首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thyroid hormone (T3) has been demonstrated to inhibit the action of aldosterone on sodium transport in toad urinary bladder and rat kidney. We have exammined the effect of T3 on aldosterone action and specific nuclear binding in cultured epithelial cells derived from toad urinary bladder. In cell line TB6-C, addition of 5·10−8 M T3 to culture media for up to 3 days results in no change in short-circuit current or transepithelial resistance. This concentration of T3 completely inhibits the maximal increase in short-circuit current in response to 1·10−7 M aldosterone. The inhibition can be demonstrated with 18 h preincubation or with simultaneous addition of T3 and aldosterone. The half-maximal concentration for the inhibition of the aldosterone effect is approx. 5·10−9 M T3. T3 has no effect on cyclic AMP-stimulated short-circuit current in these cells. The effect of T3 on nuclear binding of [3H]aldosterone was examined using a filtration assay with data analysis by at least-squares curve-fitting program. Best fit was obtained with a model for two binding sites. The dissociation constants for the binding were Kd1 = (0.82 ± 0.36)·10−10 M and Kd2 = (3.2±0.60)·10−8 M.The half-maximal concentration for aldosterone-stimulated sodium transport in these cells is approx. 1·10−8 M. Analysis of nuclear aldosterone binding in cells preincubated for 18 h with 5·10−8 M T3 showed a Kd1 = (0.15 ± 0.10)·10−10 M and Kd2 = (3.5 ± 0.10)·10−8 M. We conclude that T3 i action of aldosterone on sodium transport at a site after receptor binding in the nucleus.  相似文献   

2.
T1 nuclear relaxation measurements of 1H and 17O of water have been applied to study the kinetics of the diffusional transport of water across the cytoplasmic cell membrane of Dunaliella salina and Dunaliella bardawil. The water permeability coefficients at 25°C were found to be 1.5·10−3 cm/s and 1.8·10−3 cm/s, respectively, with an activation energy of 3.7 kcal/mol. The results indicate that the cell membrane of Dunaliella exhibits high diffusional permeability to water, similar in magnitude to that found for other cells and model membranes, and a relatively low activation energy. This regularity is in contrast to the exceptionally low glycerol permeability of the membrane (Brown, F.F., Sussman, I., Avron, M. and Degani, H. (1982) Biochim. Biophys. Acta 690, 165–173).  相似文献   

3.
Glycerol diffusional permeabilities through the cytoplasmic cell membrane of Dunaliella salina, the cell envelope of pig erythrocyte and egg phosphattidylcholine vesicles were measured by NMR spectroscopy employing the spin-echo method and nuclear T1 relaxation. The following permeability coefficients (P) and corresponding enthalpies of activation (ΔH) were determined for glycerol at 25°C: for phosphatidylcholine vesicles 5·10−6 cm/s and 11±2 kcal/mol; for pig erythrocytes 7·10−8 cm/s and 18±3 kcal/mol, respectively; for the cytoplasmic membrane of D. salina the permeability at 17°C was found to be exceptionally low and only a lower limit (P<5·10−11cm/s) could be calculated. At temperatures above 50°C a change in membrane permeability occurred leading to rapid leakage of glycerol accompanied by cell death. The data reinforce the notion that the cytoplasmic membrane of Dunaliella represents a genuine anomaly in its exceptional low permeability to glycerol.  相似文献   

4.
With the help of a ribonucleoprotein it is possible to precipitate collagen in a layer of fibers with a 700 Å period. As collagen is a constituent of many membrane systems in the body, it seemed interesting to investigate the permeability of ions and water through a native collagen membrane.The experiments were carried out with the help of an acryl glass apparatus, where an osmotic pressure, a hydrostatic pressure difference or both can be maintained between the two bulk phases separated by the membrane. The diffusion coefficients for NaCl and KCl were found to be comparable with those in other biological membranes (Ds = 9 · 10−7cm2 · s−1) whereas there is difference of more than three orders of magnitude in the hydraulic permeability (Lp = 6 cm4 · J−1 · s−1).Volume flow measurements caused by an osmotic gradient indicated that the reflection coefficient for NaCl and KCl is very small. In hydrostatic pressure experiments, the membrane shows a preferred direction for volume flows which seems to have something to do with the mode of preparation of the membrane.  相似文献   

5.
1. The fat mouse Steatomys pratensis natalensis (mean body mass 37.4±0.43 (se)) has a low euthermic body temperature Tb=30.1–33.8 °C and a low basal metabolic rate (BMR)=0.50 ml O2 g−1 h−1.
2. Below an ambient temperature (Ta)=15 °C, the mice were hypothermic.
3. The lowest survivable Ta=10 °C.
4. Torpor is efficient in conserving energy between Ta=15–30 °C, below Ta=15 °C, the mice arouse.
5. Euthermic and torpid mice were hyperthermic at Ta=35 °C.
6. Thermal conductance was 0.159 ml O2 g−1 h−1 °C−1, 98.8% of the expected value.
7. Non-shivering thermogenesis (NST) was 2.196 ml O2 g−1 h−1 (3.69×BMR).
8. Maximal oxygen consumption, however, was 3.83 ml O2 g−1 h−1 (6.44×BMR), indicating that other methods of heat production are additive.
9. Because fat mice conserve energy by torpor only between Ta=15–30 °C, we suggest that torpor may be a more important mechanism for surviving food shortages than for surviving cold weather.
Keywords: Steatomys pratensis natalensis; Metabolism; Torpor; Fat mouse  相似文献   

6.
The effect of the local anesthetic dibucaine on the solid to liquid-crystalline phase transition in phospholipid vesicles was studied by calorimetry and fluorescence polarization. The partition coefficient (> 3000) of dibucaine in the membranes of vesicles prepared from acidic phospholipids was more than 20 times higher than in neutral phospholipid membranes under the same conditions. Calorimetric measurements on vesicles prepared form acidic phospholipids (bovine brain phosphatidylserine; dipalmitoylphosphatidylglycerol) showed that dibucaine (1 · 10−4M) produced a significant reduction in the gel-liquid crystalline transition temperature (Tc). This fluidizing effect of dibucaine on acidic phospholipid membranes was even more marked in the presence of Ca2+. In contrast, dibucaine at the same concentration did not alter the Tc of neutral phospholipids (dipalmitoylphosphatidylcholine). Significant increase in the fluidity of neutral phospholipid membranes occurred only at higher dibucaine concentrations (2 · 10−3M. Measurements of the fluorescence polarization and lifetime of the probe, 1,6-diphenylhexatriene, in acidic phospholipid vesicles revealed that dibucaine (1 · 10−4M caused an increase in the probe rotation rate indicating an increase in the fluidity of the phospholipid membranes. A good correlation was obtained between fluorescence polarization data on dibucaine-induced changes in membrane fluidity and calorimetric measurements on vesicles of the same type.  相似文献   

7.
The binding and inhibitory properties of 11 benzimidazoles for bovine brain tubulin were investigated. The effects of the benzimidazoles on the initial rates of microtubule polymerization were determined by a turbidimetric assay. The median inhibitory concentrations (I50) for nocodazole, oxibendazole, parbendazole, mebendazole and fenbendazole ranged from 1.97 · 10−6 to 6.32 · 10−6 M. Benomyl, cambendazole and carbendazim had I50 values from 5.83 · 10−5 to 9.01 · 10−5 M. Thiabendazole had an I50 value of 5.49 · 10−4 M. Inhibitor constants (Ki) were determined by the colchicine binding assay. Oxibendazole, fenbendazole, and cambendazole had Ki values of 3.20 · 10−5, 1.73 · 10−5 and 1.10 · 10−4 M, respectively. Oxibendazole and fenbendazole were competitive inhibitors of colchicine. In contrast, cambendazole was a noncompetitive inhibitor of colchicine. The ability of these benzimidazoles to inhibit microtubule polymerization and the mode of action for the anthelmintic benzimidazoles is discussed.  相似文献   

8.
Egg yolk phosphatidylcholine monolamellar liposomes (1000 Å in diameter) loaded with cytochrome c were placed into an external solution, in which superoxide radicals, O2, were generated by a xanthine-xanthine oxidase system. The penetration of the superoxide radicals across the liposomal membrane was detected by cytochrome c reduction in the inner liposome compartment. The effects of modifiers and temperature on this process were studied. The permeability of liposomal membrane for O2(PO2 = (7.6 ± 0.3) · 10-8 cm/s), or HO2 (PHO2 = 4.9 · 10-4 cm/s) were determined. The effect of the transmembrane electric potential (K+ concentration gradient, valinomycin) on the permeability of liposomal membranes for O2 were investigated. It was found that O2 can penetrate across liposomal membrane in an uncharged form. The feasibility of penetration of superoxide radicals through liposomal membrane, predominantly via anionic channels, was demonstrated by the use of an intramolecular cholesterol-amphotericin B complex.  相似文献   

9.
Dispersed acini from dog pancreas were used to examine the ability of dopamine to increase cyclic AMP cellular content and the binding of [3H]dopamine. Cyclic AMP accumulation caused by dopamine was detected at 1·10−8 M and was half-maximal at 7.9±3.4·10−7M. The increase at 1·10−5 M, (7.5-fold) was equal to the half-maximal increase caused by secretin at 1·10−9 M. Haloperidol, a dopaminergic receptor antagonist inhibited cyclic AMP accumulation caused by dopamine. The IC50 value for haloperidol, calculated from the inhibition of cyclic AMP increase caused by 1·10−5 M dopamine was 2.3±0.9·10−6M. Haloperidol did not alter basal or secretin-stimulated cyclic AMP content. [3H]Dopamine binding was studied on the same batch of cells as cyclic AMP accumulation. At 37°C, it was rapid, reversible, saturable and stereospecific. The Kd value for high affinity binding sites was 0.43±0.1·10−7M and 4.7±1.6·10−7M for low affinity binding sites. The concentration of drugs necessary to inhibit specific binding of dopamine by 50% was 1.2±0.4·10/t-7M noradrenaline, 2·10/t-7 M epinine, 4.1±1.8·10/t-6M fluphenazine, 8.0±1.6·10/t-6M haloperidol, 4.2±1.2·10−6Mcis-flupenthixol, 2.7±0.4·10−5Mtrans-flupenthixol, >1·10−5M apomorphine, sulpiride, naloxone and isoproterenol.  相似文献   

10.
1. 1. The Michaelis-Menten parameters of labelled d-glucose exit from human erythrocytes at 2°C into external solution containing 50 mM d-galactose were obtained. The Km is 3.4 ± 0.4 mM, V 17.3 ± 1.4 mmol · 1−1 cell water · min−1 for this infinite-trans exit procedure.
2. 2. The kinetic parameters of equilibrium exchange of d-glucose at 2°C are Km = 25 ± 3.4 mM, V 30 ± 4.1 mmol · 1−1 cell water · min−1.
3. 3. The Km for net exit of d-glucose into solutions containing zero sugar is 15.8 ± 1.7 mM, V 9.3 ± 3.3 mol 9.3 ± 3.3 mol · 1−1 cell water · min−1.
4. 4. This experimental evidence corroborates the previous finding of Hankin, B.L., Lieb, W.R. and Stein, W.D. [(1972) Biochim. Biophys. Acta 255, 126–132] that there are sites with both high and low operational affinities for d-glucose at the inner surface of the human erythrocyte membrane. This result is inconsistent with current asymmetric carrier models of sugar transport.
Keywords: d-Glucose transport; Asymmetric carrier; Pore kinetics; (Erythrocyte)  相似文献   

11.
The diffusion translational coefficient DT of core particles in monodisperse solutions has been measured by the quasielastic light scattering method in a large scale of salinities over the range 6.10−4 to 2M Na+ or K+. The observed values of DT are independent of particle concentration in the range 0.1–2 mg/ml and do not vary with the scattering vector q corresponding to scattering angles between 40°–120°. When the salinity is progressively raised an increase of DT from 1.9.10−7 cm2s−1 to 3.2.10−7 cm2s−1 was observed at about 2.10−3 M NaCl followed by a decrease of DT beyond 0.6 M NaCl.The various possible causes of the changes of DT such as interactions between particles or between particles and salt ions are discussed. We show that the single low ionic strength change is due to a conformational transition of the core particles, while the second variation of DT accompanies the disorganization of the core particles.  相似文献   

12.
Active transport of Cl accounts for 90% of the short-circuit current (s.c.c.) in the isolated frog cornea. 1·10−5 M furosemide produced a 50% reversible inhibition of this s.c.c. 1·10−4 M ethacrynic acid reduced the corneal s.c.c. to 32% of the control. In the isolated frog skin epithelium furosemide had no effect on the s.c. at a concentration of 1·10−4 M and a small stimulation at a concentration of 1·10−3 M. The furosemide inhibitory effects seems to be specific for Cl, as it also inhibits Cl transport in the ascending limb of the loop of Henle (Burg, M.B. (1972) Proc. 5th Int. Congr. Nephrol., p. 50, Abstr.).  相似文献   

13.
In this study, the hydraulic conductivity (Lp), Me2SO permeability ( Me2SO), and the reflection coefficients (ς) and their activation energies were determined for Metaphase II (MII) mouse oocytes by exposing them to 1.5 M Me2SO at temperatures of 30, 20, 10, 3, 0, and −3°C. These data were then used to calculate the intracellular concentration of Me2SO at given temperatures. Individual oocytes were immobilized using a holding pipette in 5 μl of an isosmotic PBS solution and perfused with precooled or prewarmed 1.5 M Me2SO solutions. Oocyte images were video recorded. The cell volume changes were calculated from the measurement of the diameter of the oocytes, assuming a spherical shape. The initial volume of the oocytes in the isoosmotic solution was considered 100%, and relative changes in the volume of the oocytes after exposure to the Me2SO were plotted against time. Mean (means ± SEM) Lpvalues in the presence of Me2SO ( Me2SOp) at 30, 20, 10, 3, 0, and −3°C were determined to be 1.07 ± 0.03, 0.40 ± 0.02, 0.18 ± 0.01, 7.60 × 10−2± 0.60 × 10−2, 5.29 × 10−2± 0.40 × 10−2, and 3.69 × 10−2± 0.30 × 10−2μm/min/atm, respectively. The Me2SOvalues were 3.69 × 10−3± 0.3 × 10−3, 1.07 × 10−3± 0.1 × 10−3, 2.75 × 10−4± 0.15 × 10−4, 7.83 × 10−5± 0.50 × 10−5, 5.24 × 10−5± 0.50 × 10−5, and 3.69 × 10−5± 0.40 × 10−5cm/min, respectively. The ς values were 0.70 ± 0.03, 0.77 ± 0.04, 0.81 ± 0.06, 0.91 ± 0.05, 0.97 ± 0.03, and 1 ± 0.04, respectively. The estimated activation energies (Ea) for Me2SOp, Me2SO, and ς were 16.39, 23.24, and −1.75 Kcal/mol, respectively. These data may provide the fundamental basis for the development of more optimal cryopreservation protocols for MII mouse oocytes.  相似文献   

14.
The existence of two types of binding sites for ouabain in human erythrocyte membranes is described. Receptor sites designated as ‘type I’, which may be identical to the K+-insensitive sites of intact cells, were detected at concentrations of ouabain as low as 10−7 M. The ‘type II’ receptor sites require the inclusion of Mg2+ + Pi to form complexes with ouabain; they may be identical to the K+-sensitive sites of intact cells. These sites were saturated at approx. 5 · 10−7 M ouabain but could not be detected at higher concentrations. The range of ouabain concentrations at which ‘type I’ receptors start to predominate (i.e. 5 · 10−8–5 · 10−7 M) was termed ‘critical digitalis concentrations’. The process of binding reached equilibrium within 1 and 4 h for ‘type I’ and ‘type II’ sites, respectively. The dissociation constant for ‘type II’ receptor-ouabain complexes was 7.6 · 10−9 M.Under similar experimental conditions, rat erythrocyte membranes exhibited only non-saturable sites.Alterations in the proportions of the two types of receptors were demonstrated by preincubation of the membranes, in the presence or absence of Mg2+ + Pi, prior to the addition of ouabain. In the first case, ‘type II receptor-ouabain’ complexes were stabilized at about 50% of the untreated membranes and ‘type I-ouabain’ complexes slowly approached equilibrium over a period of 24 h. In the latter instance, ‘type I’ receptors were not detected, and only ‘type II-ouabain’ complexes prevailed.  相似文献   

15.
Human α1-antitrypsin (AAT) was produced in the recombinant yeast Saccharomyces cerevisiae ATCC 20699 grown in batch and fed-batch culture. The final biomass concentration and antitrypsin concentration attained were 55 g·L−1 and 1.23 g·L−1, respectively, in the fed-batch. The maximum productivities of biomass and antitrypsin were 1.6 and > 0.04 g L−1h−1, respectively, or substantially greater than the highest productivity values reported in the past. For recovering the antitrypsin, the cell slurry was concentrated 4-fold (231 g·L−1 biomass, 122 min of processing) by cross-flow microfiltration and the cells were disrupted by bead milling (3 passes of 3 min total retention time). The cell homogenate was treated with aluminum chloride or PBS (pH 7) to aid separation of the cell debris by flocculation and sedimentation. The clarified cell homogenate was subjected to ammonium sulfate fractionation to precipitate the recombinant antitrypsin. The AAT precipitated at 45–75% saturation of ammonium sulfate, depending on the age of the homogenate. The crude AAT in the homogenate degraded at room temperature (25°C), with a zero order deactivation rate of 1.815 × 10−3 ± 3.43 × 10−4 g AAT L−1h−1.  相似文献   

16.
This study compared the mass-specific routine metabolic rate (RMR) of similar sized mulloway (Argyrosomus japonicus), a sedentary species, and yellowtail kingfish (Seriola lalandi), a highly active species, acclimated at one of several temperatures ranging from 10–35 °C. Respirometry was carried out in an open-top static system and RMR corrected for seawater–atmosphere O2 exchange using mass-balance equations. For both species RMR increased linearly with increasing temperature (T). RMR for mulloway was 5.78T − 29.0 mg O2 kg− 0.8 h− 1 and for yellowtail kingfish was 12.11T − 39.40 mg O2 kg− 0.8 h− 1. The factorial difference in RMR between mulloway and yellowtail kingfish ranged from 2.8 to 2.2 depending on temperature. The energetic cost of routine activity can be described as a function of temperature for mulloway as 1.93T − 9.68 kJ kg− 0.8 day− 1 and for yellowtail kingfish as 4.04T − 13.14 kJ kg− 0.8 day− 1. Over the full range of temperatures tested Q10 values were approximately 2 for both species while Q10 responses at each temperature increment varied considerably with mulloway and yellowtail kingfish displaying thermosensitivities indicative of each species respective niche habitat. RMR for mulloway was least thermally dependent at 28.5 °C and for yellowtail kingfish at 22.8 °C. Activation energies (Ea) calculated from Arrhenius plots were not significantly different between mulloway (47.6 kJ mol− 1) and yellowtail kingfish (44.1 kJ mol− 1).  相似文献   

17.
The thermal coefficient of expansion of egg lecithin bilayer thickness, αd1, was measured as a function of its cholesterol content up to mole ratio lecithin/cholesterol of 1:1, and over the temperature range 0–40 °C. At all cholesterol contents αd1 changes abruptly at approximately 12 °C indicating a structural transition at this temperature. Above 12 °C, αd1 decreases monotonically from −2·10−3 for pure egg lecithin to −1·10–3 at mole ratio 1:1. Below 12 °C αd1 is walways higher than above 12 °C and shows a sharp, anomalously high value of −6·10−3 at the mole ratio 2:1. The results have been interpreted as the movement of cholesterol into the bilayer or the formation of lecithin-cholesterol “complexes” at temperatures below 12 °C. Similar studies with phosphatidylinositol containing cholesterol showed no structural transition and lysolecithin containing cholesterol behaved differently giving two lamellar phases in equilibrium.  相似文献   

18.
The kinetic properties of a microsomal gill (Na+,K+)-ATPase from the blue crab Callinectes danae were analyzed using the substrate p-nitrophenylphosphate. The (Na+,K+)-ATPase hydrolyzed PNPP obeying cooperative kinetics (n=1.5) at a rate of V=125.4±7.5 U mg−1 with K0.5=1.2±0.1 mmol l−1; stimulation by potassium (V=121.0±6.1 U mg−1; K0.5=2.1±0.1 mmol l−1) and magnesium ions (V=125.3±6.3 U mg−1; K0.5=1.0±0.1 mmol l−1) was cooperative. Ammonium ions also stimulated the enzyme through site–site interactions (nH=2.7) to a rate of V=126.1±4.8 U mg−1 with K0.5=13.7±0.5 mmol l−1. However, K+-phosphatase activity was not stimulated further by K+ plus NH4+ ions. Sodium ions (KI=36.7±1.7 mmol l−1), ouabain (KI=830.3±42.5 μmol l−1) and orthovanadate (KI=34.0±1.4 nmol l−1) completely inhibited K+-phosphatase activity. The competitive inhibition by ATP (KI=57.2±2.6 μmol l−1) of PNPPase activity suggests that both substrates are hydrolyzed at the same site on the enzyme. These data reveal that the K+-phosphatase activity corresponds strictly to a (Na+,K+)-ATPase in C. danae gill tissue. This is the first known kinetic characterization of K+-phosphatase activity in the portunid crab C. danae and should provide a useful tool for comparative studies.  相似文献   

19.
A comparison of the thermoregulation of water foraging wasps (Vespula vulgaris, Polistes dominulus) under special consideration of ambient temperature and solar radiation was conducted. The body surface temperature of living and dead wasps was measured by infrared thermography under natural conditions in their environment without disturbing the insects’ behaviour. The body temperature of both of them was positively correlated with Ta and solar radiation. At moderate Ta (22–28 °C) the regression lines revealed mean thorax temperatures (Tth) of 35.5–37.5 °C in Vespula, and of 28.6–33.7 °C in Polistes. At high Ta (30–39 °C) Tth was 37.2–40.6 °C in Vespula and 37.0–40.8 °C in Polistes. The thorax temperature excess (TthTa) increased at moderate Ta by 1.9 °C (Vespula) and 4.4 °C (Polistes) per kW−1 m−2. At high Ta it increased by 4.0 °C per kW−1 m−2 in both wasps. A comparison of the living water foraging Vespula and Polistes with dead wasps revealed a great difference in their thermoregulatory behaviour. At moderate Ta (22–28 °C) Vespula exhibited distinct endothermy in contrast to Polistes, which showed only a weak endothermic activity. At high Ta (30–39 °C) Vespula reduced their active heat production, and Polistes were always ectothermic. Both species exhibited an increasing cooling effort with increasing insolation and ambient temperature.  相似文献   

20.
Neomycin and related aminoglycosidic antibiotics displace calcium from synaptosomes of guinea pig cerebral cortex and from preparations of phosphatidylinositol diphosphate. At low drug concentrations, inhibition of synaptosomal calcium binding is competitive (Ki = 3·10−5M), at high concentrations it is non-competitive (Ki = 4·10−4M). Monomolecular films of phosphatidylinositol diphosphate are contracted by low concentrations of neomycin in the subphase, and are expanded at high concentrations. This expansion persists even at the collapse pressure indicating a strong interaction between the drug and the lipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号