首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary The product of the PHO85 gene, which encodes one of the negative regulatory factors of the PHO system in Saccharomyces cerevisiae, shows significant amino acid sequence homology with the CDC28 protein kinase. However, overexpressing PHO85 did not suppress the temperature sensitive phenotype of the cdc28-1 mutation. The nucleotide sequence of the PHO85 gene strongly suggests the presence of an intron near the sequence encoding the N-terminal region.  相似文献   

2.
3.
酵母PHO2与PHO4蛋白的激活活性的分析及两者的相互作用   总被引:3,自引:3,他引:0  
PHO2与PHO4是酵母PHO5基因的两个正调控因子,本文发现,PHO2与酵母转录因子GAL4的DNA结合功能域融合后就能激活报道基因lacZ的表达,其激活力受高低磷影响,表明PHO2蛋白上存在酸性转录激活区。PHO2蛋白上酸性氨基酸丰富的287-326肽段并非PHO2的激活区。在PHO2蛋白上230位Ser处于磷酸化状态2PHO2才有激活作用,表明了这一磷酸化位点可能与PHO2的转录激活能力有关  相似文献   

4.
Summary The structural gene, PHO13, for the specific p-nitrophenyl phosphatase of Saccharomyces cerevisiae was cloned and its nucleotide sequence determined. The deduced PHO13 protein consists of 312 amino acids and its molecular weight is 34635. The disruption of the PHO13 gene produced no effect on cell growth, sporulation, or viability of ascospores. The PHO13 locus was mapped at 1.9 centimorgans from the HO locus on the left arm of chromosome IV. By chromosome fragmentation, the PHO13 locus was found to be located about 72 kb from the left-hand telomere of chromosome IV and distal to the HO locus.  相似文献   

5.
6.
Y Uesono  K Tanaka    A Toh-e 《Nucleic acids research》1987,15(24):10299-10309
One of the negative regulators of the PHO system of Saccharomyces cerevisiae, PHO85, has been isolated by transformation and complementation of a pho85 strain. The complementing activity was delimited within a 1258 bp DNA segment and this region has been sequenced. The largest open reading frame found in this region can encode a protein of 302 amino acid residues. A pho85 mutant resulted from disruption of the chromosomal counterpart of the open reading frame described above. Therefore, we concluded that the gene we have cloned is PHO85. This result also indicates that PHO85 is nonessential. Northern analysis revealed that the size of the PHO85 message is 1.1 kb. No similarity was found between the putative amino acid sequences of two negative regulators, the PHO80 and PHO85 proteins.  相似文献   

7.
Phosphate is an ion that is essential for fungal growth. The systems for inorganic phosphate (Pi) acquisition in eukaryotic cells (PHO) have been characterized as a low-affinity (that assures a supply of Pi at normal or high external Pi concentrations) and a high-affinity (activated in response to Pi starvation). Here, as an initial step to understand the PHO pathway in Aspergillus fumigatus, we characterized the PHO80 homologue, PhoBPHO80. We show that the ΔphoBPHO80 mutant has a polar growth defect (i.e., a delayed germ tube emergence) and, by phenotypic and phosphate uptake analyses, establish a link between PhoBPHO80, calcineurin and calcium metabolism. Microarray hybridizations carried out with RNA obtained from wild-type and ΔphoBPHO80 mutant cells identify Afu4g03610 (phoDPHO84), Afu7g06350 (phoEPHO89), Afu4g06020 (phoCPHO81), and Afu2g09040 (vacuolar transporter Vtc4) as more expressed both in the ΔphoBPHO80 mutant background and under phosphate-limiting conditions of 0.1 mM Pi. Epifluorescence microscopy revealed accumulation of poly-phosphate in ΔphoBPHO80 vacuoles, which was independent of extracellular phosphate concentration. Surprisingly, a phoDPHO84 deletion mutant is indistinguishable phenotypically from the corresponding wild-type strain. mRNA analyses suggest that protein kinase A absence supports the expression of PHO genes in A. fumigatus. Furthermore, ΔphoBPHO80 and ΔphoDPHO84 mutant are fully virulent in a murine low dose model for invasive aspergillosis.  相似文献   

8.
9.
10.
11.
12.
In yeast, the repression of acid phosphatase under high phosphate growth conditions requires the trans-acting factor PHO80. We have determined the DNA sequence of the PHO80 gene and found that it encodes a protein of 293 amino acids. The expression of the PHO80 gene, as measured by Northern analysis and level of a PHO80-LacZ fusion protein is independent of the level of phosphate in the growth medium. Disruption of the PHO80 gene is a non-lethal event and causes a derepressed phenotype, with acid phosphatase levels which are 3-4 fold higher than the level found in derepressed wild type cells. Furthermore, over-expression of the PHO80 gene causes a reduction in the level of acid phosphatase produced under derepressed growth conditions. Finally, we have cloned, localized and sequenced a temperature-sensitive allele of PHO80 and found the phenotype to be due to T to C transition causing a substitution of a Ser for a Leu at amino acid 163 in the protein product.  相似文献   

13.
Molecular analysis of the PHO81 gene of Saccharomyces cerevisiae.   总被引:2,自引:0,他引:2       下载免费PDF全文
The PHO81 gene product is a positive regulatory factor required for the synthesis of the phosphate repressible acid phosphatase (encoded by the PHO5 gene) in Saccharomyces cerevisiae. Genetic analysis has suggested that PHO81 may be the signal acceptor molecule; however, the biochemical function of the PHO81 gene product is not known. We have cloned the PHO81 gene and sequenced the promoter. A PHO81-LacZ fusion was shown to be a valid reporter since its expression is regulated by the level of inorganic phosphate and is controlled by the same regulatory factors that regulate PHO5 expression. To elucidate the mechanism by which PHO81 functions, we have isolated and cloned dominant mutations in the PHO81 gene which confer constitutive synthesis of acid phosphatase. We have demonstrated that overexpression of the negative regulatory factor, PHO80, but not the negative regulatory factor PHO85, partially blocks the constitutive acid phosphatase synthesis in a strain containing a dominant constitutive allele of PHO81. This suggests that PHO81 may function by interacting with PHO80 or that these molecules compete for the same target.  相似文献   

14.
Inorganic phosphate (Pi) homeostasis in multi-cellular eukaryotes depends not only on Pi influx into cells, but also on Pi efflux. Examples in plants for which Pi efflux is crucial are transfer of Pi into the xylem of roots and release of Pi at the peri-arbuscular interface of mycorrhizal roots. Despite its importance, no protein has been identified that specifically mediates phosphate efflux either in animals or plants. The Arabidopsis thaliana PHO1 gene is expressed in roots, and was previously shown to be involved in long-distance transfer of Pi from the root to the shoot. Here we show that PHO1 over-expression in the shoot of A. thaliana led to a two- to threefold increase in shoot Pi content and a severe reduction in shoot growth. (31) P-NMR in vivo showed a normal initial distribution of intracellular Pi between the cytoplasm and the vacuole in leaves over-expressing PHO1, followed by a large efflux of Pi into the infiltration medium, leading to a rapid reduction of the vacuolar Pi pool. Furthermore, the Pi concentration in leaf xylem exudates from intact plants was more than 100-fold higher in PHO1 over-expressing plants compared to wild-type. Together, these results show that PHO1 over-expression in leaves leads to a dramatic efflux of Pi out of cells and into the xylem vessel, revealing a crucial role for PHO1 in Pi efflux.  相似文献   

15.
pho4 mutants of Saccharomyces cerevisiae, although rare among phosphatase-negative mutants isolated from wild-type strains, were isolated efficiently from pho80, pho85, or pho80 pho85 strains. The distribution of these pho4 mutants over the pho4 locus was determined by analyzing random spores of two- and three-factor crosses. The pho4-4 mutation confers temperature-sensitive synthesis of repressible acid phosphatase. An intragenic suppressor for the pho4-12 allele results in the temperature-sensitive synthesis of repressible acid phosphatase. Recombination between these sites occurs at 1.0 to 3.0%, the highest for any pair of sites within the pho4 locus. All these results strongly indicate that the information of the pho4 locus is translated into a protein. The PHO82 site was mapped inside the pho4 locus by random spore analysis. The order met10-pho4-1PHO82-1-pho4-9 on the right arm of chromosome VI was confirmed by tetrad analysis. Doubly heterozygous diploids, pho3 PHO82c PHO4+/pho3 pho82+ pho4, produce variable amounts of repressible acid phosphatase under repressive conditions depending on the combination of PHO82c and pho4 alleles. This phenomenon may reflect the constitutive production of the pho82+-pho4 product in the repressed condition, which interferes with the function of the PHO82c-PHO4+ product. The earlier model for the function of the PHO82-pho4 cluster, in which the PHO82 site acts as an operator of the pho4 gene, has been revised to a model in which the PHO82 site codes for the part of the pho4 protein that has affinity for the regulatory protein encoded by the pho80 and pho85 genes.  相似文献   

16.
17.
18.
Arabidopsis thaliana PHO1 is primarily expressed in the root vascular cylinder and is involved in the transfer of inorganic phosphate (Pi) from roots to shoots. To analyze the role of PHO1 in transport of Pi, we have generated transgenic plants expressing PHO1 in ectopic A. thaliana tissues using an estradiol-inducible promoter. Leaves treated with estradiol showed strong PHO1 expression, leading to detectable accumulation of PHO1 protein. Estradiol-mediated induction of PHO1 in leaves from soil-grown plants, in leaves and roots of plants grown in liquid culture, or in leaf mesophyll protoplasts, was all accompanied by the specific release of Pi to the extracellular medium as early as 2-3 h after addition of estradiol. Net Pi export triggered by PHO1 induction was enhanced by high extracellular Pi and weakly inhibited by the proton-ionophore carbonyl cyanide m-chlorophenylhydrazone. Expression of a PHO1-GFP construct complementing the pho1 mutant revealed GFP expression in punctate structures in the pericycle cells but no fluorescence at the plasma membrane. When expressed in onion epidermal cells or in tobacco mesophyll cells, PHO1-GFP was associated with similar punctate structures that co-localized with the Golgi/trans-Golgi network and uncharacterized vesicles. However, PHO1-GFP could be partially relocated to the plasma membrane in leaves infiltrated with a high-phosphate solution. Together, these results show that PHO1 can trigger Pi export in ectopic plant cells, strongly indicating that PHO1 is itself a Pi exporter. Interestingly, PHO1-mediated Pi export was associated with its localization to the Golgi and trans-Golgi networks, revealing a role for these organelles in Pi transport.  相似文献   

19.
20.
Inorganic phosphate (Pi) is one of the most limiting nutrients for plant growth in both natural and agricultural contexts. Pi‐deficiency leads to a strong decrease in shoot growth, and triggers extensive changes at the developmental, biochemical and gene expression levels that are presumably aimed at improving the acquisition of this nutrient and sustaining growth. The Arabidopsis thaliana PHO1 gene has previously been shown to participate in the transport of Pi from roots to shoots, and the null pho1 mutant has all the hallmarks associated with shoot Pi deficiency. We show here that A. thaliana plants with a reduced expression of PHO1 in roots have shoot growth similar to Pi‐sufficient plants, despite leaves being strongly Pi deficient. Furthermore, the gene expression profile normally triggered by Pi deficiency is suppressed in plants with low PHO1 expression. At comparable levels of shoot Pi supply, the wild type reduces shoot growth but maintains adequate shoot vacuolar Pi content, whereas the PHO1 underexpressor maintains maximal growth with strongly depleted Pi reserves. Expression of the Oryza sativa (rice) PHO1 ortholog in the pho1 null mutant also leads to plants that maintain normal growth and suppression of the Pi‐deficiency response, despite the low shoot Pi. These data show that it is possible to unlink low shoot Pi content with the responses normally associated with Pi deficiency through the modulation of PHO1 expression or activity. These data also show that reduced shoot growth is not a direct consequence of Pi deficiency, but is more likely to be a result of extensive gene expression reprogramming triggered by Pi deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号