首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Purpose

The aim of the study was to evaluate connectivity modifications in the Default Mode Network (DMN) in patients with cerebral glioma, and to correlate these modifications to tumor characteristics.

Methods

Twenty-four patients with a left-hemisphere cerebral tumor (14 grade II and 10 grade IV gliomas) and 14 healthy age-matched right-hand volunteers were enrolled in the study. Subjects underwent fMRI while performing language tasks for presurgical mapping. Data was analyzed with independent component analysis in order to identify the DMN. DMN group maps were produced by random-effect analysis (p<0.001, FDR-corrected). An analysis of variance across the three groups (p<0.05) and post-hoc t-test contrasts between pairs of groups were calculated (p<0.05, FDR-corrected).

Results

All three groups showed typical DMN areas. However, reduced DMN connectivity was detected in tumor patients with respect to controls. A significantly increased and reduced integration of DMN areas was observed in the hippocampal and prefrontal regions, respectively. Modifications were closely related to tumor grading. Moreover, the DMN lateralized to the hemisphere contralateral to tumor in the low-grade, but not in the high-grade tumor patients.

Conclusion

Modifications of DMN connectivity were induced by gliomas and differed for high and low grade tumors.  相似文献   

2.
Recently, numerous attempts have been made to understand the dynamic behavior of complex brain systems using neural network models. The fluctuations in blood-oxygen-level-dependent (BOLD) brain signals at less than 0.1 Hz have been observed by functional magnetic resonance imaging (fMRI) for subjects in a resting state. This phenomenon is referred to as a "default-mode brain network." In this study, we model the default-mode brain network by functionally connecting neural communities composed of spiking neurons in a complex network. Through computational simulations of the model, including transmission delays and complex connectivity, the network dynamics of the neural system and its behavior are discussed. The results show that the power spectrum of the modeled fluctuations in the neuron firing patterns is consistent with the default-mode brain network's BOLD signals when transmission delays, a characteristic property of the brain, have finite values in a given range.  相似文献   

3.
Ma N  Liu Y  Fu XM  Li N  Wang CX  Zhang H  Qian RB  Xu HS  Hu X  Zhang DR 《PloS one》2011,6(1):e16560

Background

The default mode network (DMN) is a set of brain regions that exhibit synchronized low frequency oscillations at resting-state, and is believed to be relevant to attention and self-monitoring. As the anterior cingulate cortex and hippocampus are impaired in drug addiction and meanwhile are parts of the DMN, the present study examined addiction-related alteration of functional connectivity of the DMN.

Methodology

Resting-state functional magnetic resonance imaging data of chronic heroin users (14 males, age: 30.1±5.3 years, range from 22 to 39 years) and non-addicted controls (13 males, age: 29.8±7.2 years, range from 20 to 39 years) were investigated with independent component analysis to address their functional connectivity of the DMN.

Principal Findings

Compared with controls, heroin users showed increased functional connectivity in right hippocampus and decreased functional connectivity in right dorsal anterior cingulate cortex and left caudate in the DMN.

Conclusions

These findings suggest drug addicts'' abnormal functional organization of the DMN, and are discussed as addiction-related abnormally increased memory processing but diminished cognitive control related to attention and self-monitoring, which may underlie the hypersensitivity toward drug related cues but weakened strength of cognitive control in the state of addiction.  相似文献   

4.
The release of newly loaded [3H]GABA was studied in slices of different brain regions derived from rats in which acute hepatic encephalopathy (HE) was induced with a hepatotoxin thioacetamide. HE increased both spontaneous and high (50 mM) ammonium chloride-evoked GABA release in cerebral cortical slices by 38% and 50%, respectively. No effects of HE were noted in cerebellar or striatal slices. An increased release of GABA in the cerebral cortex may contribute to the endogenous benzodiazepine-mediated enhancement of GABAergic tone, which is thought to be partly responsible for the pathophysiological mechanism of HE.  相似文献   

5.
Astrocyte swelling and the subsequent increase in intracranial pressure and brain herniation are major clinical consequences in patients with acute hepatic encephalopathy. We recently reported that conditioned media from brain endothelial cells (ECs) exposed to ammonia, a mixture of cytokines (CKs) or lipopolysaccharide (LPS), when added to astrocytes caused cell swelling. In this study, we investigated the possibility that ammonia and inflammatory agents activate the toll‐like receptor 4 (TLR4) in ECs, resulting in the release of factors that ultimately cause astrocyte swelling. We found a significant increase in TLR4 protein expression when ECs were exposed to ammonia, CKs or LPS alone, while exposure of ECs to a combination of these agents potentiate such effects. In addition, astrocytes exposed to conditioned media from TLR4‐silenced ECs that were treated with ammonia, CKs or LPS, resulted in a significant reduction in astrocyte swelling. TLR4 protein up‐regulation was also detected in rat brain ECs after treatment with the liver toxin thioacetamide, and that thioacetamide‐treated TLR4 knock‐out mice exhibited a reduction in brain edema. These studies strongly suggest that ECs significantly contribute to the astrocyte swelling/brain edema in acute hepatic encephalopathy, likely as a consequence of increased TLR4 protein expression by blood‐borne noxious agents.

  相似文献   


6.
Lipids are an essential structural and functional component of cellular membranes. Changes in membrane lipid composition are known to affect the activities of many membrane-associated enzymes, endocytosis, exocytosis, membrane fusion and neurotransmitter uptake, and have been implicated in the pathophysiology of many neurodegenerative disorders. In the present study, we investigated changes in the lipid composition of membranes isolated from the cerebral cortex of rats treated with thioacetamide (TAA), a hepatotoxin that induces fulminant hepatic failure (FHF) and thereon hepatic encephalopathy (HE). HE refers to acute neuropsychiatric changes accompanying FHF. The estimation of membrane phospholipids, cholesterol and fatty acid content in cerebral cortex membranes from TAA-treated rats revealed a decrease in cholesterol, phosphatidylserine, sphingomyelin, a monounsaturated fatty acid, namely oleic acid, and the polyunsaturated fatty acids gamma-linolenic acid, decosa hexanoic acid and arachidonic acid compared with controls. Assessment of membrane fluidity with pyrene, 1,6-diphenyl-1,3,5-hexatriene and 1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene revealed a decrease in the annular membrane fluidity, whereas the global fluidity was unaffected. The level of the thiobarbituric acid reactive species marker for lipid peroxidation also increased in membranes from TAA-treated rats, thereby indicating the prevalence of oxidative stress. Results from the present study demonstrate gross alterations in cerebral cortical membrane lipid composition and fluidity during TAA-induced HE, and their possible implications in the pathogenesis of this condition are also discussed.  相似文献   

7.
Acute liver failure (ALF) is characterized neuropathologically by cytotoxic brain edema and biochemically by increased brain ammonia and its detoxification product, glutamine. The osmotic actions of increased glutamine synthesis in astrocytes are considered to be causally related to brain edema and its complications (intracranial hypertension, brain herniation) in ALF. However studies using multinuclear (1)H- and (13)C-NMR spectroscopy demonstrate that neither brain glutamine concentrations per se nor brain glutamine synthesis rates correlate with encephalopathy grade or the presence of brain edema in ALF. An alternative mechanism is now proposed whereby the newly synthesized glutamine is trapped within the astrocyte as a consequence of down-regulation of its high affinity glutamine transporter SNAT5 in ALF. Restricted transfer out of the cell rather than increased synthesis within the cell could potentially explain the cell swelling/brain edema in ALF. Moreover, the restricted transfer of glutamine from the astrocyte to the adjacent glutamatergic nerve terminal (where glutamine serves as immediate precursor for the releasable/transmitter pool of glutamate) could result in decreased excitatory transmission and excessive neuroinhibition that is characteristic of encephalopathy in ALF. Paradoxically, in spite of renewed interest in arterial ammonia as a predictor of raised intracranial pressure and brain herniation in ALF, ammonia-lowering agents aimed at reduction of ammonia production in the gut have so far been shown to be of limited value in the prevention of these cerebral consequences. Mild hypothermia, shown to prevent brain edema and intracranial hypertension in both experimental and human ALF, does so independent of effects on brain glutamine synthesis; whether or not hypothermia restores expression levels of SNAT5 in ALF awaits further studies. While inhibitors of brain glutamine synthesis such as methionine sulfoximine, have been proposed for the prevention of brain edema in ALF, potential adverse effects have so far limited their applicability.  相似文献   

8.
JC virus encephalopathy (JCVE) is a newly described gray matter disease of the brain caused by productive infection of cortical pyramidal neurons. We characterized the full length sequence of JCV isolated from the brain of a JCVE patient, analyzed its distribution in various compartments by PCR, and determined viral gene expression in the brain by immunohistochemistry(IHC). We identified a novel JCV variant, JCV(CPN1), with a unique 143 bp deletion in the Agno gene encoding a truncated 10 amino acid peptide, and harboring an archetype-like regulatory region. This variant lacked one of three nuclear protein binding regions in the Agno gene. It was predominant in the brain, where it coexisted with an Agno-intact wild-type strain. Double immunostaining with anti-Agno and anti- VP1 antibodies demonstrated that the truncated JCV(CPN1) Agno peptide was present in the majority of cortical cells productively infected with JCV. We then screened 68 DNA samples from 8 brain, 30 CSF and 30 PBMC samples of PML patients, HIV+ and HIV- control subjects. Another JCV(CPN) strain with a different pattern of Agno-deletion was found in the CSF of an HIV+/PML patient, where it also coexisted with wild-type, Agno-intact JCV. These findings suggest that the novel tropism for cortical pyramidal neurons of JCV(CPN1), may be associated with the Agno deletion. Productive and lytic infection of these cells, resulting in fulminant JCV encephalopathy and death may have been facilitated by the co-infection with a wild-type strain of JCV.  相似文献   

9.
10.

Background  

Angiopoietin-1 (Ang-1) and -2 (Ang-2) are keyplayers in the regulation of endothelial homeostasis and vascular proliferation. Angiopoietins may play an important role in the pathophysiology of cerebral vasospasm (CVS). Ang-1 and Ang-2 have not been investigated in this regard so far.  相似文献   

11.
Hepatic encephalopathy (HE) has been related to gut bacteria and inflammation in the setting of intestinal barrier dysfunction. We aimed to link the gut microbiome with cognition and inflammation in HE using a systems biology approach. Multitag pyrosequencing (MTPS) was performed on stool of cirrhotics and age-matched controls. Cirrhotics with/without HE underwent cognitive testing, inflammatory cytokines, and endotoxin analysis. Patients with HE were compared with those without HE using a correlation-network analysis. A select group of patients with HE (n = 7) on lactulose underwent stool MTPS before and after lactulose withdrawal over 14 days. Twenty-five patients [17 HE (all on lactulose, 6 also on rifaximin) and 8 without HE, age 56 ± 6 yr, model for end-stage liver disease score 16 ± 6] and ten controls were included. Fecal microbiota in cirrhotics were significantly different (higher Enterobacteriaceae, Alcaligeneceae, and Fusobacteriaceae and lower Ruminococcaceae and Lachnospiraceae) compared with controls. We found altered flora (higher Veillonellaceae), poor cognition, endotoxemia, and inflammation (IL-6, TNF-α, IL-2, and IL-13) in HE compared with cirrhotics without HE. In the cirrhosis group, Alcaligeneceae and Porphyromonadaceae were positively correlated with cognitive impairment. Fusobacteriaceae, Veillonellaceae, and Enterobacteriaceae were positively and Ruminococcaceae negatively related to inflammation. Network-analysis comparison showed robust correlations (all P < 1E-5) only in the HE group between the microbiome, cognition, and IL-23, IL-2, and IL-13. Lactulose withdrawal did not change the microbiome significantly beyond Fecalibacterium reduction. We concluded that cirrhosis, especially when complicated with HE, is associated with significant alterations in the stool microbiome compared with healthy individuals. Specific bacterial families (Alcaligeneceae, Porphyromonadaceae, Enterobacteriaceae) are strongly associated with cognition and inflammation in HE.  相似文献   

12.
13.
14.
Miao X  Wu X  Li R  Chen K  Yao L 《PloS one》2011,6(10):e25546

Background

Evidences from normal subjects suggest that the default-mode network (DMN) has posterior cingulate cortex (PCC), medial prefrontal cortex (MPFC) and inferior parietal cortex (IPC) as its hubs; meanwhile, these DMN nodes are often found to be abnormally recruited in Alzheimer''s disease (AD) patients. The issues on how these hubs interact to each other, with the rest nodes of the DMN and the altered pattern of hubs with respect to AD, are still on going discussion for eventual final clarification.

Principal Findings

To address these issues, we investigated the causal influences between any pair of nodes within the DMN using Granger causality analysis and graph-theoretic methods on resting-state fMRI data of 12 young subjects, 16 old normal controls and 15 AD patients respectively. We found that: (1) PCC/MPFC/IPC, especially the PCC, showed the widest and distinctive causal effects on the DMN dynamics in young group; (2) the pattern of DMN hubs was abnormal in AD patients compared to old control: MPFC and IPC had obvious causal interaction disruption with other nodes; the PCC showed outstanding performance for it was the only region having causal relation with all other nodes significantly; (3) the altered relation between hubs and other DMN nodes held potential as a noninvasive biomarker of AD.

Conclusions

Our study, to the best of our knowledge, is the first to support the hub configuration of the DMN from the perspective of causal relationship, and reveal abnormal pattern of the DMN hubs in AD. Findings from young subjects provide additional evidence for the role of PCC/MPFC/IPC acting as hubs in the DMN. Compared to old control, MPFC and IPC lost their roles as hubs owing to the obvious causal interaction disruption, and PCC was preserved as the only hub showing significant causal relations with all other nodes.  相似文献   

15.
16.
17.
18.
19.
20.
Supersensitivity of GABA-A receptors in hepatic encephalopathy   总被引:2,自引:0,他引:2  
During the past decade a new approach to pathogenetic, studies of hepatic encephalopathy has been undertaken to identify the neurochemical alterations which characterize the syndrome. Using animal models of hepatic encephalopathy electrophysiological, behavioral, pharmacological and biochem evidence were provided of an increased functional activity of the GABA-A receptors, including the Benzodiazepine site. These demonstrations seem to explain the increased sensitivity of patients with acute or chronic liver disease to sedative administration. The described increased tone of the GABAergic receptor complex seems to play a key role in the generalized depression of the central nervous system which characterizes hepatic encephalopathy, but other factors seem to contribute to the neuronal derangement present in this syndrome leading to an imbalance between inhibitory and excitatory receptor systems in the brain. Based on these findings a new symptomatic treatment with antibenzodazepine compounds which seem temporarely to counteract the symptoms of hepatic encephalopathy, was introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号