首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helper T cell (Th) has been identified as a critical immune cell for regulating immune response since 1980s. The type 2 helper T cell (Th2), characterized by the production of interleukin-4 (IL-4), IL-5 and IL-13, plays a critical role in immune response against helminths invading cutaneous or mucosal sites. It also has a functional role in the pathophysiology of allergic diseases such as asthma and allergic diarrhea. Currently, most studies have shed light on Th2 cell function and behavior in specific diseases, such as asthma and helminthes inflammation, but not on Th2 cell itself and its differentiation. Based on different cytokines and specific behavior in recent research, Th2 cell is also regarded as new subtypes of T cell, such as IL-9 secreting T cell (Th9) and CXCR5+ T follicular helper cells. Here, we will discuss the latest view of Th2 cell towards their function and the involvement of Th2 cell in diseases.  相似文献   

2.
There is currently a major interest in designing vaccines capable of eliciting strong cellular immune responses. The induction of cytotoxic and Th1 helper cellular responses is for example highly desirable for vaccines targeting either chronic infectious diseases or cancers (therapeutic vaccines). Similarly, Th1 vaccines would be useful in redirecting inappropriate antigen-specific immune responses in patients with autoimmune diseases and allergies. Importantly, emerging technologies and a better understanding of the physiology of immune responses offer new avenues to rationally design such vaccines. Approaches based on the identification and selection of immunogens containing T cell epitopes can be used, together with epitope-enhancement strategies, to increase binding to MHC, or to improve recognition by T cell receptor complexes. Optimized immunogens can subsequently be presented to the immune system with appropriate vectors allowing to target professional antigen-presenting cells, such as dendritic cells. Such antigen presentation platforms can be used alone or in association, as part of mixed immunization regimens (heterologous prime-boosts), in order to elicit broad immune responses. The rational design of Th1 adjuvants can also benefit from our better understanding of the nature of proinflammatory signals leading to the initiation of both innate and adaptive immune effector mechanisms. Candidate Th1 vaccines (or components such as vectors or adjuvants) will have to be tested in exploratory clinical studies, implying a need for new assays and methods allowing to assess in a qualitative and quantitative manner low-frequency T cell responses in humans.  相似文献   

3.
Fenton A  Lamb T  Graham AL 《Parasitology》2008,135(7):841-853
Individuals are typically co-infected by a diverse community of microparasites (e.g. viruses or protozoa) and macroparasites (e.g. helminths). Vertebrates respond to these parasites differently, typically mounting T helper type 1 (Th1) responses against microparasites and Th2 responses against macroparasites. These two responses may be antagonistic such that hosts face a 'decision' of how to allocate potentially limiting resources. Such decisions at the individual host level will influence parasite abundance at the population level which, in turn, will feed back upon the individual level. We take a first step towards a complete theoretical framework by placing an analysis of optimal immune responses under microparasite-macroparasite co-infection within an epidemiological framework. We show that the optimal immune allocation is quantitatively sensitive to the shape of the trade-off curve and qualitatively sensitive to life-history traits of the host, microparasite and macroparasite. This model represents an important first step in placing optimality models of the immune response to co-infection into an epidemiological framework. Ultimately, however, a more complete framework is needed to bring together the optimal strategy at the individual level and the population-level consequences of those responses, before we can truly understand the evolution of host immune responses under parasite co-infection.  相似文献   

4.
The role of muramyl dipeptide (MDP) and tuftsin in oral immune adjustment remains unclear, particularly in a Lactobacillus casei (L. casei) vaccine. To address this, we investigated the effects of different repetitive peptides expressed by L. casei, specifically the MDP and tuftsin fusion protein (MT) repeated 20 and 40 times (20MT and 40MT), in mice also expressing the D antigenic site of the spike (S) protein of transmissible gastroenteritis virus (TGEV) on intestinal and systemic immune responses and confirmed the immunoregulation of these peptides. Treatment of mice with a different vaccine consisting of L. casei expressing MDP and tuftsin stimulated humoral and cellular immune responses. Both 20MT and 40MT induced an increase in IgG and IgA levels against TGEV, as determined using enzyme-linked immunosorbent assay. Increased IgG and IgA resulted in the activation of TGEV-neutralising antibody activity in vitro. In addition, 20MT and 40MT stimulated the differentiation of innate immune cells, including T helper cell subclasses and regulatory T (Treg) cells, which induced robust T helper type 1 and T helper type 17 (Th17) responses and reduced Treg T cell immune responses in the 20MT and 40MT groups, respectively. Notably, treatment of mice with L. casei expressing 20MT and 40MT enhanced the anti-TGEV antibody immune responses of both the humoral and mucosal immune systems. These findings suggest that L. casei expressing MDP and tuftsin possesses substantial immunopotentiating properties, as it can induce humoral and T cell-mediated immune responses upon oral administration, and it may be useful in oral vaccines against TGEV challenge.  相似文献   

5.
6.
Two types of T helper (Th) cells have been defined on the basis of their cytokine secretion patterns. The decision of a naive T cell to differentiate into Th1 or Th2 is crucial, since to a first approximation it determines whether a cell-mediated or humoral immune response is triggered against a particular pathogen, which profoundly influences disease outcome. Here we show that the internal behaviour of the T helper system, which emerges from regulatory mechanisms ‘built into’ the T helper system, itself can usually select the appropriate T helper response. This phenomenon arises from an initial Th1 bias together with the induction of Th1 → Th2 switches when Th1 effectors do not lead to efficient antigen clearance. The occurrence of these shifts is based on the antigen dose dependence of T helper differentiation, which is a consequence of asymmetries in cross-suppression. Critical for this feature is the rate with which Th2 cells undergo antigen-induced cell death.  相似文献   

7.
Th17 cells are a recently discovered subset of T helper cells characterised by the release of IL-17, and are thought to be important for mobilization of immune responses against microbial pathogens, but which also contribute to the development of autoimmune diseases. The identification of C-type lectin receptors which are capable of regulating the balance between Th1 and Th17 responses has been of particular recent interest, which they control, in part, though the release of Th17 inducing cytokines. Many of these receptors recognise fungi, and other pathogens, and play key roles in driving the development of protective anti-microbial immunity. Here we will review the C-type lectins that have been linked to Th17 type responses and will briefly examine the role of Th17 responses in murine and human anti-fungal immunity.  相似文献   

8.
最近发现的辅助T细胞17(T helper cell 17,Th-17)是不同于辅助T细胞1型(Thelpercell1,Th-1),辅助T细胞2型(Thelpercell2,Th-2)及调节性T细胞(regulatory T cell,Treg)的T细胞亚群,有其独立的分化和发育调节,且互相影响。它由初始T细胞在转化生长因子B(transforming growth factor B,TGF—B)与白细胞介素6(interleukin6,IL-6)、白细胞介素23(interleukin23,1L23)联合作用及转录因子维甲酸相关孤儿素受体γt(retinoic acid related orphan nuclear receptorm,ROR-γt)的协同诱导精细的调节下分化而来。其主要分泌的生物效应分子白细胞介素17(Interleukin17,IL-17)是一种促炎性反应细胞因子,在免疫和造血系统等发挥重要的作用。而器官移植排斥反应的本质就是炎性反应。因此深入研究Th-17细胞分化及其相关生物效应,有助认识其在器官移植排斥中的病理机制,也为治疗移植排斥反应提供新的靶点和途径。  相似文献   

9.
Immune responses to GAT are controlled by H-2-linked Ir genes; soluble GAT stimulates antibody responses in responder mice (H-2b) but not in nonresponder mice (H-2q). In nonresponder mice, soluble GAT stimulates suppressor T cells that preempt function of helper T cells. After immunization with soluble GAT, spleen cells from (responder x nonresponder: H-2b X H-2q)F1 mice develop antibody responses to responder H-2b GAT-M phi but not to nonresponder H-2q GAT-M phi. This failure of immune F1 spleen cells to respond is due to an active suppressor T cell mechanism that is activated by H-2q, but not H-2b, GAT-M phi and involves two regulatory T cell subsets. Suppressor-inducer T cells are immune radiosensitive Lyt-1 +2-, I-A-, I-J+, Qa-1+ cells. Suppressor-effector T cells can be derived from virgin or immune spleens and are radiosensitive Lyt-1-2+, I-A-, I-J+, Qa-1+ cells. This suppressor mechanism can suppress responses of virgin or immune F1 helper T cells and B cells. Helper T cells specific for H-2b GAT-M phi are easily detected in F1 mice after immunization with soluble GAT; helper T cells specific for H-2q GAT-M phi are demonstrated after elimination of the suppressor-inducer and -effector cells. These helper T cells are radioresistant Lyt-1+2-, I-A+, I-J-, Qa-1- cells. These data indicate that the Ir gene defect in responses to GAT is not due to a failure of nonresponder M phi to present GAT and most likely is not due to a defective T cell repertoire, because the relevant helper T cells are primed in F1 mice by soluble GAT and can be demonstrated when suppressor cells are removed. These data are discussed in the context of mechanisms for expression of Ir gene function in responses to GAT, especially the balance between stimulation of helper vs suppressor T cells.  相似文献   

10.
In order to get a better understanding of the role of protease-activated receptor 2 (PAR2) in type 2 helper T (Th2) cell responses against Trichinella spiralis infection, we analyzed Th2 responses in T. spiralis-infected PAR2 knockout (KO) mice. The levels of the Th2 cell-secreted cytokines, IL-4, IL-5, and IL-13 were markedly reduced in the PAR2 KO mice as compared to the wild type mice following infection with T. spiralis. The serum levels of parasite-specific IgE increased significantly in the wild type mice as the result of T. spiralis infection, but this level was not significantly increased in PAR2 KO mice. The expression level of thymic stromal lymphopoietin, IL-25, and eotaxin gene (the genes were recently known as Th2 response initiators) of mouse intestinal epithelial cells were increased as the result of treatment with T. spiralis excretory-secretory proteins. However, the expression of these chemokine genes was inhibited by protease inhibitor treatments. In conclusion, PAR2 might involve in Th2 responses against T. spiralis infection.  相似文献   

11.

Onchocerciasis, caused by Onchocerca volvulus, affects more than 37 million people worldwide. Despite the progress achieved with mass drug distribution, suitable vaccines against onchocerciasis are needed to effectively eliminate the infection. The O. volvulus cysteine protease inhibitor (onchocystatin) is an immuno-dominant antigen detected in O. volvulus infections, capable of inducing protective immunity. Here, we explore the onchocystatin for a multi-epitope subunit vaccine candidate targeted against onchocerciasis. A multi-epitope vaccine candidate composed of RS-09 as adjuvant, a CD8+ T cell peptide, a CD4+ T cell peptide and a B cell peptide concatenated with suitable linkers was computationally constructed. Immune simulation of the vaccine response predicted several aspects of antibody-dependent and cellular-mediated immunity with accompanied B cell and helper T cell immune memory development. The levels of lFN-γ and IL-2 were also predicted to be elevated. Collectively, our results suggest that the multi-epitope vaccine construct has the potential to mimic the natural immunity targeted against onchocerciasis and other related filarial infections, and should be considered for further experimental validations.

  相似文献   

12.
Different Mycobacterium tuberculosis strains operate different immune evasion strategies for their survival in the host. This mainly depends on the virulence of the strain and the host immune responses. The most virulent strains are actively involved in the transmission, widely spread in the community and induce differential immune responses. We evaluated the immune response of a sonicate antigen prepared from one predominant strain (S7) from M. tuberculosis harbouring a single copy of IS6110. Significant lymphoproliferative response against purified protein derivative from tubercle bacillus (PPD) and H37Rv antigens was observed in PPD positive normal individuals and tuberculosis patients. Interferon-gamma (IFN-gamma) levels against these antigens were significantly increased in normal individuals but not in tuberculosis patients. The antigen S7 showed marginal T-cell proliferation but did not induce IFN-gamma secretion in both groups. Conversely, it induced significantly high levels of cytokine interleukin 4 (IL-4) in normal individuals. The macrophage cytokines, IL-12 and tumour necrosis factor alpha (TNF-alpha), did not show S7 antigen specific stimulation. The intracellular cytokine further confirmed an increase in IL-4(+)/CD4+ T-cells and a decrease in IFN-gamma(+)/CD4+ T-cells upon stimulation. The antibody response showed an increase in IgG and IgA levels against this antigen in normal individuals. These observations suggest that antigen S7 modulates the immune response towards T helper cell type 2 by suppressing T helper cell type 1 protective immune response in PPD positive normal individuals. We speculate that some components of this sonicate antigen are associated with immunosuppressive response.  相似文献   

13.
T helper cells can support the functions of CD8(+) T cells against persistently infecting viruses such as murine lymphocytic choriomeningitis virus (LCMV), cytomegalovirus, hepatitis C virus and HIV. These viruses often resist complete elimination and remain detectable at sanctuary sites, such as the kidneys and other extralymphatic organs. The mechanisms underlying this persistence are not well understood. Here we show that mice with potent virus-specific T-cell responses have reduced levels and delayed formation of neutralizing antibodies, and these mice fail to clear LCMV from extralymphatic epithelia. Transfer of virus-specific B cells but not virus-specific T cells augmented virus clearance from persistent sites. Virus elimination from the kidneys was associated with the formation of IgG deposits in the interstitial space, presumably from kidney-infiltrating B cells. CD8(+) T cells in the kidneys of mice that did not clear virus from this site were activated but showed evidence of exhaustion. Thus, we conclude that in this model of infection, site-specific virus persistence develops as a consequence of potent immune activation coupled with reductions in virus-specific neutralizing antibodies. Our results suggest that sanctuary-site formation depends both on organ anatomy and on the induction of different adaptive immune effector mechanisms. Boosting T-cell responses alone may not reduce virus persistence.  相似文献   

14.
Malaria is a life-threatening disease caused by infection with Plasmodium parasites. The goal of developing an effective malaria vaccine is yet to be reached despite decades of massive research efforts. CD4+ helper T cells, CD8+ cytotoxic T cells, and γδ T cells are associated with immune responses to both liver-stage and blood-stage Plasmodium infection. The immune responses of T cell-lineages to Plasmodium infection are associated with both protection and immunopathology. Studies with mouse model of malaria contribute to our understanding of host immune response. In this paper, we focus primarily on mouse malaria model with blood-stage Plasmodium berghei infection and review our knowledge of T cell immune responses against Plasmodium infection. Moreover, we also discuss findings of experimental human studies. Uncovering the precise mechanisms of T cell-mediated immunity to Plasmodium infection can be accomplished through further investigations using mouse models of malaria with rodent Plasmodium parasites. Those findings would be invaluable to advance the efforts for development of an effective malaria vaccine.  相似文献   

15.
Clinical manifestations in onchocerciasis range from generalized onchocerciasis (GEO) to the rare but severe hyperreactive (HO)/sowda form. Since disease pathogenesis is associated with host inflammatory reactions, we investigated whether Th17 responses could be related to aggravated pathology in HO. Using flow cytometry, filarial-specific cytokine responses and PCR arrays, we compared the immune cell profiles, including Th subsets, in individuals presenting the two polar forms of infection and endemic normals (EN). In addition to elevated frequencies of memory CD4+ T cells, individuals with HO showed accentuated Th17 and Th2 profiles but decreased CD4+CD25hiFoxp3+ regulatory T cells. These profiles included increased IL-17A+, IL-4+, RORC2+ and GATA3+CD4+ T cell populations. Flow cytometry data was further confirmed using a PCR array since Th17-related genes (IL-17 family members, IL-6, IL-1β and IL-22) and Th2-related (IL-4, IL-13, STAT6) genes were all significantly up-regulated in HO individuals. In addition, stronger Onchocerca volvulus-specific Th2 responses, especially IL-13, were observed in vitro in hyperreactive individuals when compared to GEO or EN groups. This study provides initial evidence that elevated frequencies of Th17 and Th2 cells form part of the immune network instigating the development of severe onchocerciasis.  相似文献   

16.
Helper CD4+ T lymphocytes can be divided into two subsets, Th1 and Th2. The types of Th subsets activated during the adaptive immune response inductiondetermine the efficacy of immune responses against thee antigens introduced. Selective differentiation of subsets of CD4+ T lymphocytes has been known to be influenced by several factors, such as the cytokine environment around the T cells, the specificity of antigen recognition bythe T cell receptor, the expression of costimulatory molecules, and/ or the dose of the antigen applied to stimulate the T cells. In this study, we tried to determine the influence of the antigen dose on the selective priming of T lymphocytes when an inefficient antigen was applied since all the conclusions drawn from previous experiments were based on experiments with immune systems which responded well against the antigens introduced. When the recombinant hen egg-white lysozyme (HEL) was used too stimulate immune responses in HEL low-responder C57B3L/6 mice, dose-dependent selective priming of immune responses was not observed. However, when the variant antigen, which had been characterized as an efficientantigen in anti-HEL immune response induction in the low-responder mice, was applied, dose-dependent selective priming of Th immune responses was clearly demonstrated. These results suggested that dose-dependent selective priming of Th immune responses could be achieved only by the antigens with an affinity over a certain level.  相似文献   

17.
Early stages of viral infections are associated with local recruitment and activation of dendritic cells (DC) and NK cells. Although activated DC and NK cells are known to support each other's functions, it is less clear whether their local interaction in infected tissues can modulate the subsequent ability of migrating DC to induce T cell responses in draining lymph nodes. In this study, we report that NK cells are capable of inducing stable type 1-polarized "effector/memory" DC (DC1) that act as carriers of NK cell-derived helper signals for the development of type 1 immune responses. NK cell-induced DC1 show a strongly elevated ability to produce IL-12p70 after subsequent CD40 ligand stimulation. NK-induced DC1 prime naive CD4+ Th cells for high levels of IFN-gamma, but low IL-4 production, and demonstrate a strongly enhanced ability to induce Ag-specific CD8+ T cell responses. Resting NK cells display stringent activation requirements to perform this novel, DC-mediated, "helper" function. Although their interaction with K562 cells results in effective target cell killing, the induction of DC1 requires a second NK cell-activating signal. Such costimulatory signal can be provided by type I IFNs, common mediators of antiviral responses. Therefore, in addition to their cytolytic function, NK cells also have immunoregulatory activity, induced under more stringent conditions. The currently demonstrated helper activity of NK cells may support the development of Th1- and CTL-dominated type 1 immunity against intracellular pathogens and may have implications for cancer immunotherapy.  相似文献   

18.
Immune responses to Cowdria ruminantium, an intracellular organism that causes heartwater in domestic ruminants, were characterized in a DBA/2 mouse model. Immunity induced by infection and treatment was adoptively transferable by splenocytes and could be abrogated by in vivo depletion of T cells but not by inhibition of nitric oxide synthase using NG-monomethyl-L-arginine. IgG2a and IgG2b C. ruminantium-specific responses were detected in immune mice. Culture supernatants of splenocytes from immune DBA/2 mice, which were stimulated with crude C. ruminantium antigens or recombinant major antigenic proteins 1 or 2, contained significant levels of interferon (IFN)-gamma and interleukin (IL)-6, but insignificant levels of IL-1alpha, IL-2, IL-4, IL-5, IL-10, IL-12, tumor necrosis factor-alpha (TNF), and nitric oxide. A similar response was detected during primary infection, although IFN-gamma levels decreased significantly during clinical illness and then increased following natural or antibiotic-aided recovery. These data support the conclusion that protective immunity to C. ruminantium in DBA/2 mice is mediated by T cells and is associated with a polarized T helper 1 type of immune response. This murine model could be utilized to screen for protective C. ruminantium antigens that provoke Th1 type immune responses and for evaluation of these antigens in recombinant vaccines against heartwater.  相似文献   

19.
CD4+ T cells have the capacity to differentiate into various T helper (Th) cell subsets after activation, and by acquiring distinct cytokine profiles and effector functions, they regulate the nature as well as the outcomes of immune responses. Th9 cells are a relatively new member in the Th cell family. The signature cytokine for Th9 cells is IL-9, a cytokine in the IL-2Rγc-chain family. Over the past few years, there has been an explosion of knowledge on the roles of Th9 cells in immunity and immunopathology, but the exact mechanisms in the control of Th9 cells remain poorly defined. This apparent paradox presents both challenges and opportunities. Here we review recent advances in our understanding of the fundamental biology of IL-9 and Th9 cells, highlighting the challenges and unanswered questions in the field. We also discuss potential opportunities in targeting Th9 cells for therapeutic purposes in the clinic.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号