首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Activation of RNase L by 2′,5′-linked oligoadenylates (2-5A) is one of the antiviral pathways of interferon action. To determine the involvement of the 2-5A system in the control of human immunodeficiency virus type 1 (HIV-1) replication, a segment of the HIV-1 nef gene was replaced with human RNase L cDNA. HIV-1 provirus containing sense orientation RNase L cDNA caused increased expression of RNase L and 500- to 1,000-fold inhibition of virus replication in Jurkat cells for a period of about 2 weeks. Subsequently, a partial deletion of the RNase L cDNA which coincided with increases in virus production occurred. The anti-HIV activity of RNase L correlated with decreases in HIV-1 RNA and with an acceleration in cell death accompanied by DNA fragmentation. Replication of HIV-1 encoding RNase L was also transiently suppressed in peripheral blood lymphocytes (PBL). In contrast, recombinant HIV containing reverse orientation RNase L cDNA caused decreased levels of RNase L, increases in HIV yields, and reductions in the anti-HIV effect of alpha interferon in PBL and in Jurkat cells. To obtain constitutive and continuous expression of RNase L cDNA, Jurkat cells were cotransfected with HIV-1 proviral DNA and with plasmid containing a cytomegalovirus promoter driving expression of RNase L cDNA. The RNase L plasmid suppressed HIV-1 replication by eightfold, while an antisense RNase L construct enhanced virus production by twofold. These findings demonstrate that RNase L can severely impair HIV replication and suggest involvement of the 2-5A system in the anti-HIV effect of alpha interferon.  相似文献   

2.
3.
To evaluate an endonuclease resistance property of oligodeoxynucleotides (ODNs) containing 5-(N-aminohexyl)carbamoyl-2'-deoxyuridines (Hs) and to elucidate whether a duplex consisting of the ODN analogue and its complementary RNA induces RNase H activity, the ODNs containing the deoxyuridine analogues, Hs, at intervals of one, two, three, four and five natural nucleosides were synthesized. From partial hydrolysis of these ODNs with nuclease S1 (an endonuclease), it was found that the ODNs became more stable towards nucleolytic hydrolysis by the enzyme as the number of H increased. Furthermore, to examine whether the duplexes composed of the ODNs containing Hs and their complementary RNAs are substrates for RNase H or not, the duplexes of these ODNs and their complementary RNA strands were treated with Escherichia coliRNase H. It was found that cleavage of the RNA strands by the enzyme was kinetically affected by the introduction of Hs into the duplexes.  相似文献   

4.
RNase L is an antiviral endoribonuclease that cleaves viral mRNAs after single-stranded UA and UU dinucleotides. Poliovirus (PV) mRNA is surprisingly resistant to cleavage by RNase L due to an RNA structure in the 3C(Pro) open reading frame (ORF). The RNA structure associated with the inhibition of RNase L is phylogenetically conserved in group C enteroviruses, including PV type 1 (PV1), PV2, PV3, coxsackie A virus 11 (CAV11), CAV13, CAV17, CAV20, CAV21, and CAV24. The RNA structure is not present in other human enteroviruses (group A, B, or D enteroviruses). Coxsackievirus B3 mRNA and hepatitis C virus mRNA were fully sensitive to cleavage by RNase L. HeLa cells expressing either wild-type RNase L or a dominant-negative mutant RNase L were used to examine the effects of RNase L on PV replication. PV replication was not inhibited by RNase L activity, but rRNA cleavage characteristic of RNase L activity was detected late during the course of PV infection, after assembly of intracellular virus. Rather than inhibiting PV replication, RNase L activity was associated with larger plaques and better cell-to-cell spread. Mutations in the RNA structure associated with the inhibition of RNase L did not affect the magnitude of PV replication in HeLa cells expressing RNase L, consistent with the absence of observed RNase L activity until after virus assembly. Thus, PV carries an RNA structure in the 3C protease ORF that potently inhibits the endonuclease activity of RNase L, but this RNA structure does not prevent RNase L activity late during the course of infection, as virus assembly nears completion.  相似文献   

5.
This paper described synthesis of 2',5'-oligoadenylate (2-5A) analogs containing the purine acyclonucleoside, 9-[(2'S,3'R)-2',3',4'-trihydroxybutyl]adenine (2). The ability of the analogs to activate recombinant human RNase L was evaluated using 5'-32P-r(C11U2C7)-3' as a substrate. The EC50 value (the concentration of the 2-5A required to cleave half of the RNA) of the parent 2-5A tetramer 13 was 1.0 nM, whereas those of the analog 14 incorporating 2 at the second position from the 5'-end and the analog 15 incorporating 2 at the third position from the 5'-end were 9.0 and 1.7 nM, respectively. The analogs 14 and 15 were only 9- and 1.7-fold less potent than the parent 2-5A 13 itself, in RNase L activation ability. Furthermore, the oligodeoxynucleotide containing 2 was more resistant to nucleolytic hydrolysis by snake venom phosphodiesterase (a 3'-exonuclease) than the unmodified oligodeoxynucleotide. Thus, incorporation of an acyclonucleoside into 2-5A may be useful for developing an antiviral agent based on the 2-5A system.  相似文献   

6.
The 2-5A/RNase L pathway is one of the first cellular defences against viruses. RNase L is an unusual endoribonuclease which activity is strictly regulated by its binding to a small oligonucleotide, 2-5A. 2-5A itself is very unusual, consisting of a series of 5'- triphosphorylated oligoadenylates with 2'-5' bonds. But RNase L activity is not limited to viral RNA cleavage. RNase L plays a central role in innate immunity, apoptosis, cell growth and differentiation by regulating cellular RNA stability and expression. Default in its activity leads to increased susceptibility to virus infections and to tumor development. RNase L gene has been identified as HPC1 (Hereditary Prostate Cancer 1) gene. Study of RNase L variant R462Q in etiology of prostate cancer has led to the identification of the novel human retrovirus closely related to xenotropic murine leukemia viruses (MuLVs) and named XMRV.  相似文献   

7.
The latent ribonuclease RNase L and the interferon-inducible 2′,5′-oligoadenylate synthetase (OAS) have been implicated in the antiviral response against hepatitis C virus (HCV). However, the specific roles of these enzymes against HCV have not been fully elucidated. In this study, a scarce endogenous expression and RNA degrading activity of RNase L in human hepatoma Huh7 cells enabled us to demonstrate the antiviral activity of RNase L against HCV replication through the transient expression of the enzyme. The antiviral potential of specific members of the OAS family was further examined through overexpression and RNA interference approaches. Our data suggested that among the members of the OAS family, OAS1 p46 and OAS3 p100 mediate the RNase l-dependent antiviral activity against HCV.  相似文献   

8.
An interferon-induced endoribonuclease, ribonuclease L (RNase L), is implicated in both the molecular mechanism of action of interferon and the fundamental control of RNA stability in mammalian cells. RNase L is catalytically active only after binding to an unusual activator molecule containing a 5'-phosphorylated 2',5'-linked oligoadenylate (2-5A), in the N-terminal half. Here, we report the crystal structure of the N-terminal ankyrin repeat domain (ANK) of human RNase L complexed with the activator 2-5A. This is the first structural view of an ankyrin repeat structure directly interacting with a nucleic acid, rather than with a protein. The ANK domain folds into eight ankyrin repeat elements and forms an extended curved structure with a concave surface. The 2-5A molecule is accommodated at a concave site and directly interacts with ankyrin repeats 2-4. Interestingly, two structurally equivalent 2-5A binding motifs are found at repeats 2 and 4. The structural basis for 2-5A recognition by ANK is essential for designing stable 2-5As with a high likelihood of activating RNase L.  相似文献   

9.
The synthesis of a novel 2-5A-antisense chimera having two molecules of a 2-5A tetramer at the 5'-terminus of the antisense moiety with a 2-(hydroxymethyl)-1,3-propanediol linker is described. The ability of the synthesized 2-5A antisense chimeras to activate RNase L was estimated by monitoring the cleavage of a target RNA by the activated RNase L. The double-headed 2-5A-antisense chimera linked with two molecules of a butanediol linker more efficiently cleaved the target RNA as compared with the single-headed 2-5A-antisense chimera and the double-headed 2-5A-antisense chimera linked with a molecule of the butanediol linker.  相似文献   

10.
To potentiate the 2-5A (2',5'-oligoadenylate)-antisense and peptide nucleic acid (PNA) approaches to regulation of gene expression, composite molecules were generated containing both 2-5A and PNA moieties. 2-5A-PNA adducts were synthesized using solid-phase techniques. Highly cross-linked polystyrene beads were functionalized with glycine tethered through a p-hydroxymethylbenzoic acid linker and the PNA domain of the chimeric oligonucleotide analogue was added by sequential elongation of the amino terminus with the monomethoxytrityl protected N-(2-aminoethyl)-N-(adenin-1-ylacetyl)glycinate. Transition to the 2-5A domain was accomplished by coupling of the PNA chain to dimethoxytrityl protected N-(2-hydroxyethyl)-N-(adenin-1-ylacetyl)glycinate. Finally, (2-cyanoethyl)-N,N-diisopropyl-4-O-(4,4-dimethoxytrityl)butylphosphor amidite and the corresponding (2-cyanoethyl)-N,N-diisopropylphosphoramidite of 5-O-(4,4'-dimethoxytrityl)-3-O-(tert-butyldimethylsilyl)-N6-benzoyladeno sine were the synthons employed to add the 2 butanediol phosphate linkers and the four 2',5'-linked riboadenylates. The 5'-phosphate moiety was introduced with 2-[[2-(4,4'-dimethoxytrityloxy)ethyl]sulfonyl]ethyl-(2-cyanoethyl) -N,N-diisopropylphosphoramidite. Deprotection with methanolic NH3 and tetraethylammonium fluoride afforded the desired products, 2-SA-pnaA4, 2-5A-pnaA8 and 2-5A-pnaA12. When evaluated for their ability to cause the degradation of two different RNA substrates by the 2-5A-dependent RNase L, these new 2-5A-PNA conjugates were found to be potent RNase L activators. The union of 2-5A and PNA presents fresh opportunities to explore the biological and therapeutic implications of these unique approaches to antisense.  相似文献   

11.
The interferon (IFN)-inducible, 2′,5′-oligoadenylate (2-5A)-dependent ribonuclease L (RNase L) plays key role in antiviral defense of mammalian cells. Induction by IFN and activation by double-stranded RNA lead to 2-5A cofactor synthesis, which activates RNase L by causing its dimerization. Active RNase L degrades single-stranded viral as well as cellular RNAs causing apoptosis of virus-infected cells. Earlier, we had reported that expression of recombinant human RNase L caused RNA-degradation and cell-growth inhibition in E. coli without the need for exogenous 2-5A. Expression of human RNase L in E. coli usually leads to problems of leaky expression, low yield and degradation of the recombinant protein, which demands number of chromatographic steps for its subsequent purification thereby, compromising its biochemical activity. Here, we report a convenient protocol for expression of full-length, soluble and biochemically active recombinant human RNase L as GST-RNase L fusion protein from E. coli utilizing a single-step affinity purification with an appreciable yield of the highly purified protein. Recombinant RNase L was characterized by SDS-PAGE, immunoblotting and MALDI-TOF analysis. A semi-quantitative agarose-gel-based ribonuclease assay was developed for measuring its 2-5A-dependent RNase L activity against cellular large rRNAs as substrates. The optimized expression conditions minimized degradation of the protein, making it a convenient method for purification of RNase L, which can be utilized to study effects of various agents on the RNase L activity and its protein–protein interactions.  相似文献   

12.
RNase L is the 2',5'-oligoadenylate (2-5A)-dependent endoribonuclease that functions in interferon action and apoptosis. One of the intriguing, albeit unexplained, features of RNase L is its significant homology to protein kinases. Despite the homology, however, no protein kinase activity was detected during activation and RNA cleavage reactions with human RNase L. Similarly, the kinase plus ribonuclease domains of RNase L produced no detectable protein kinase activity in contrast to the phosphorylation obtained with homologous domains of the related kinase and endoribonuclease, yeast IRE1p. In addition, neither ATP nor pA(2'p5'A)3was hydrolyzed by RNase L. To further investigate the function of the kinase homology in RNase L, the conserved lysine at residue 392 in protein kinase-like domain II was replaced with an arginine residue. The resulting mutant, RNase LK392R, showed >100-fold decreases in 2-5A-dependent ribonuclease activity without reducing 2-5A- or RNA-binding activities. The greatly reduced activity of RNase LK392Rwas correlated to a defect in the ability of RNase L to dimerize. These results demonstrate a critical role for lysine 392 in the activation and dimerization of RNase L, thus suggesting that these two activities are intimately linked.  相似文献   

13.
14.
Chronic hepatitis C virus (HCV) infections are a significant cause of morbidity and mortality worldwide. Interferon-alpha2b treatment, alone or in combination with ribavirin, eliminates HCV from some patients, but patients infected with HCV genotype 1 viruses are cured less frequently than patients infected with HCV genotype 2 or 3 viruses. We report that HCV mRNA was detected and destroyed by the interferon-regulated antiviral 2'-5' oligoadenylate synthetase/ ribonuclease L pathway present in cytoplasmic extracts of HeLa cells. Ribonuclease L cleaved HCV mRNA into fragments 200 to 500 bases in length. Ribonuclease L cleaved HCV mRNA predominately at UA and UU dinucleotides within loops of predicted stem-loop structures. HCV mRNAs from relatively interferon-resistant genotypes (HCV genotypes 1a and 1b) have fewer UA and UU dinucleotides than HCV mRNAs from more interferon-sensitive genotypes (HCV genotypes 2a, 2b, 3a, and 3b). HCV 2a mRNA, with 73 more UA and UU dinucleotides than HCV 1a mRNA, was cleaved by RNase L more readily than HCV 1a mRNA. In patients, HCV 1b mRNAs accumulated silent mutations preferentially at UA and UU dinucleotides during interferon therapy. These results suggest that the sensitivity of HCV infections to interferon therapy may correlate with the efficiency by which RNase L cleaves HCV mRNA.  相似文献   

15.
16.
17.
The 2–5A system is an interferon-regulated antiviral RNA decay pathway present in cells of higher vertebrates. Two enzymes are essential, a 2–5A synthetase which produces 5′-phosphorylated, 2′,5′-linked oligoadenylates (2–5A) in response to doublestranded RNA, and the 2–5A-dependent RNase L. To determine if these human proteins would be functional in plants, we expressed the human cDNAs for a 2–5A synthetase and RNase L in separate tobacco plants. Both proteins were enzymatically active in extracts of transgenic plants while such activities were not detected in the control plants. Furthermore, activation by 2–5A of RNase L in the transgenic plant leaves was shown to cause degradation of ribosomal RNA. The requirement for both the synthetase and RNase L for antiviral activity was underscored by the observations that expression of human RNase L alone or 2–5A-synthetase alone was insufficient to protect plants against either tobacco etch virus or tobacco mosaic virus.  相似文献   

18.
Incorporation of a 4-hydroxy-N-acetylprolinol nucleotide analogue at the 3'-terminus of DNA or 2-5A-DNA sequences resulted in a significantly enhanced 3'-exonuclease resistance while the affinity for complementary RNA was only slightly decreased. Furthermore, the binding to and activation of human RNase L by thus modified 2-5A-DNA conjugates was not altered as compared to the parent unmodified 2-5A-DNAs.  相似文献   

19.
An endoribonuclease, RNase L, which is activated in the presence of 2',5'-linked oligoadenylates, p(1-3)A(2'p5'A)(>2), is the terminal factor of the anti-viral action of interferon. Activation of RNase L results in inhibition of viral proliferation along with induction of apoptosis. Attempts to acquire more effective activators, 2-5A derivatives, have been made for the development of antiviral or anticancer agents. However, the ability of 2-5A derivatives to activate RNase L could not simply be compared due to the diversity of the assay methods used. We have now developed a facile method for assaying the activity of RNase L involving the use of non-fusion RNase L expressed in Escherichia coli and yeast 5S ribosomal RNA as a substrate. Using this method, several 2-5A derivative species have been revaluated. The results suggest that 2-5A molecules modified at the 8-position of the third (from the 5' terminus) adenine ring cause effective dimerization of RNase L and thus increase the ability of RNase L activation.  相似文献   

20.
Analogues of the 2',5'-linked adenylate trimers monophosphate (p5'A2'p5'A2'p5'A) containing 8-hydroxypropyladenosine, 8-bromoadenosine, and 8-hydroxyadenosine in the first, second, and third nucleotide positions were tested for their ability to bind to and activate RNase L of mouse L cells. p5'AHPr2'p5'AHPr2'p5'AHPr (pAHPr3) (1b) and p5'ABr2'p5'ABr2'p5'ABr (pABr3) (1d) were markedly decreased in ability to bind to the 2-5A dependent endonuclease. On the other hand, analogue of the 2',5'-linked adenylate trimer monophosphate substituted by 8-hydroxyadenosine in the first, second, and third nucleotide position was bound about as well as parent 2-5A [pppA(2'p5'A)2] (p3A3) (1e) to RNase L. Additionally, p5'AOH2'p5'AOH2'p5'AOH (pAOH3) (1c) was as active as parent 2-5A in the rRNA cleavage assay, while pAHPr3 (1b) and pABr3 (1d) were devoid of activity. The 8-substituted analogues of 2-5A were more resistant to the degradation by the (2',5') phosphodiesterase. Finally of particular interest was monophosphate, pAOH3 (1c) which possessed nearly 100% of the translation inhibitory activity of 2-5A triphosphate itself. These results suggest that changes in the base-sugar torsion angles of 2-5A may modulate both binding to and activation of mouse L cell RNase L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号