首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cho YW  Kim D  Park EH  Lim CJ 《Molecules and cells》2002,13(2):315-321
The genomic DNA encoding thioredoxin (TRX) was previously isolated from the fission yeast Schizosaccharomyces pombe. In this investigation, regulation of the S. pombe TRX gene was studied in lacZ translational fusions. The synthesis of beta-galactosidase from the fusion plasmid pYKT24 was significantly enhanced by treatments with cadmium chloride, zinc chloride, and high temperatures. Synthesis of beta-galactosidase from the fusion plasmid was significantly decreased by higher concentrations (5 microM, 10 microM) of mercuric chloride, whereas it was enhanced by its lower concentration (1 microM). Diamide affected the synthesis of beta-galactosidase in the same manner with mercuric chloride. However, high osmolarity had no effect on the beta-galactosidase synthesis from the fusion plasmid pYKT24. Various fusion plasmids were constructed to carry serially deleted upstream regions of the TRX gene. Pap1 mediates the regulation of the S. pombe TRX gene. The upstream region, between 987 and 1,270 bp from the translational initiation point, is responsible for the regulation.  相似文献   

2.
A glutathione S-transferase (GST) gene has been cloned from Schizosaccharomyces pombe for the first time. The nucleotide sequence determined was found to contain 2030 base pairs including an open reading frame of 229 amino acids that would encode a protein of a molecular mass of 27017 Da. The cloned GST gene was expressed and was found to function in S. pombe, Saccharomyces cerevisiae, and Escherichia coli. The plasmid pGT207 encoding the S. pombe GST gene appeared to be able to accelerate the growth of a wild type S. pombe culture. In a culture of S. pombe containing plasmid pGT207, the growth was inhibited less by mercuric chloride than in a culture with vector alone. The 1088 bp region upstream from the GST gene as well as the region encoding the N-terminal 14 amino acids was transferred into the promoterless beta-galactosidase gene of plasmid YEp357R to yield the fusion plasmid pYSH2000. beta-Galactosidase synthesis was induced by cadmium chloride, mercuric chloride, hydrogen peroxide, and menadione. It was also induced by high temperature. These results suggest that the cloned S. pombe GST gene is involved in the oxidative stress response.  相似文献   

3.
4.
The fission yeast cells that contained the cloned glutathione synthetase (GS) gene showed 1.4-fold higher glutathione (GSH) content and 1.9-fold higher GS activity than the cells without the cloned GS gene. Interestingly, gamma-glutamylcysteine synthetase activity increased 2.1-fold in the S. pombe cells that contained the cloned GS gene. The S. pombe cells that harbored the multicopy-number plasmid pRGS49 (containing the cloned GS gene) showed a higher level of survival on solid media with cadmium chloride (1 mM) or mercuric chloride (10 microM) than the cells that harbored the YEp357R vector. The 506 bp upstream sequence from the translational initiation point and N-terminal 8 amino acid-coding region were fused into the promoterless beta-galactosidase gene of the shuttle vector YEp367R to generate the fusion plasmid pUGS39. Synthesis of beta-galactosidase from the fusion plasmid pUGS39 was significantly enhanced by cadmium chloride and NO-generating S-nitroso-N-acetylpenicillamine (SNAP) and sodium nitroprusside (SN). It was also induced by L-buthionine-(S,R)-sulfoximine, a specific inhibitor of gamma-glutamylcysteine synthetase (GCS). We also found that the expression of the S. pombe GS gene is regulated by the Atf1-Spc1-Wis1 signal pathway.  相似文献   

5.
The manganese superoxide dismutase (MnSOD) is a mitochondrial enzyme that dismutates a potentially toxic superoxide radical into hydrogen peroxide and dioxygen. To study the regulation of the Schizosaccharomyces pombe MnSOD gene, the 943 bp upstream region was fused into the promoterless beta-galactosidase gene of the shuttle vector YEp357, which resulted in the fusion plasmid pMS14. Restriction mapping and nucleotide sequencing confirmed its construction. The synthesis of beta-galactosidase from the fusion plasmid was induced by aluminum chloride, menadione, cadmium chloride, manganese chloride, and hydrogen peroxide. It was also induced by NO-generating S-nitroso-N-acetylpenicillamine (SNAP). However, cupric chloride and zinc chloride did not affect the synthesis of beta-galactosidase from the fusion plasmid. The beta-galactosidase synthesis appeared to be independent of the Pap1 protein. These results suggest that some metals, oxidative stress, and nitric oxide regulate the S. pombe MnSOD gene.  相似文献   

6.
Lim CJ  Cho YW  Sa JH  Lim HW  Kim HG  Kim SJ  Park EH 《Molecules and cells》2002,14(3):431-436
The genomic DNA encoding a second glutathione S-transferase (GSTII) was previously isolated from the fission yeast Schizosaccharomyces pombe. Its expression was shown to be induced by menadione, mercuric chloride, o-dinitrobenzene, and NO-generating S-nitroso-N-acetylpenicillamine using the GSTII-lacZ fusion harboring the 910 bp upstream region from the translational initiation point. In this study, the additional fusion plasmids pGST50-590 and pGST50-6R-590 were constructed to carry the 590 bp upstream region in the vectors YEp357 and YEp367R, respectively. The synthesis of beta-galactosidase from the fusion plasmid pGST50-590 was about 3-fold higher than that from the fusion plasmid pGST50-F, indicating the presence of negatively activating sequence in the -910 to approximately -590 region. It was also enhanced by the same agents, which induced the synthesis of beta-galactosidase from the fusion plasmid pGST50-F. The synthesis of beta-galactosidase from both fusion plasmids pGST50-F and pGST50-590 was enhanced by the overexpressed Pap1 protein. The synthesis of beta-galactosidase from the two YEp367R derivatives pGST50-6R-F and pGST50-6R-590 was greatly decreased in the Pap1-negative strain TP108-3C. These results propose the Pap1-dependent regulation of the GSTII gene from the fission yeast.  相似文献   

7.
8.
9.
A second glutathione S-transferase gene (GST II) was isolated from the chromosomal DNA of the fission yeast Schizosaccharomyces pombe. The nucleotide sequence determined contains 1908 bp including an open reading frame of 230 amino acids that would encode a protein of a molecular mass of 26843.4 Da. The amino acid sequence of the putative GST II is very homologous with that of the previously isolated GST gene (GST I) located in the same chromosome III of S. pombe. The cloned GST II gene produces the functional GST in S. pombe, and it gives much higher GST in the stationary phase than in the exponential phase. Regulation of the GST II gene was studied using the GST II-lacZ fusion. The synthesis of beta-galactosidase from the fusion plasmid is greatly enhanced by the treatments with oxidative stresses such as menadione and mercuric chloride. It is also induced by o-dinitrobenzene, one of the GST substrates. NO-generating S-nitroso-N-acetylpenicillamine has a weak induction effect on the expression of GST II gene. These results indicate that the S. pombe GST II gene is involved in the oxidative stress response and detoxification. However, physiological meaning on the existence of the two similar GST genes in S. pombe remains unknown yet.  相似文献   

10.
11.
The structural gene for the putative gamma-glutamyl transpeptidase (GGT) was isolated from the chromosomal DNA of the fission yeast Schizosaccharomyces pombe. The determined sequence contained 3324 bp and encoded the predicted 630 amino acid sequence of GGT, which resembles counterparts in Homo sapiens, Rattus norvegicus, Saccharomyces cerevisiae, and Escherichia coli. The S. pombe cells harboring the cloned GGT gene showed about twofold higher GGT activity in the exponential phase than the cells harboring the vector only, indicating that the cloned GGT gene was functional. To monitor the expression of the S. pombe GGT gene, we fused the fragment 1085 bp upstream of the cloned GGT gene into the promoterless beta-galactosidase gene of the shuttle vector YEp367R to generate the fusion plasmid pGT98. The synthesis of beta-galactosidase from the fusion plasmid in S. pombe cells was enhanced by treatments with NO-generating sodium nitroprusside (SN), L-buthionine-(S,R)-sulfoximine (BSO), and glycerol. The GGT mRNA level in the S. pombe cells was increased by SN and BSO. Involvement of Pap1 in the induction of the GGT gene by SN and BSO was observed.  相似文献   

12.
13.
Glutaredoxin (Grx) is a small, heat-stable protein acting as a multi-functional glutathione-dependent disulfide oxidoreductase. In this work, a gene encoding the monothiol glutaredoxin Grx4 was cloned from the genomic DNA of the fission yeast Schizosaccharomyces pombe. The determined DNA sequence carries 1706 bp, which is able to encode the putative 244 amino acid sequence of Grx with 27 099 Da. It does not contain an intron, and the sequence CGFS is found in the active site. Grx activity was increased 1.46-fold in S. pombe cells harboring the cloned Grx4 gene, indicating that the Grx4 gene is in vivo functioning. Although aluminum, cadmium, and hydrogen peroxide marginally enhanced the synthesis of beta-galactosidase from the Grx4-lacZ fusion gene, NO-generating sodium nitroprusside (0.5 mmol/L and 1.0 mmol/L) and potassium chloride (0.2 mol/L and 0.5 mol/L) significantly enhanced it. The Grx4 mRNA level was also enhanced after the treatment with sodium nitroprusside and potassium chloride. The synthesis of beta-galactosidase from the Grx4-lacZ gene was increased by fermentable carbon sources, such as glucose (lower than 2%) and sucrose, but not by nonfermentable carbon sources such as acetate and ethanol. The basal expression of the S. pombe Grx4 gene did not depend on the presence of Pap1. These results imply that the S. pombe monothiol Grx4 gene is genuinely functional and regulated by a variety of stresses.  相似文献   

14.
Sa JH  Shin YH  Lim HW  Kim K  Park EH  Lim CJ 《Molecules and cells》2002,14(3):444-448
A third gene that encodes glutathione S-transferase (GSTIII) was previously cloned from the fission yeast Schizosaccharomyces pombe. Using the GSTIII-lacZ fusion plasmid pGDA-19, its expression was shown to be enhanced by various metal ions. In the present study, four additional fusion plasmids, pGDA-29, pGDA-39, PGDA-49, and pGDA-59, were designed to carry 998, 378, 276, and 115 bp upstream regions from the translational initiation point, respectively. The major activation region was located between -998 and -378 bp upstream of the GSTIII gene. Regulatory sequences that are responsible for the induction by metal ions reside between -998 and -378 bp and between -276 and -115 bp upstream of the gene. The overexpressed Pap1 exerts a repression effect on the GSTIII expression via -998 to approximately -378 bp region, whereas it exerts an activation effect on the GSTIII expression via -270 to approximately -115 bp region. However, the induction of the GSTIII gene by metal ions occurs independent of Pap1.  相似文献   

15.
16.
The structural gene encoding a third thioredoxin (Trx) homologue, TRX3, of the fission yeast Schizosaccharomyces pombe was characterized and its regulation was studied. The determined DNA sequence encoded a putative 290 amino acid sequence of Trx with a molecular mass of 31,889 Da. The TRX3 mRNA level was increased in S. pombe cells harboring plasmid pTRX3, suggesting that the cloned TRX3 gene was functional. Yeast cultures harbouring plasmid pTRX3 exhibited shorter generation times and higher survival on solid minimal media plates incorporating mercury chloride (0.01 mmol/L) or hydrogen peroxide (1 mmol/L) compared with control cultures. Yeast cells containing extra copies of TRX3, but not TRX1 and TRX2, gave rise to lower reactive oxygen species levels than control cells. Oxidative stress owing to hydrogen peroxide and menadione enhanced the synthesis of beta-galactosidase from the TRX3-lacZ fusion gene in Pap1-positive cells but not in Pap1-negative cells. The TRX3 mRNA level was increased by oxidative stress only in Pap1-positive cells. Basal expression of the TRX3 gene also depended on Pap1. We concluded that S. pombe TRX3 is linked with yeast growth and oxidative stress response, with its expression being regulated by oxidative stress in a Pap1-dependent manner.  相似文献   

17.
18.
19.
20.
A genomic DNA encoding a second thioredoxin (TRX2) was isolated from the chromosomal DNA of the fission yeast Schizosaccharomyces pombe. The cloned sequence contains 1823 bp and encodes a protein of 121 amino acids. It has extra N-terminal 17 amino acid residues compared to previously identified thioredoxin (TRX1), which are positively charged and hydrophobic amino acids. The additional N-terminal region contains a plausible prepeptidase cleavage site, indicating that the TRX2 protein exists in mitochondria. The cloned TRX2 gene produced functional TRX estimated with insulin reduction assay. The upstream region of the TRX2 gene was fused into the promoterless beta-galactosidase gene of the shuttle vector YEp357R. The 782 bp sequence in the region further upstream of the TRX2 gene was found to be inhibitory in its expression. Synthesis of beta-galactosidase from the fusion plasmid pYFX135-HRL was enhanced by the addition of aluminum chloride and ferrous chloride, indicating that the TRX2 protein is involved in stress response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号