首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Halobacterium halobium contains two gas vacuole protein genes that are located in plasmid pHH1 (p-vac) and in the chromosomal DNA (c-vac). The mutation frequency for these genes is different: the constitutively expressed p-vac gene is mutated with a frequency of 10(-2), while the chromosomal gene expressed in the stationary phase of growth is mutated with a frequency of 10(-5). The difference in the mutation susceptibility is due to the dynamics of plasmid pHH1. p-vac gene mutations are caused (i) by the integration of an insertion element or (ii) by a deletion event encompassing the p-vac gene region. In contrast, c-vac mutants analyzed to date incurred neither insertion elements nor deletions. Deletion events within pHH1 occur at high frequencies during the development of a H. halobium culture. The investigation of the fusion regions resulting from deletion events indicates that insertion elements are involved. The analysis of pHH1 deletion variants led to a 4 kilobase pair DNA region containing the origin of replication of the pHH1 plasmid.  相似文献   

3.
Two genes encoding gas vacuole proteins in Halobacterium halobium   总被引:1,自引:0,他引:1  
Summary The archaebacterium Halobacterium halobium contains two related gas vacuole protein-encoding genes (vac). One of these genes encodes a protein of 76 amino acids and resides on the major plasmid. The second gene is located on the chromosome in a (G+C)-rich DNA fraction and encodes a slightly larger but highly homologous protein consisting of 79 amino acids. The plasmid encoded vac gene is transcribed constitutively throughout the growth cycle while the chromosomal vac gene is expressed during the stationary phase of growth. Comparison of the nucleotide sequences of the two genes indicates differences in the putative promoter regions as well as 35 single base-pair exchanges within the coding regions of the two genes. The majority of the nucleotide exchanges in the coding region occur in the third position of a codon triplet generating the codon synonym. The only differences between the two encoded proteins are the exchange of 2 amino acids (positions 8 and 29) and a deletion of 3 amino acids near the carboxy-terminus of the plasmid encoded vac protein. The genomic DNAs from other halobacterial isolates (Halobacterium sp. SB3, GN101 and YC819-9) were found to contain only a chromosomal vac gene copy. There is a high conservation of the chromosomal vac gene and the genomic region surrounding it among the halobacterial strains investigated.  相似文献   

4.
To study the molecular biology of the halophilic archaebacterium Halobacterium halobium, the introduction of DNA engineered in vitro is desirable. As a first step in developing a cloning vector, the complete 1736 base pair nucleotide sequence of the natural, high copy number, Halobacterium plasmid pHSB1 has been determined. The plasmid was found to show homology to the small plasmids of Halobacterium strains GRB and GN101. Plasmid pHSB1 encodes a 317 amino acid protein of unknown function. The related halophile, H. halobium, could be transformed by pHSB1, demonstrating its utility as the basis of a cloning vector.  相似文献   

5.
6.
Most halobacteria produce gas vesicles (GV). The well-characterized species Halobacterium halobium and some GV+ revertants of GV- mutants of H. halobium produce large amounts of GV which have a spindlelike shape. Most other GV+ revertants of H. halobium GV- mutants and other recently characterized halobacterial wild-type strains possess GV with a cylindrical form. The number of intact particles in the latter isolates is only 10 to 30% of that of H. halobium. Analysis of GV envelope proteins (GVPs) by electrophoresis on phenol-acetic acid-urea gels showed that the GVP of the highly efficient GV-producing strains migrated faster than the GVP of the low-GV-producing strains. The relative molecular mass of the GVP was estimated to be 19 kilodaltons (kDa) for high-producing strains (GVP-A) and 20 kDa for low-producing strains (GVP-B). Amino acid sequence analysis of the first 40 amino acids of the N-terminal parts of GVP-A and GVP-B indicated that the two proteins differed in two defined positions. GVP-B, in relation to GVP-A, had Gly-7 and Val-28 always replaced by Ser-7 and Ile-28, respectively. These data suggest that at least two different gvp genes exist in H. halobium NRL. This was directly demonstrated by hybridization experiments with gvp-specific DNA probes. A fragment of plasmid pHH1 and a chromosomal fragment of H. halobium hybridized to the probes. Only a chromosomal fragment hybridized to the same gyp probes when both chromosomal and plasmid DNAs from the low-GV-producing halobacterial wild-type strains SB3 and GN101 were examined. These findings support the assumption that GVP-A is expressed by a pHH1-associated gvp gene and GVP-B by a chromosomal gvp gene.  相似文献   

7.
8.
Genetic variability in Halobacterium halobium.   总被引:36,自引:16,他引:20       下载免费PDF全文
Halobacterium halobium exhibits an extraordinary degree of spontaneous variability. Mutants which are defective in the formation of gas vacuoles (vac) arise at a frequency of 10(-2). Other easily detectable phenotypes, like the synthesis of bacterioruberin (Rub) or the synthesis of retinal (Ret) and bacterio-opsin (Ops), the two components which form the purple membrane (Pum) of H. halobium, are lost at a frequency of about 10(-4). With the same frequency a mutant type appears which exhibits an extremely high variability in these phenotypes. With the exception of the ret mutants, all spontaneously arising mutants show alterations, i.e., insertions, rearrangements, or deletions, in the plasmid pHH1. It appears that the introduction of one insertion into pHH1 triggers further insertions, which makes the identification of relationships between phenotypic and genotypic alterations rather difficult. From the analysis of a large number of spontaneous vac mutants and their vac+ revertants it can be concluded that the formation of the gas vacuoles is determined or controlled by plasmid genes. No such conclusion is yet possible for the rub mutants, although all mutants of this type so far analyzed exhibit a defined insertion. pum mutants which have lost the capability of forming bacterio-opsin carry insertions in the plasmid which are distributed over a rather large region of the plasmid. No strains of H. halobium could be obtained which had lost plasmid pHH1 completely.  相似文献   

9.
10.
11.
We have cloned and sequenced the gene that encodes archaerhodopsin, a light-driven H+ pump in Halobacterium sp. aus-1 (Mukohata, Y., Sugiyama, Y., Ihara, K., and Yoshida, M. (1988) Biochem. Biophys. Res. Commun. 151, 1339-1345). The nucleotide sequence of this gene contained an open reading frame which corresponded to a protein of 260 amino acids with a molecular mass of 27,851 daltons, including a precursor sequence of 6 amino acids at the amino terminus and 2 amino acids at the carboxyl terminus. The deduced amino acid sequence of archaerhodopsin exhibited 59 and 32% homology to the sequences of bacteriorhodopsin and halorhodopsin, respectively, from Halobacterium halobium. Three charged residues (Asp-121, Asp-218, and Lys-222) are conserved in the transmembrane segments among the three retinal proteins. Residues Asp-91 and Asp-102 which, it has been suggested, may be essential for the pumping of protons (Mogi, T., Stern, L. J., Marti, T., Chao, B. H., and Khorana, H. G. (1988) Proc. Natl. Acad. Sci. U. S. A. 85,4148-4152) are conserved between archaerhodopsin and bacteriorhodopsin.  相似文献   

12.
Summary Heterogeneous collections of covalently-closed circular DNA (cccDNA) comprise up to 10% of the total DNA of H. halobium and four other halophilic strains (SB3, GRA, GRB and GN101) recently isolated from different sources. All of these bacteria have purple membrane, bacterioruberin and gas vacuoles as characteristic phenotypic markers. Most of the major cccDNA species of these isolates are not homologous to pHH1, the main 150 kb cccDNA of H. halobium NRC817. Only GN101 and SB3 have a cccDNA which is partly homologous to pHH1. In GN101 the homology is to the halobacterial insertion sequence ISH23 found in pHH1. In SB3 the homology is to ISH26, a new insertion sequence isolated from H. halobium NRC817 which has a size of 1,400 bp. Extensive homologies mologies exist between the minor cccDNA species in all five strains indicating that this cccDNA species is highly conserved and possibly originates from (or is part of) the chromosome.A 1.6 kb high copy number cccDNA species is present in three independently isolated GN101, GRB and SB3. This 1.6 kb cccDNA is not homologous to any other extrachromosomal or chromosomal DNA.  相似文献   

13.
14.
Vacuole-rich fractions were isolated from Acetabularia acetabulum by Ficoll step gradient centrifugation. The tonoplast-rich vesicles showed ATP-dependent and pyrophosphate-dependent H(+)-transport activities. ATP-dependent H(+)-transport and ATPase activity were both inhibited by the addition of a specific inhibitor of vacuolar ATPase, bafilomycin B1. A 66 kDa polypeptide present in the preparation cross-reacted with the anti-IgG fractions against the alpha and beta subunits of Halobacterium halobium ATPase and with the antibody against the A subunit (68 kDa subunit) of mung bean vacuolar ATPase. A 56 kDa polypeptide present in the vacuole preparation showed cross-reactivity with the antibody against the B subunit (57 kDa) of mung bean vacuolar ATPase but not with the anti-beta subunit of H. halobium ATPase. A 73 kDa polypeptide cross-reacted with the antibody against inorganic pyrophosphatase of mung bean vacuoles. These results suggest that vacuolar membrane of A. acetabulum equipped energy transducing systems similar to those found in other plant vacuoles.  相似文献   

15.
M L Salin  M V Duke  D Oesterhelt  D P Ma 《Gene》1988,70(1):153-159
A group of synthetic 17-mer oligodeoxynucleotides (oligos) was constructed to correspond to a sequence of amino acids situated near the N terminus of the manganese-containing superoxide dismutase (Mn-SOD) purified from the halophilic bacterium, Halobacterium halobium. A cosmid library of a Sau3AI partial digest of halobium DNA, cloned into the BamHI site of pHC79, was probed with the radiolabeled oligos. Cosmid DNA was purified from the clone that showed hybridization at the highest stringency. A 1.8-kb PstI fragment of this DNA which hybridized the probes was subcloned into bacteriophage M13 and transfected into Escherichia coli JM101. The entire insert containing a 600-bp sequence coding for Mn-SOD and its 5'- and 3'-flanking regions was sequenced. The derived amino acid sequence of the structural gene showed a similarity to other manganese and iron-containing SODs in normally conserved regions.  相似文献   

16.
The complete 1473-bp sequence of the 16S rRNA gene from the archaebacterium Halobacterium halobium has been determined. Alignment with the sequences of the 16S rRNA gene from the archaebacteria Halobacterium volcanii and Halococcus morrhua reveals similar degrees of homology, about 88%. Differences in the primary structures of H. halobium and eubacterial (Escherichia coli) 16S rRNA or eukaryotic (Dictyostelium discoideum) 18S rRNA are much higher, corresponding to 63% and 56% homology, respectively. A comparison of the nucleotide sequence of the H. halobium 16S rRNA with those of its archaebacterial counterparts generally confirms a secondary structure model of the RNA contained in the small subunit of the archaebacterial ribosome.  相似文献   

17.
J T Halladay  W L Ng  S DasSarma 《Gene》1992,119(1):131-136
The halophilic archaebacterium, Halobacterium halobium, and many other aquatic bacteria synthesize gas-filled vesicles for flotation. We recently identified a cluster of 13 genes (gvpMLKJIHGFEDACN) on a 200-kb H. halobium plasmid, pNRC100, involved in gas vesicle synthesis. We have cloned and reconstructed the gvp gene cluster on an H. halobium-E. coli shuttle plasmid. Transformation of H. halobium Vac- mutants lacking the entire gas vesicle gene region with the gvp gene cluster results in restoration of their ability to float. These results open the way toward further genetic analysis of gas vesicle gene functions and directed flotation of other microorganisms with potential biotechnological applications.  相似文献   

18.
Comparative Study of the Structure of Gas Vacuoles   总被引:12,自引:8,他引:4       下载免费PDF全文
The fine structure of gas vacuoles was examined in two blue-green algae, two green bacteria, three purple sulfur bacteria, and two halobacteria. The gas vacuole is a compound organelle, composed of a variable number of gas vesicles. These are closed, cylindrical, gas-containing structures with conical ends, about 80 to 100 nm in width and of variable length, ranging from 0.2 to over 1.0 mum. The wall of the gas vesicle is a non-unit membrane 2 to 3 nm in thickness, bearing very regular striations with a periodicity of 4 nm, oriented more or less at right angles to the long axis of the cylinder. This fine structure could be clearly resolved in isolated gas vesicles prepared from a blue-green alga and from Halobacterium halobium, and its presence in the gas vesicles of the green bacterium Pelodictyon clathratiforme was inferred from thin sections. The gas vacuole thus appears to be a homologous organelle in all of these procaryotic groups. Minor differences with respect to the length and arrangement of the gas vesicles were observed. In blue-green algae and green bacteria, the vesicles are relatively long and tend to be arrayed in parallel bundles; in purple sulfur bacteria and Halobacterium, they are shorter and more irregularly distributed in the cell.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号