首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Underwater soundscapes vary due to the abiotic and biological components of the habitat. We quantitatively characterized the acoustic environments of two coral reef habitats, one in the Tropical Eastern Pacific (Panama) and one in the Caribbean (Florida Keys), over 2-day recording durations in July 2011. We examined the frequency distribution, temporal variability, and biological patterns of sound production and found clear differences. The Pacific reef exhibited clear biological patterns and high temporal variability, such as the onset of snapping shrimp noise at night, as well as a 400-Hz daytime band likely produced by damselfish. In contrast, the Caribbean reef had high sound levels in the lowest frequencies, but lacked clear temporal patterns. We suggest that acoustic measures are an important element to include in reef monitoring programs, as the acoustic environment plays an important role in the ecology of reef organisms at multiple life-history stages.  相似文献   

2.
Reef fish assemblages are exposed to a wide range of anthropogenic threats as well as chronic natural disturbances. In upwelling regions, for example, there is a seasonal influx of cool nutrient-rich waters that may shape the structure and composition of reef fish assemblages. Given that climate change may disrupt the natural oceanographic processes by altering the frequency and strength of natural disturbances, understanding how fish assemblages respond to upwelling events is essential to effectively manage reef ecosystems under changing ocean conditions. This study used the baited remote underwater video stations (BRUVS) and the traditional underwater visual census (UVC) to investigate the spatiotemporal patterns of reef fish assemblages in an upwelling region in the North Pacific of Costa Rica. A total of 183 reef fish species from 60 families were recorded, of which 166 species were detected using BRUVS and 122 using UVC. Only 66% of all species were detected using both methods. This study showed that the upwelling had an important role in shaping reef fish assemblages in this region, but there was also a significant interaction between upwelling and location. In addition, other drivers such as habitat complexity and habitat composition had an effect on reef fish abundances and species. To authors’ knowledge, this is the first study in the Eastern Tropical Pacific that combines BRUVS and UVC to monitor reef fish assemblages in an upwelling region, which provides more detailed information to assess the state of reef ecosystems in response to multiple threats and changing ocean conditions.  相似文献   

3.
Tiger sharks (Galeocerdo cuvier) play an important ecological role as top predators, yet knowledge of their reproductive ecology is scarce. Here, the authors report the first observation of a potential neonate G. cuvier at Cocos Island, a predator-dominated oceanic island in the Eastern Tropical Pacific (ETP). The individual was detected using baited remote underwater video stations (BRUVS). The cameras also detected female individuals potentially pregnant, suggesting that parturition may take place at or near the island. Nonetheless, it is still unclear if the presence of a single neonate is an isolated event or evidence that the species is using the island for reproduction.  相似文献   

4.
Coral reefs worldwide are threatened by thermal stress caused by climate change. Especially devastating periods of coral loss frequently occur during El Niño‐Southern Oscillation (ENSO) events originating in the Eastern Tropical Pacific (ETP). El Niño‐induced thermal stress is considered the primary threat to ETP coral reefs. An increase in the frequency and intensity of ENSO events predicted in the coming decades threatens a pan‐tropical collapse of coral reefs. During the 1982–1983 El Niño, most reefs in the Galapagos Islands collapsed, and many more in the region were decimated by massive coral bleaching and mortality. However, after repeated thermal stress disturbances, such as those caused by the 1997–1998 El Niño, ETP corals reefs have demonstrated regional persistence and resiliency. Using a 44 year dataset (1970–2014) of live coral cover from the ETP, we assess whether ETP reefs exhibit the same decline as seen globally for other reefs. Also, we compare the ETP live coral cover rate of change with data from the maximum Degree Heating Weeks experienced by these reefs to assess the role of thermal stress on coral reef survival. We find that during the period 1970–2014, ETP coral cover exhibited temporary reductions following major ENSO events, but no overall decline. Further, we find that ETP reef recovery patterns allow coral to persist under these El Niño‐stressed conditions, often recovering from these events in 10–15 years. Accumulative heat stress explains 31% of the overall annual rate of change of living coral cover in the ETP. This suggests that ETP coral reefs have adapted to thermal extremes to date, and may have the ability to adapt to near‐term future climate‐change thermal anomalies. These findings for ETP reef resilience may provide general insights for the future of coral reef survival and recovery elsewhere under intensifying El Niño scenarios.  相似文献   

5.
Aim To quantify general differences in reef community structure between well‐enforced and poorly enforced marine protected areas (MPAs) and fished sites across the Eastern Tropical Pacific (ETP) regional seascape Location The Pacific continental margin and oceanic islands of Costa Rica, Panama, Colombia and Ecuador, including World Heritage sites at Galapagos, Coiba, Cocos and Malpelo Methods Densities of reef fishes, mobile and sessile invertebrates, and macroalgae were quantified using underwater visual surveys at 136 ‘no‐take’ and 54 openly fished sites associated with seven large MPAs that encompassed a range of management strategies. Spatial variation in multivariate and univariate community metrics was related to three levels of fishing pressure (high‐protection MPAs, limited‐protection MPAs, fishing zones) for both continental and oceanic reefs. Results High‐protection MPAs possessed a much greater biomass of higher carnivorous fishes, lower densities of asteroids and Eucidaris spp. urchins, and higher coral cover than limited‐protection MPAs and fished zones. These results were generally consistent with the hypothesis that overfishing of predatory fishes within the ETP has led to increased densities of habitat‐modifying macroinvertebrates, which has contributed to regional declines in coral cover. Major differences in ecological patterns were also evident between continental and oceanic biogeographic provinces. Main conclusions Fishing down the food web, with associated trophic cascades, has occurred to a greater extent along the continental coast than off oceanic islands. Poorly enforced MPAs generate food webs more similar to those present in fished areas than in well‐protected MPAs.  相似文献   

6.
Coral Reefs - Isolated coral reef habitats are unique systems to study the natural dynamics of coral traits and their natural acclimatization, adaptation, and recovery from global-scale stressors...  相似文献   

7.
The Tropical Eastern Pacific (TEP) is a dynamic coastal environment characterized by a complex system of oceanic processes and discontinuous rocky habitats. These features, in conjunction with the ecological and physiological characteristics of Anisotremus interruptus, might limit gene flow and shape the evolutionary history of the species. In this study, we investigate the evolutionary history of the reef fish A. interruptus (and its Atlantic sister species A. surinamensis) throughout its range in the TEP, using two mitochondrial (cox1 and cytb) and two nuclear markers (S7 and RAG1). We found three genetic groups of A. interruptus with recent divergence times from the Galapagos Archipelago, Revillagigedo Archipelago, the continental TEP, and A. surinamensis the sister specie from the Atlantic. The haplotype mtDNA networks show A. surinamensis in a central position with respect to Pacific genetic haplogroups, whereas nDNA networks show mixed haplotypes between the four genetic groups. In the species tree, A. surinamensis appears as the sister species of all the Pacific samples and the Galapagos Archipelago population emerges as a genetically distinctive group. The samples from the Revillagigedo Archipelago also constitute a genetic distinctive group, closely related to the continental samples. Continental individuals do not show significant genetic structure and exhibit a population expansion during the Pleistocene. The sandy gaps of the TEP not appear to act as barriers isolating populations of A. interruptus, whereas the open sea gap between the oceanic islands and the continental coast do.  相似文献   

8.
Coral Reefs - Both natural and anthropogenic factors are changing coral-reef structure and function worldwide. Long-term monitoring has revealed declines in the local composition and species...  相似文献   

9.
  1. Monitoring large marine mammals is challenging due to their low abundances in general, an ability to move over large distances and wide geographical range sizes.
  2. The distribution of the pygmy (Kogia breviceps) and dwarf (Kogia sima) sperm whales is informed by relatively rare sightings, which does not permit accurate estimates of their distribution ranges. Hence, their conservation status has long remained Data Deficient (DD) in the Red list of the International Union for Conservation of Nature (IUCN), which prevent appropriate conservation measures.
  3. Environmental DNA (eDNA) metabarcoding uses DNA traces left by organisms in their environments to detect the presence of targeted taxon, and is here proved to be useful to increase our knowledge on the distribution of rare but emblematic megafauna.
  4. Retrieving eDNA from filtered surface water provides the first detection of the Dwarf sperm whale (Kogia sima) around the remote Malpelo island (Colombia).
  5. Environmental DNA collected during oceanic missions can generate better knowledge on rare but emblematic animals even in regions that are generally well sampled for other taxa.
  相似文献   

10.
11.

Background

Coral reefs in the Tropical Eastern Pacific (TEP) are amongst the most peripheral and geographically isolated in the world. This isolation has shaped the biology of TEP organisms and lead to the formation of numerous endemic species. For example, the coral Pocillopora damicornis is a minor reef-builder elsewhere in the Indo-West Pacific, but is the dominant reef-building coral in the TEP, where it forms large, mono-specific stands, covering many hectares of reef. Moreover, TEP P. damicornis reproduces by broadcast spawning, while it broods mostly parthenogenetic larvae throughout the rest of the Indo-West Pacific. Population genetic surveys for P. damicornis from across its Indo-Pacific range indicate that gene flow (i.e. larval dispersal) is generally limited over hundreds of kilometers or less. Little is known about the population genetic structure and the dispersal potential of P. damicornis in the TEP.

Methodology

Using multilocus microsatellite data, we analyzed the population structure of TEP P. damicornis among and within nine reefs and test for significant genetic structure across three geographically and ecologically distinct regions in Panama.

Principal Findings/Conclusions

We detected significant levels of population genetic structure (global RST = 0.162), indicating restricted gene flow (i.e. larvae dispersal), both among the three regions (RRT = 0.081) as well as within regions (RSR = 0.089). Limited gene flow across a distinct environmental cline, like the regional upwelling gradient in Panama, indicates a significant potential for differential adaptation and population differentiation. Individual reefs were characterized by unexpectedly high genet diversity (avg. 94%), relatively high inbreeding coefficients (global FIS = 0.183), and localized spatial genetic structure among individuals (i.e. unique genets) over 10 m intervals. These findings suggest that gene flow is limited in TEP P. damicornis populations, particularly among regions, but even over meter scales within populations.  相似文献   

12.
Due to the worldwide degradation of coral reefs, the active restoration of these ecosystems has received considerable attention in recent decades. This study investigated (1) the feasibility of using coral nurseries for restoration projects, (2) the minimum size required for a Pocillopora damicornis (Pocilloporidae) coral fragment to survive and grow in a nursery, and (3) the optimal transplant size of a fragment when transplanted to a degraded reef at Gorgona Island (Colombian Pacific). For this investigation, 230 fragments were transplanted directly to El Remanso reef, and another 150 fragments were maintained in in situ nurseries. Every 2 months, the length, weight, and survival of the fragments were recorded. After growing for 134 days in the nurseries, the 52 surviving fragments were transplanted to El Remanso reef, and after 5 months, the same variables were measured. Among the nursery‐reared fragments, the largest (4 to <8 cm) had the highest survival and growth rates, whereas among the directly transplanted fragments, the smallest fragments (<2 cm) had the highest survival and growth rates. However, the nursery‐reared fragments acquired greater structural complexity (arborescent morphology), and they were all alive 156 days after transplantation and presented a maximum linear growth rate of over 2 cm, which was higher than that of the directly transplanted fragments. Apparently, the arborescent morphology acquired during the nursery period provides advantages to the colonies that favor greater success when transplanted. Therefore, nursery‐reared fragments of P. damicornis between 2 and 4 cm are the most appropriate for use in restoration projects.  相似文献   

13.
  1. The flow of individuals among communities and their interactions with local environmental filters are increasingly recognised as determinants of biodiversity patterns in riverine ecosystems. Both incoming dispersers and local conditions are expected to systematically change along connectivity gradients from headwaters to downstream communities. However, the interplay between isolation-centrality gradients and environmental conditions as determinants of biodiversity structure and function has seldom been considered.
  2. Here, we represented the dendritic structure of the Negro River basin riverscape (Uruguay) in a directed graph quantifying the isolation-centrality of each river section and evaluated the direct and indirect pathways by which riverscape structure and environmental local drivers determine fish community assembly.
  3. Fish communities (n = 58) were sampled following a stratified sampling design that properly represents this isolation-centrality connectivity gradient through the riverscape. In each community, fish abundance, biomass, richness, and functional diversity were estimated, and the direct and indirect hypothesised connections among them were evaluated with structural equation models.
  4. We showed that the range of isolation among river sections determines a 2-fold, 5-fold, and 25-fold variation in total fish richness, abundance, and biomass, respectively. Additionally, isolation-centrality was positively associated with local temperature and conductivity, while negatively related to local depth. These variables and taxonomic richness accounted for most of the variation in total fish biomass (81%) herein used as measurement of ecosystem function. Local fish abundance was negatively and positively associated with functional evenness and taxonomic richness, respectively. Furthermore, once the effect of isolation on biomass and richness was accounted for, an effect of diversity on biomass became evident.
  5. Our results provide empirical evidence for the role of riverscape structure on taxonomic and functional diversity, biomass, and the relationship between biodiversity and ecosystem function. We emphasise that in the understanding of river biodiversity and its management, local determinants should not be considered without attention to metacommunity processes.
  相似文献   

14.
A major environmental problem in the ocean is the alarming increase in diseases affecting diverse marine organisms including corals. Environmental factors such as the rising seawater temperatures and terrestrial microbial input to the ocean have contributed to the increase in diseased organisms. We isolated and identified the fungal agents that may be leading to a disease in the Pacific sea fan Pacifigorgia eximia (Gorgoniidae, Octocorallia) in the Tropical Eastern Pacific. We isolated thirteen fungal genera in healthy and diseased colonies including Aspergillus sydowii. Aspergillus has been previously identified as responsible for the mortality of gorgonian corals in the Caribbean. This disease was observed in the Eastern Pacific affecting a completely different set of species nearly 30 years after the Caribbean outbreak, which concur with rising seawater temperatures and thermal anomalies that have been observed in the last 4 years.  相似文献   

15.
Bacterioplankton nutrient metabolism in the Eastern Tropical North Pacific (ETNP) was assessed using specific activities of intracellular nitrogen (N) assimilation enzymes and hydrolytic ectoenzymes during amendment experiments, mesocosms, and diel studies of in situ rates. Glutamine synthetase (GS) and assimilatory nitrate reductase (ANR) were used to investigate N bioavailability, alkaline phosphatase (AP) to assess phosphorous (P) bioavailability and β-glucosidase (β-Glu) to detect shifts in the use of labile dissolved organic carbon (DOC). Conditions regulating activity of each enzyme were tested using incubations of < 0.6 mm size-fractionated seawater amended with different combinations of N, P, and DOC as glucose. Overall, N-deficiency was indicated by pronounced growth stimulation and repression of GS and ANR activity in incubations amended with dissolved free amino acid and ammonium. Phosphate and glucose amendments produced little or no growth stimulation, but did influence activity of all enzymes measured. Enzyme activities of bacterioplankton in mesocosms of whole plankton indicated enhanced N-deficiency and glucoside hydrolysis when the plankton community was released from any P-deficiency. Spatially, enzyme activity of bacterioplankton during two diel studies (at one slope and one open-ocean station) suggested greater N-deficiency at surface depths than within the chlorophyll maximum where activity of AP and b-Glu was often greatest. There was also greater GS and ANR activity at the open-ocean station, which had lower concentrations of dissolved inorganic N (DIN) relative to soluble reactive P (SRP), than along the continental slope of Mexico. These data suggest that bacterioplankton in surface waters of the ETNP require a large flux of DOC to drive N-deficiency; whereas, bacterioplankton deeper in the chlorophyll maximum depend on hydrolysis of complex DOC and DOP to meet their carbon demand in the presence of elevated nutrients with a low DIN:SRP ratio.  相似文献   

16.
Aim To assess the effect of habitat fragmentation and isolation in determining the range‐size frequency distribution (RFD) of the shorefish fauna endemic to a discrete biogeographical region. Location The Tropical Eastern Pacific (TEP). Methods Habitat isolation represents the separation between oceanic islands and the continental shore of the TEP and habitat fragmentation the degree of spatial continuity of habitats (i.e. reefs, soft bottom, nearshore waters) along the continental coast of the TEP. The effects of habitat isolation and fragmentation were quantified by comparing the RFDs of (1) the species found on oceanic islands vs. the continental shore, and (2) species on the continental shore that use different habitat types. Results The RFD of the entire TEP fauna was bimodal, with peaks at both small‐ and large‐range ends of the spectrum. The small‐range peak was due almost entirely to island species and the large‐range peak due mainly to species found in both the continental shore and oceanic islands. RFDs varied among species using different habitats on the continental shore: reef‐fishes had a right‐skewed RFD, soft‐bottom species a flat RFD, and coastal‐pelagic fishes a left‐skewed RFD. Main conclusions Variation in dispersal capabilities associated with habitat isolation and fragmentation in the TEP appears to be the main mechanism contributing to differences among RFD structure, although variation in tolerances arising from the dynamic regional environment may contribute to some patterns. Because diversity patterns are strongly affected by RFD structure, it is now evident that the insular and continental components of a fauna should be treated separately when analysing such patterns. Furthermore, contrasts in RFD structure among species using different habitats demonstrate that a full understanding of the causes of diversity patterns requires analyses of complete regional faunas in relation to regional geography.  相似文献   

17.
Coral Reefs - Hawkfishes are small demersal reef predators. Although their association with the coral substrate has been widely documented for some species, information regarding their feeding...  相似文献   

18.
The ichthyofauna of the Chacahua Lagoon in the western Oaxaca State of Mexico was sampled every 2 months, using a trawl net over seven sampling cycles. The estuary mouth closed in late January, generating hypersaline conditions in the system. A total of 33 species belonging to 20 families were recorded; most of them marine species, showing tropical and subtropical affinities. The most abundant species were Diapterus peruvianus, Centropomus robalito, Anchovia macrolepidota, Lile stolifera, and Lutjanus novemfasciatus. Total fish abundance and species richness were not significantly affected by the mouth closing, and this was related to the presence of a permanently open entrance channel with an adjacent lagoon, which allowed easy exchange of fish between these two systems. Canonical correspondence analysis (CCA) revealed that salinity and dissolved oxygen were the most important environmental variables in determining the observed variability in fish community composition. Two fish groups were evident: the fish assemblage of the low-salinity period (open-mouth phase), in which Eucinostomus currani, Sciades guatemalensis, Centropomus armatus, Citharichthys stigmaeus, and Caranx caninus constituted the majority of the catch; and the fish assemblage of the high-salinity period (closed-mouth phase), with A. macrolepidota, L. stolifera, and Harengula thrissina as the most abundant species. Multivariate analyses showed differences in the composition of the fish community between both periods. Other species, such as the permanent residents D. peruvianus and C. robalito, which showed the widest range in tolerance of ambient salinity, were caught during both periods. Seasonal succession of fish populations may be related to differences in life cycle and tolerance of the environment among those species adapting to ecological conditions.  相似文献   

19.
Hydrobiologia - Cladocerans feed on a variety of phytoplankton food sources, which are variable across space and time. Different phytoplankton groups represent different nutritional quality to...  相似文献   

20.
Juvenile reef fish communities represent an essential component of coral reef ecosystems in the current focus of fish population dynamics and coral reef resilience. Juvenile fish survival depends on habitat characteristics and is, following settlement, the first determinant of the number of individuals within adult populations. The goal of this study was to provide methods for mapping juvenile fish species richness and abundance into spatial domains suitable for micro and meso-scale analysis and management decisions. Generalized Linear Models predicting juvenile fish species richness and abundance were developed according to spatial and temporal environmental variables measured from 10 m up to 10 km in the southwest lagoon of New Caledonia. The statistical model was further spatially generalized using a 1.5-m resolution, independently created, remotely sensed, habitat map. This procedure revealed that : (1) spatial factors at 10 to 100-m scale explained up to 71% of variability in juvenile species richness, (2) a small improvement (75%) was gained when a combination of environmental variables at different spatial and temporal scales was used and (3) the coupling of remotely sensed data, geographical information system tools and point-based ecological data showed that the highest species richness and abundance were predicted along a narrow margin overlapping the coral reef flat and adjacent seagrass beds. Spatially explicit models of species distribution may be relevant for the management of reef communities when strong relationships exist between faunistic and environmental variables and when models are built at appropriate scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号