely unaffected by the growth conditions. In high- and low-Ci cells of D. tertiolecta, HCO3 was the dominant inorganic C species taken up, whereas HCO3 and CO2 were used at similar rates by C. reinhardtii. The apparent affinities of HCO3 transport and CO2 uptake increased 3- to 9-fold in both species upon acclimation to air. Photosynthetically active chloroplasts isolated from both species were able to transport CO2 and HCO3. For chloroplasts from C. reinhardtii, the concentrations of HCO3 and CO2 required for half-maximal activity declined from 446 to 33 μm and 6.8 to 0.6 μm, respectively, after acclimation of the parent cells to air; the corresponding values for chloroplasts from D. tertiolecta decreased from 203 to 58 μm and 5.8 to 0.5 μm, respectively. These results indicate the presence of inducible high-affinity HCO3 and CO2 transporters at the chloroplast envelope membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号