首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Cross-linking class I MHC molecules on human T cell clones by reacting them with various mAb directed at either monomorphic or polymorphic determinants on class I MHC molecules followed by cross-linking with GaMIg stimulated a rise in intracellular free calcium concentration ([Ca2+]i), and induced proliferation and IL-2 production. T cell clones varied in the mean density of class I MHC molecules and the capacity to respond to mAb to class I MHC molecules. However, the functional responses of the clones did not correlate with class I MHC density or the CD4/CD8 phenotype. mAb to polymorphic class I MHC determinants were less able to induce an increase in [Ca2+]i and a functional response in the T cell clones. Additive stimulatory effects were noted when mAb against both HLA-A and HLA-B determinants were employed. Cross-linking class I MHC molecules on Jurkat cells induced a rise by [Ca2+]i and induced IL-2 production upon co-stimulation with PMA. Cross-linking class I MHC molecules on mutant Jurkat cells that expressed diminished levels of CD3 and were unable to produce IL-2 in response to anti-CD3 stimulation triggered both a rise in [Ca2+]i and IL-2 production with PMA co-stimulation. In contrast, cross-linking class I MHC molecules on mutant Jurkat cells that were CD3- stimulated neither a rise in [Ca2+]i nor IL-2 production. The combination of mAb to CD28 or ionomycin and PMA, however, was able to induce IL-2 production by CD3- Jurkat cells. The data demonstrate that cross-linking class I MHC molecules delivers a functionally important signal to T cell clones and Jurkat cells and indicate that class I MHC molecules may function to transduce activation signals to T cells. In addition, the data demonstrate that transmission of an activation signal via class I MHC molecules requires CD3 expression. The data, therefore, support a central role for CD3 in the transduction of activation signals to T cells via class I MHC molecules.  相似文献   

2.
Activation of human T4 cells by cross-linking class I MHC molecules   总被引:2,自引:0,他引:2  
These studies examined whether cross-linking class I MHC molecules results in functional or biochemical responses in human T4 cells. The initial studies demonstrated that cross-linking class I MHC molecules either by culturing highly purified T4 cells with immobilized mAb to class I MHC Ag or reacting the T4 cells with mAb to class I MHC Ag and then cross-linking the mAb with goat antimouse Ig (GaMIg) enhanced T4 cell proliferation induced by an immobilized mAb to CD3, OKT3. More-over, immobilized but not soluble mAb to class I MHC Ag enhanced T4 cell proliferation induced by the combination of two mAb to CD2, OKT11, and D66.2. Finally, T4 cells reacted with mAb to CD3 and class I MHC Ag proliferated in the presence of IL-2 when cross-linked with GaMIg more vigorously than T4 cells reacted with either mAb alone. Cross-linking class I MHC molecules was also found to stimulate T4 cells directly. T4 cells reacted with mAb to class I MHC Ag or beta 2 microglobulin and cross-linked with GaMIg proliferated vigorously in the presence of IL-2 or PMA. In addition, it was demonstrated that cross-linking class I MHC molecules by culturing T4 cells with immobilized mAb to class I MHC Ag induced T4 cell proliferation in the presence of IL-2. T4 cell proliferation in the presence of IL-2 and PMA could also be induced by reacting the cells with specific mAb to polymorphic determinants on class I MHC molecules and cross-linking with GaMIg. Cross-linking mAb to CD4 or CD11a did not have a similar functional effect on T4 cells. Finally it was demonstrated that adding GaMIg to T4 cells reacted with mAb to class I MHC Ag but not CD11a resulted in an increase in intracellular calcium concentration. The data demonstrate that cross-linking class I MHC molecules results in the generation of at least one activation signal, a rise in intracellular calcium concentration, and, thereby, stimulates human T4 cells.  相似文献   

3.
The ability of mAb to class I MHC molecules, CD3, or CD4/CD8 to stimulate human T cell clones alone or in combination was examined. Cross-linking each of these surface Ag with appropriate mAb and goat anti-mouse Ig (GaMIg) resulted in a unique pattern of increase in intracellular free calcium ([Ca2+]i) and different degrees of functional activation. Cross-linking class I MHC molecules provided the most effective stimulus of IL-2 production and proliferation. Cross-linking more than one surface Ag induced a compound calcium signal with characteristics of each individual response. Cross-linking CD3 + HLA-A,B,C caused a rapid and prolonged increase in [Ca2+]i and synergistically increased IL-2 production and proliferation of all clones. Cross-linking CD3 + CD4/CD8 also generated a compound calcium signal and increased IL-2 production and DNA synthesis. Purposeful inclusion of CD3 was not required for costimulation as cross-linking HLA-A,B,C + CD4/CD8 also increased [Ca2+]i, IL-2 production, and proliferation. Cross-linking three surface Ag, CD3 + HLA-A,B,C + CD4/CD8, resulted in the greatest initial and sustained [Ca2+]i, IL-2 production, and DNA synthesis. Although there was a tendency for the various stimuli to increase both [Ca2+]i and functional responsiveness, neither the magnitude nor duration of the increased [Ca2+]i correlated with the amount of IL-2 produced or the ultimate proliferative response. To determine whether costimulation required that the various surface molecules were cross-linked together, experiments were carried out using isotype specific secondary antibodies. Augmentation of [Ca2+]i and costimulation of functional responses were noted when class I MHC molecules were cross-linked and CD3 was bound, but not cross-linked. Similarly, costimulation through CD3 and CD4/CD8 was observed when CD4/CD8 was cross-linked and the CD3 complex was engaged by an anti-CD3 mAb which was not further cross-linked. In contrast, costimulation by class I MHC molecules and CD4/CD8 was only observed when these molecules were cross-linked together. These data demonstrate that cross-linking class I MHC determinants or CD4/CD8 provides a direct signal to T cell clones that can be enhanced when CD3 is independently engaged. The results also indicate that T cell clones can be stimulated without engaging CD3 by the combination of signals delivered via class I MHC molecules and CD4/CD8, but only when these determinants were cross-linked together. These studies have demonstrated that these cell surface molecules differ in their capacity to deliver activation signals to T cell clones and also exhibit unique patterns of positive cooperativity in signaling potential.  相似文献   

4.
5.
We examined the role of MHC class II molecules in transducing signals to activated human T cells. Cross-linking of MHC class II molecules synergized with submitogenic amounts of anti-CD3 mAb in causing proliferation and secretion of the cytokines IL-2, IL-3, IFN-gamma, and TNF-alpha by MHC class II-alloreactive T cell lines. Signaling via MHC class II molecules in T cells resulted in activation of tyrosine kinases, in generation of inositol phosphates, and in Ca2+ mobilization that was abrogated by the tyrosine kinase inhibitor herbimycin A. Thus, like signaling via TCR/CD3, signaling via MHC class II molecules involved tyrosine kinase-dependent activation of phospholipase C, resulting in phosphoinositol turnover and Ca2+ flux. However the signaling pathways coupled to MHC class II molecules and to TCR/CD3 differed, because engagement of the transmembrane phosphatase CD45 inhibited Ca2+ fluxes triggered via TCR/CD3 but not Ca2+ fluxes triggered via MHC class II molecules.  相似文献   

6.
The present work demonstrates that antibody-induced cross-linking of MHC class I antigens on Jurkat T lymphoma cells leads to a rise in intracellular calcium (Cai2+) and, in the presence of phorbol ester (PMA), to IL-2 production and IL-2 receptor expression. The rise in Cai2+ exhibited a profile very different from that obtained after anti-CD3 antibody-induced activation suggesting that activation signals are transduced differently after binding of anti-CD3 antibody and class I cross-linking, respectively. However, when Cai2+ was examined in individual Jurkat cells by means of a digital image processing system no differences were observed after cross-linking with anti-CD3 and anti-MHC class I antibodies, respectively. Two CD3-negative mutant lymphoma lines were nearly totally refractory to class I cross-linking. Taken together our results may indicate the existence of a functional linkage between the T cell receptor complex and MHC class I molecules.  相似文献   

7.
The MHC Ag Qa-2 is a glycolipid anchored class I molecule expressed at high levels on all peripheral T lymphocytes. In this study we found that anti-Qa-2 antibodies could stimulate the proliferation of murine T cells in vitro. Anti-Qa-2-induced proliferation required secondary cross-linking with anti-Ig antibody and the presence of PMA. Only Qa-2+ strains could be induced to proliferate by anti-Qa-2 antibody, but under the conditions employed, anti-CD3 could induce proliferation in Qa-2+ and Qa-2-strains. Interestingly, only anti-Qa-2 reagents directed against the alpha 3 domain of the Qa-2 class I molecule were effective in inducing proliferation. Furthermore, unlike purified CD4+ cells, purified CD8+ cells were unable to be stimulated by the anti-Qa-2 antibodies. These results lead to the inclusion of Qa-2 in a group of physiologically relevant, glycolipid-anchored, cell-surface molecules, mobilization of which can generate signals that initiate the proliferation of T cells. Such molecules may play a secondary role in cellular activation after the primary engagement of the TCR.  相似文献   

8.
Activation of T lymphocytes is dependent on multiple ligand-receptor interactions. The possibility that TCR dimerization contributes to T cell triggering was raised by the crystallographic analysis of MHC class II molecules. The MHC class II molecules associated as double dimers, and in such a way that two TCR (and two CD4 molecules) could bind simultaneously. Several subsequent studies have lent support to this concept, although the role of TCR cross-linking in T cell activation remains unclear. Using DRA cDNAs modified to encode two different C-terminal tags, no evidence of constitutive double dimer formation was obtained following immunoprecipitation and Western blotting from cells transiently transfected with wild-type DRB and tagged DRA constructs, together with invariant chain and HLA-DM. To determine whether MHC class II molecules contribute actively to TCR-dependent dimerization and consequent T cell activation, panels of HLA-DR1beta and H2-E(k) cDNAs were generated with mutations in the sequences encoding the interface regions of the MHC class II double dimer. Stable DAP.3 transfectants expressing these cDNAs were generated and characterized biochemically and functionally. Substitutions in either interface region I or III did not affect T cell activation, whereas combinations of amino acid substitutions in both regions led to substantial inhibition of proliferation or IL-2 secretion by human and murine T cells. Because the amino acid-substituted molecules were serologically indistinguishable from wild type, bound antigenic peptide with equal efficiency, and induced Ag-dependent CD25 expression indicating TCR recognition, the reduced ability of the mutants to induce full T cell activation is most likely the result of impaired double dimer formation. These data suggest that MHC class II molecules, due to their structural properties, actively contribute to TCR cross-linking.  相似文献   

9.
The calcium ionophore, A23187, when used alone was found to induce proliferation of murine T cells, at concentrations of 0.5-1 mM. This response required the presence of syngeneic splenic adherant cells (SAC) as a source of accessory cells. Interestingly, only CD4+ T cells but not CD8+ T cells or B cells responded to the calcium ionophore by proliferation. The inability of CD8+ T cells or B cells to respond was not related to decreased elevation in the intracellular ionized calcium [Ca2+]i concentration induced by the ionophore, because activated CD4+ T, CD8+ T and B cells all exhibited similar elevation in [Ca2+]i. The inability of CD8+ T cells to respond to calcium ionophore was probably due to insufficient production of autocrine growth factors, such as IL-2, inasmuch as the addition of exogenous IL-2 could completely restore the CD8+ T cell responsiveness. Also, exogenous rIL-1 could partially restore purified T cell response to calcium ionophore, whereas, rIL-6 failed to do so. IL-2, but not IL-4, acted as an autocrine growth factor for T cells responding to the calcium ionophore in the presence of SAC, since, antibodies against IL-2 or IL-2 receptor (IL-2R) but not against IL-4, could inhibit the T cell proliferation. Furthermore, exogenous rIL-2 but not rIL-4 supported the proliferation of T cells to calcium ionophore in the absence of accessory cells. Our results suggest that murine lymphocytes exhibit heterogeneity in their proliferative responsiveness to calcium ionophore and that this may not depend on the early activation signal such as the elevation in [Ca2+]i) induced by the ionophore but may depend on subsequent signals which regulate endogenous growth factor production.  相似文献   

10.
We have generated a hamster anti-mouse class I reactive mAb that is capable of activating T cells in the presence of the cofactor PMA, as assayed by both IFN-gamma production and cellular proliferation. This mAb detects an epitope present on the majority of murine class I molecules, with the known exceptions of H-2Kk and H-2Kq, and is therefore not beta 2-microglobulin-specific. It also recognizes multiple human class I molecules. The epitope recognized by this antibody maps to the class I alpha 1 domain. The activation properties of this mAb are not mediated exclusively through the glycosylphosphatidylinositol-linked Qa-2 molecule, as the antibody activates spleen cells from Qa-2 negative strains. Although class I molecules are not usually considered as activation Ag, these data demonstrate their potential for involvement in signal transduction.  相似文献   

11.
Ag recognition of Lyt-2 (CD8)-positive T lymphocytes requires the presentation by APC of a suitably processed Ag in association with MHC class I molecules. In previous studies we have obtained evidence that, for optimal activation, both the alpha beta-TCR and Lyt-2 have to participate in this recognition process. In the current study we investigate the functional consequences of limited cross-linking of these cell surface molecules by using soluble, dimeric hetero- and homoconjugates of mAb to Lyt-2 and to the TCR beta-chain (F23.1). Heterologous cross-linking of Lyt-2 to the TCR induced a vigorous, selective Lyt-2+ T cell proliferative response. Functionally active cytotoxic cells were generated, and a high frequency of responding cells was observed in limiting dilution analyses. In contrast, homologous TCR cross-linking initiated a less pronounced proliferation with a relatively low frequency of response, whereas Lyt-2 cross-linking resulted in no cellular proliferation. Significant T cell activation occurred with exposure to anti-Lyt-2: F23.1 mAb dimers at concentrations an order of magnitude lower than those required for stimulation by F23.1:F23.1 mAb dimers. The induction of proliferation by mAb dimers occurred in the absence of Fc components and in rigorously APC depleted, purified T cell preparations. Effective stimulation of resting T cells could be induced also by heterodimers of monovalent Fab fragments. Heterologous cross-linking of Lyt-2 to the TCR was superior to homologous TCR cross-linking primarily with respect to proliferation in IL-2 containing media and to IL-2R expression, whereas proliferation in response to other lymphokines and the production of IL-2 itself were similar under both cross-linking regimens. Thus, when linked to the TCR, Lyt-2 contributed a strong, positive signal toward IL-2-dependent growth of resting T cells. We assume that in the case of Ag-driven T cell activation, the class I MHC molecule acts as the physiologic cross-linking ligand for Lyt-2 and the TCR.  相似文献   

12.
13.
The effects of the cytokine IL-4 on resting and activated human B cells were compared with the effects of known "competence" signals able to drive resting B cells into the cell cycle, including anti-Ig, PMA, anti-CD20, and a recently described competence signal, anti-Bgp95. In proliferation assays, IL-4 was costimulatory with anti-Ig and anti-Bgp95 but not with anti-CD20 or PMA. IL-4 alone triggered increases in expression of class II DR/DQ and CD40, but it did not trigger increases in intracellular free calcium [Ca2+]i in resting B cells or induce resting B cells to leave G0 and enter the G1 phase of the cell cycle. Although IL-4 has some characteristics of competence signals, it was most effective if added to B cells up to 12 h after anti-Ig or anti-Bgp95 rather than before, and thus, in this respect, works more like a progression signal. Like IL-4, all four competence signals for B cells triggered increases in class II and CD40, but only IL-4 consistently induced increases in CD23 surface levels. IL-4 was costimulatory only with anti-Ig and anti-Bgp95, each of which can trigger increases in [Ca2+]i and new protein synthesis of the proto-oncogene c-myc, and can increase attachment of protein kinase C to the plasma membrane. IL-4 was not costimulatory with signals that 1) did not affect [Ca2+]i yet induced c-myc protein synthesis (anti-CD20), 2) only stimulated the translocation of protein kinase C (PMA), or 3) only stimulated increases in [Ca2+]i (calcium ionophore). These results suggest that resting human B cells require at least two intracytoplasmic signals before IL-4 can effectively promote B cell proliferation.  相似文献   

14.
Cross-linking of surface Ig has been shown to stimulate phosphatidylinositol hydrolysis in murine B cells, leading to increases in [Ca2+]i and activation of protein kinase C (PKC). Preliminary evidence suggests that a similar activation mechanism occurs in human B cells. We wished to examine whether anti-Ig antibody-stimulated human B cell proliferation is as dependent upon the presence of PKC as is anti-Ig-mediated murine B cell proliferation. Using highly purified, small, dense peripheral-blood B lymphocytes from healthy adult donors, we confirmed that PMA, a direct activator of PKC, is a potent mitogen for human B cells that synergizes with anti-mu antibody. Furthermore, we demonstrated that PMA treatment abolishes detectable cellular stores of immunoreactive PKC. However, after such depletion of cellular PKC, anti-mu antibody is still capable of delivering a proliferative signal to human B cells. It is unlikely that this signal occurs solely on the basis of increases in [Ca2+]i, because the calcium ionophore A23187 does not induce a proliferative response in PMA-treated B cells similar in magnitude to that seen with anti-mu. Additionally, the finding that pretreatment of B cells with PMA ablates the ability of anti-Ig antibody to mobilize intracellular and extracellular calcium also suggests that the ability of PMA to enhance anti-Ig mediated stimulation does not depend on elevations of [Ca2+]i induced by anti-Ig. Together, these observations suggest that anti-Ig signaling of human B cells may occur via other pathways in addition to the phosphatidylinositol system of calcium influx and PKC activation.  相似文献   

15.
Ly-6A/E is a phosphatidylinositol (PI)-linked membrane protein whose expression is induced or upregulated on normal murine T and B cells by IFN-gamma. Cross-linkage of Ly-6A/E expressed on normal murine T cells stimulates Ca2+ translocation, and in the presence of a protein kinase C (PKC) activator, lymphokine secretion, and cellular proliferation. Utilizing an anti-Ly-6A/E mAb, we studied the effect of cross-linking Ly-6A/E on IFN-gamma-treated resting B cells, for Ca2+ translocation, PI turnover, and cellular proliferation. Since these events are known to be stimulated by cross-linkage of B cell membrane (m)Ig, we compared the changes mediated through these respective membrane proteins. We show that cross-linkage of B cell Ly-6A/E stimulates a large, rapid, and sustained increase in the concentration of intracellular free calcium ([Ca2+]i) comparable in magnitude, though somewhat delayed, relative to that observed after cross-linking of mIg. Cross-linkage of B cell Ly-6A/E does not, however, stimulate detectable PI turnover, in contrast to PI turnover induced by ligation of mIg. Both the Ly-6A/E- and mIg-mediated increase in [Ca2+]i occur through mobilization of internal Ca2+ stores as well as entry of Ca2+ into the cell from the extracellular compartment. Ly-6A/E-mediated Ca2+ translocation appears to be under the regulation of PKC in that short term pretreatment of B cells with the PKC activator, PMA, inhibits the Ly-6A/E- as well as the mIg-mediated increase in [Ca2+]i, whereas prolonged exposure to PMA, under conditions that lead to depletion of PKC, results in an augmentation in Ca2+ translocation after ligation of either Ly-6A/E or mIg. Co-capping studies indicate that Ly-6A/E and mIg cap independently in the B cell membrane, thus suggesting that the Ly-6A/E-induced effects on Ca2+ translocation are not mediated through simultaneous modulation of mIg. Anti-Ly6A/E, by itself, does not stimulate an increase in [3H]thymidine incorporation by IFN-gamma-treated resting B cells, but induces a striking increase in the presence of PMA. By contrast, anti-Ig by itself stimulates significant increases in [3H]thymidine incorporation that is inhibited by PMA. Thus, Ly-6A/E is a potent mediator of B cell activation that may use a signal transduction system in quiescent B cells that is distinct from that of the Ag receptor.  相似文献   

16.
This report compares the ability of cyclosporin A and FK-506 to inhibit human T cell activation triggered via cell surface molecules that utilize different intracellular processes. We stimulated highly purified peripheral blood T lymphocytes with mitogens (Con A and PHA), ionomycin + PMA, or monoclonal antibodies specific for cell surface antigens involved in activation (CD2, CD3, CD28) either in combination with each other or in conjunction with PMA. Using measurements of the proliferative response, IL-2 production, and changes in intracellular Ca2+ ([Ca2+]i), we demonstrate that FK-506 exerts its inhibitory effect on early events of T-cell activation in a manner indistinguishable from that of CsA. An important finding in this study is the strict correlation between those activation pathways that are inhibited by FK-506 and CsA and the requirement that the sensitive pathways induce a measurable rise in [Ca2+]i. This correlation held even for the CD28/CD2 pathway which was previously shown to be calcium-independent; however by employing FACS analysis of [Ca2+]i within individual cells, a subset of cells activated via CD28/CD2 was found to respond with a measurable rise in [Ca2+]i. We also noted that the proliferative response induced by certain stimuli, such as ionomycin + PMA and PHA + PMA, was partially resistant to FK-506 and CsA, while IL-2 production was completely suppressed. The partial FK-506/CsA-resistance of these responses was shown to be determined by the amount of PMA added to the cultures. We conclude from our investigations that FK-506 and CsA inhibit highly similar signal transduction pathways in human T lymphocytes.  相似文献   

17.
Allogeneic T cell activation triggering by MHC class I antigens   总被引:2,自引:0,他引:2  
The role of MHC-encoded class I molecules in allogeneic activation and proliferation of human T lymphocytes was investigated. The study was performed by using primary mixed culture of lymphocytes from MHC recombinant siblings identical for MHC class II Ag (DR, DP, DQ) and displaying MHC class I disparity. The results indicate that such allogeneic combination is sufficient to trigger early activation steps within responder T cells without promoting a significant proliferation. After MHC class I allosensitization, a significant proportion of cells entered the cell cycle (G0----G1). The stimulatory potential of MHC class I Ag was further stressed by the specific induction on responder cells of IL-2R (22% T cell activation Ag positive). Under the same experimental conditions, transferrin receptor expression and IL-2 activity were not detectable. This is consistent with the low T cell proliferation. Exogenous rIL-1 did not improve IL-2 production and the subsequent T cell proliferation indicating that these two events were not associated with a defective accessory cell function involving IL-1 release. MHC class I disparity can also prime precursor CTL to differentiate into IL-2-dependent functional MHC restricted cytotoxic T cells. Conversely IFN-gamma had no effect. Addition to the culture of W6/32, a mAb specifically directed against a monomorphic determinant on human class I HLA-A, -B, and -C Ag was able to block all these activation events. These data clearly indicate a role of HLA class I Ag involvement in the early events triggering allogeneic T cell activation.  相似文献   

18.
To elucidate the role of CD4 molecule in T cell activation, the effect of anti-CD4 on T cell IL-2 production was examined by using an alloreactive Th clone. The alloreactive T cell used in the present experiments produced IL-2 in response to soluble anti-CD3 epsilon-chain (anti-CD3) without accessory cell or insoluble antibody carrier. The IL-2 production was suppressed by the addition of anti-CD4 in cultures. An intracellular free Ca2+ concentration ([Ca2+]i) of the T cell clone was elevated by anti-CD3 stimulation, but the elevation was suppressed in the presence of anti-CD4. When the clone was stimulated in Ca2(+)-free medium, the elevation of [Ca2+]i was not observed. When Ca2+ influx was induced by calcium ionophore A23187 or ionomycin, the clone produced IL-2 in response to anti-CD3 in the presence of anti-CD4. When polyclonal T cell line or several other alloreactive T cell clones were examined for their anti-CD3 response, essentially the same results as mentioned above were obtained. Taken together, these results suggest that the slow and sustained elevation of [Ca2+]i is an essential signal for IL-2 production of T cells, and that anti-CD4 suppresses the IL-2 production by interfering the [Ca2+]i elevation. The significance of CD4 molecules in murine T cell activation was discussed.  相似文献   

19.
The association of various surface molecules with the cytoskeleton in resting peripheral blood T cells was examined by assaying the capacity of detergent to solubilize them. Cytoskeletal association was assessed by staining T cells with a fluorescein-conjugated mAb, resuspending the cells in buffer with or without the nonionic detergent, NP-40, and determining the capacity of the detergent to remove the mAb from the cell surface by using flow microfluorimetry. MAb to CD3, the TCR, and CD45 were completely removed from the cell surface by detergent. In contrast, 7 to 50% of mAb to CD2, CD4, CD8, CD11a/CD18, CD44, and class I MHC molecules were resistant to detergent solubilization, demonstrating that a fraction of these molecules was constitutively associated with the cytoskeleton. The effect of cross-linking these molecules with a mAb and a secondary goat anti-mouse Ig was also examined. Cross-linking CD3 or the TCR induced cytoskeletal association of these molecules. In addition, cross-linking increased the fraction of CD2, CD4, CD8, CD11a/CD18, CD44, and class I MHC molecules that was associated with the cytoskeleton. In contrast, cross-linking CD45 did not induce an association with the cytoskeleton. The effect of T cell activation on the cytoskeletal association of these molecules was also examined. Stimulation of T cells with ionomycin and PMA greatly increased the expression of CD2 and CD44 without increasing the number of molecules associated with the cytoskeleton. Stimulation with PMA alone had no effect on the expression of CD2 or CD44, but was found to decrease the percentage of these molecules associated with the cytoskeleton. Stimulation with ionomycin and PMA increased both the expression of class I MHC molecules and the number of molecules associated with the cytoskeleton proportionally. Finally, stimulation with ionomycin and PMA decreased CD3 expression, but increased the number of CD3 molecules associated with the cytoskeleton. The data establish a pattern of cytoskeletal association of T cell-surface molecules that is a characteristic of each individual molecule and can be altered by cross-linking. Moreover, the results indicate that the association of various T cell surface molecules with the cytoskeleton is a dynamic process that varies with the state of activation and or differentiation of the cells.  相似文献   

20.
The tumor-promoting sesquiterpene lactone, thapsigargin, induced a dose-dependent increase of the cytoplasmic Ca2+ concentration ([ Ca2+]i) in human lymphocytes from a resting level between 100 and 150 nM up to about 1 microM. Half-maximum response was found at about 1 nM of thapsigargin, full response at 100 nM. The effect of thapsigargin on [Ca2+]i exceeded that of phytohaemagglutinin (PHA) which raised [Ca2+]i to maximum 300 nM. In combination with phorbol 12-myristate 13-acetate (PMA), thapsigargin stimulated the proliferation of normal lymphocytes to the same extent as did PHA, whereas the thapsigargin/PMA treatment could not restore the defective proliferation of AIDS lymphocytes in spite of the increased [Ca2+]i. Thapsigargin or PMA added separately had no stimulatory effects on cell proliferation. The thapsigargin/PMA treatment caused an increase in the interleukin-2 (IL-2) production of the lymphocytes, which was much higher than that caused by the PHA treatment, even in AIDS lymphocytes. Moreover, the thapsigargin/PMA treatment stimulated the expression of the IL-2 receptors on both normal and AIDS lymphocytes, similar to the effect of PHA. It is concluded that thapsigargin exerts its effects on lymphocyte proliferation by increasing [Ca2+]i, and that the general defect of AIDS lymphocytes, rather than being ascribed to the initiating signal systems, is associated with later events related to DNA synthesis and proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号