首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Chinese hamster ovary (CHO) cells became thermotolerant after treatment with either heat for 10 min at 45.5 degrees C or incubation in 100 microM sodium arsenite for 1 h at 37 degrees C. Thermotolerance was tested using heat treatment at 45 degrees C or 43 degrees C administered 6-12 h after the inducing agent. At 45 degrees C thermotolerance ratios at 10(-2) isosurvival levels were 4.2 and 3.8 for heat and sodium arsenite, respectively. Recovery from heat damage as measured by resumption of protein synthesis was more rapid in heat-induced thermotolerant cells than in either sodium arsenite-induced thermotolerant cells or nonthermotolerant cells. Differences in inhibition of protein synthesis between heat-induced thermotolerant cells and sodium arsenite-induced thermotolerant cells were also evident after test heating at 43 degrees C for 5 h. At this temperature heat-induced thermotolerant cells were protected immediately from inhibition of protein synthesis, whereas sodium arsenite-induced thermotolerant cells, while initially suppressed, gradually recovered within 24 h. Furthermore, adding cycloheximide during the thermotolerance development period greatly inhibited sodium arsenite-induced thermotolerance (SF less than 10(-6] but not heat-induced thermotolerance (SF = 1.7 X 10(-1] when tested with 43 degrees C for 5 h. Our results suggest that both the development of thermotolerance and the thermotolerant state for the two agents, while similar in terms of survival, differed significantly for several parameters associated with protein synthesis.  相似文献   

2.
When CHO cells were treated either for 10 min at 45-45.5 degrees C or for 1 hr with 100 microM sodium arsenite (ARS) or for 2 hr with 20 micrograms/ml puromycin (PUR-20), they became thermotolerant to a heat treatment at 45-45.5 degrees C administered 4-14 hr later, with thermotolerance ratios at 10(-3) isosurvival of 4-6, 2-3.2, and 1.7, respectively. These treatments caused an increase in synthesis of HSP families (70, 87, and 110 kDa) relative to total protein synthesis. However, for a given amount of thermotolerance, the ARS and PUR-20 treatments induced 4 times more synthesis than the heat treatment. This decreased effectiveness of the ARS treatment may occur because ARS has been reported to stimulate minimal redistribution of HSP-70 to the nucleus and nucleolus. Inhibiting protein synthesis with cycloheximide (CHM, 10 micrograms/ml) or PUR (100 micrograms/ml) after the initial treatments greatly inhibited thermotolerance to 45-45.5 degrees C in all cases. However, for a challenge at 43 degrees C, thermotolerance was inhibited only for the ARS and PUR-20 treatments. CHM did not suppress heat-induced thermotolerance to 43 degrees C, which was the same as heat protection observed when CHM was added before and during heating at 43 degrees C without the initial heat treatment. These differences between the initial treatments and between 43 and 45 degrees C may possibly be explained by reports that show that heat causes more redistribution of HSP-70 to the nucleus and nucleolus than ARS and that redistribution of HSP-70 can occur during heating at 42 degrees C with or without the presence of CHM. Heating cells at 43 degrees C for 5 hr after thermotolerance had developed induced additional thermotolerance, as measured with a challenge at 45 degrees C immediately after heating at 43 degrees C. Compared to the nonthermotolerant cells, thermotolerance ratios were 10 for the ARS treatment and 8.5 for the initial heat treatment. Adding CHM (10 micrograms/ml) or PUR (100 micrograms/ml) to inhibit protein synthesis during heating at 43 degrees C did not greatly reduce this additional thermotolerance. If, however, protein synthesis was inhibited between the initial heat treatment and heating at 43 degrees C, protein synthesis was required during 43 degrees C for the development of additional thermotolerance to 45 degrees C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
After sodium arsenite (100 microM) treatment, the synthesis of three major heat shock protein families (HSPs; Mr = 110,000, 87,000, and 70,000), as studied with one-dimensional gels, was enhanced twofold relative to that of unheated cells. The increase of unique HSPs, if studied with two-dimensional gels, would probably be much greater. In parallel, thermotolerance was observed as a 100,000-fold increase in survival from 10(-6) to 10(-1) after 4 hr at 43 degrees C, and as a thermotolerance ratio (TTR) of 2-3 at 10(-3) isosurvival for heating at 45.5 degrees C. Cycloheximide (CHM: 10 micrograms/ml) or puromycin (PUR: 100 micrograms/ml), which inhibited total protein synthesis and HSP synthesis by 95%, completely suppressed the development of thermotolerance when either drug was added after sodium arsenite treatment and removed prior to the subsequent heat treatment. Therefore, thermotolerance induced by arsenite treatment correlated with an increase in newly synthesized HSPs. However, with or without arsenite treatment, CHM or PUR added 2-6 hr before heating and left on during heating caused a 10,000-100,000-fold enhancement of survival when cells were heated at 43 degrees C for 4 hr, even though very little synthesis of heat shock proteins occurred. Moreover, these cells manifesting resistance to heating at 43 degrees C after CHM treatment were much different than those manifesting resistance to 43 degrees C after arsenite treatment. Arsenite-treated cells showed a great deal of thermotolerance (TTR of about 10) when they were heated at 45 degrees C after 5 hr of heating at 43 degrees C, compared with less thermotolerance (TTR of about 2) for the CHM-treated cells heated at 45 degrees C after 5 hr of heating at 43 degrees C. Therefore, there are two different phenomena. The first is thermotolerance after arsenite treatment (observed at 43 degrees C or 45.5 degrees C) that apparently requires synthesis of HSPs. The second is resistance to heat after CHM or PUR treatment before and during heating (observed at 43 degrees C with little resistance at 45.5 degrees C) that apparently does not require synthesis of HSPs. This phenomenon not requiring the synthesis of HSPs also was observed by the large increase in thermotolerance to 45 degrees C caused by heating at 43 degrees C, with or without CHM, after cells were incubated for 6 hr following arsenite pretreatment. For both phenomena, a model based on synthesis and redistribution of HSPs is presented.  相似文献   

4.
Previous studies suggested that a 26 kDa protein might play an important role in protein synthesis-independent thermotolerance development in CHO cells. To determine if this phenomenon was universal, four mammalian cell lines, viz., CHO, HA-1, murine Swiss 3T3, and human HeLa, were studied. Cells were heated at 42 degrees C, and the level of 26 kDa protein in the nucleus was measured, together with clonogenic survival and protein synthesis. The results demonstrated that 1) the 26-kDa protein was present in the four different cell lines, and 2) the level of the 26 kDa protein in their nuclei was decreased by 30-70% after heating at 42 degrees C for 1 hr. However, restoration of this protein occurred along with development of chronic thermotolerance. The protein synthesis inhibitor cycloheximide (10 micrograms/ml) neither inhibited the development of chronic thermotolerance nor affected the restoration of the 26 kDa protein in the nucleus. In fact, this drug protected cells from hyperthermic killing and heat-induced reduction of 26 kDa protein in the nucleus. Heat sensitizers, quercetin (0.1 mM), 3,3'-dipentyloxacarbocyanine iodide (DiOC5[3]: 5 micrograms/ml), and stepdown heating (45 degrees C-10 min----42 degrees C), potentiated hyperthermic killing and inhibited or delayed the restoration of the 26 kDa protein to the nucleus. These results support a correlated, perhaps causal relationship between the restoration of the 26 kDa protein and chronic thermotolerance development in four different mammalian cell lines.  相似文献   

5.
Recent data indicate that cells may acquire thermotolerance via more than one route. In this study, we observed differences in thermotolerance development in HeLa S3 cells induced by prior heating (15 minutes at 44 degrees C) or pretreatment with sodium-arsenite (1 hour at 37 degrees C, 100 microM). Inhibition of overall protein and heat shock protein (HSP) synthesis (greater than 95%) by cycloheximide (25 micrograms/ml) during tolerance development nearly completely abolished thermotolerance induced by arsenite, while significant levels of heat-induced thermotolerance were still apparent. The same dependence of protein synthesis was found for resistance against sodium-arsenite toxicity. Toxic heat, but not toxic arsenite treatments caused heat damage in the cell nucleus, measured as an increase in the protein mass of nuclei isolated from treated cells (intranuclear protein aggregation). Recovery from this intranuclear protein aggregation was observed during post-heat incubations of the cells at 37 degrees C. The rate of recovery was faster in heat-induced tolerant cells than in nontolerant cells. Arsenite-induced tolerant cells did not show an enhanced rate of recovery from the heat-induced intranuclear protein aggregation. In parallel, hyperthermic inhibition of RNA synthesis was the same in tolerant and nontolerant cells, whereas post-heat recovery was enhanced in heat-induced, but not arsenite-induced thermotolerant cells. The more rapid recovery from heat damage in the nucleus (protein aggregation and RNA synthesis) in cells made tolerant by a prior heat treatment seemed related to the ability of heat (but not arsenite) to induce HSP translocations to the nucleus.  相似文献   

6.
During 4 hr after puromycin (PUR: 20 micrograms/ml) treatment, the synthesis of three major heat shock protein families (HSPs: Mr = 110,000, 87,000, and 70,000) was enhanced 1.5-fold relative to that of untreated cells, as studied by one-dimensional gel electrophoresis. The increase of unique HSPs, if studied with two-dimensional gels, would probably be much greater. In parallel, thermotolerance was observed at 10(-3) isosurvival as a thermotolerance ratio (TTR) of either 2 or greater than 5 after heating at either 45.5 degrees C or 43 degrees C, respectively. However, thermotolerance was induced by only intermediate concentrations (3-30 micrograms/ml) of puromycin that inhibited protein synthesis by 15-80%; a high concentration of PUR (100 micrograms/ml) that inhibited protein synthesis by 95% did not induce either HSPs or thermotolerance. Also, thermotolerance was never induced by any concentration (0.01-10 micrograms/ml) of cycloheximide that inhibited protein synthesis by 5-94%. Furthermore, after PUR (20 micrograms/ml) treatment, the addition of cycloheximide (CHM: 10 micrograms/ml), at a concentration that reduces protein synthesis by 94%, inhibited both thermotolerance and synthesis of HSP families. Thus, thermotolerance induced by intermediate concentrations of PUR correlated with an increase in newly synthesized HSP families. This thermotolerance phenomenon was compared with another phenomenon termed heat resistance and observed when cells were heated at 43 degrees C in the presence of CHM or PUR immediately after a 2-hr pretreatment with CHM or PUR. Heat protection increased with inhibition of synthesis of both total protein and HSP families. Moreover, this heat protection decayed rapidly as the interval between pretreatment and heating increased to 1-2 hr, and did not have any obvious relationship to the synthesis of HSP families. Therefore, there are two distinctly different pathways for developing thermal resistance. The first is thermotolerance after intermediate concentrations of PUR treatment, and it requires incubation after treatment and apparently the synthesis of HSP families. The second is resistance to heat after CHM or PUR treatment immediately before and during heating at 43 degrees C, and it apparently does not require synthesis of HSP families. This second pathway not requiring the synthesis of HSP families also was observed by the increase in thermotolerance at 45.5 degrees C caused by heating at 43 degrees C after cells were incubated for 2-4 hr following pretreatment with an intermediate concentration of PUR.  相似文献   

7.
The mechanism by which Cycloheximide (CHM) protects cells from heat induced killing has been investigated. Cycloheximide (10 micrograms/ml) added for 2 hr before and during a 3 hour heating at 43 degrees C prevented a 40% increase of heat-induced protein accumulation in the nucleus and protected cells (0.0001 vs. 0.15 surviving fraction) from heat-induced killing. Heat-induced DNA repair inhibition was also suppressed when cells were treated with CHM in the above manner. This combination of results suggests that protein accumulation in the nucleus and inhibition of DNA repair are related and these events are associated with CHM protection from heat induced cell killing.  相似文献   

8.
The relationship of heat-induced inhibition of protein synthesis (HIIPS) and thermotolerance, the transient ability to survive otherwise lethal heat treatments, was studied in HA-1 Chinese hamster fibroblasts exposed to various treatments. A mild heatshock or exposure to sodium arsenite induced a refractoriness to HIIPS, while exposure to the amino acid analog of proline, azetidine, did not. The development and decay of refractoriness to HIIPS after exposure to heat or sodium arsenite paralleled in the increase and decrease of the rate of synthesis of the heat-shock proteins (HSP), and was associated with neither the persistence of elevated levels of HSP nor the persistence of the thermotolerant state. Refractoriness to HIIPS was not associated with the elevated synthesis of HSP in the presence of amino acid analogs regardless of the mode of induction, indicating a requirement for functional HSP for the effect. The refractoriness to HIIPS was also found in heat-resistant variants of HA-1 cells that express elevated levels of hsp 70, implicating a role for this protein in this process. Our observation establish an unique biological effect associated with the period of elevated synthesis of the HSP, especially the hsp 70.  相似文献   

9.
The induction of thermotolerance was studied in a temperature sensitive mouse cell line, ts85, and results were compared with those for the wild-type FM3A cells. At the nonpermissive temperature of 39 degrees C, ts85 cells are defective in the degradation of short-lived abnormal proteins, apparently because of loss of activity of a ubiquitin-activating enzyme. The failure of the ts85 cells to develop thermotolerance to 41-43 degrees C after incubation at the nonpermissive temperature of 39 degrees C correlated with the failure of the cells to degrade short-lived abnormal proteins at 39 degrees C. However, the failure of the ts85 cells to develop thermotolerance to 43 degrees C during incubation at 33 degrees C after either arsenite treatment or heating at 45.5 degrees C for 6 or 10 min did not correlate with protein degradation rates. Although the rate of degrading abnormal protein was reduced after heating at 45.5 degrees C for 10 min, the rates were normal after arsenite treatment or heating at 45.5 degrees C for 6 min. In addition, when protein synthesis was inhibited with cycloheximide both during incubation at 33 degrees C or 39 degrees C and during heating at 41-43 degrees C, resistance to heating was observed, but protein degradation rates at 39 degrees C or 43 degrees C were not altered by the cycloheximide treatment. Therefore, there is apparently no consistent relationship between rates of degrading abnormal proteins and the ability of cells to develop thermotolerance and resistance to heating in the presence of cycloheximide.  相似文献   

10.
Chinese hamster ovary (CHO) cells were exposed to a 43 degrees C, 15-min heat shock to study the relationship between protein synthesis and the development of thermotolerance. The 43 degrees C heat shock triggered the synthesis of three protein families having molecular weights of 110,000, 90,000, and 65,000 (HSP). These proteins were synthesized at 37 and 46 degrees C. This heat shock also induced the development of thermotolerance, which was measured by incubating the cells at 46 degrees C 4 h after the 43 degrees C heat treatment. CHO cells were also exposed to 20 micrograms/ml of cycloheximide for 30 min at 37 degrees C, 15 min at 43 degrees C, and 4 h at 37 degrees C. This treatment inhibited the enhanced synthesis of the Mr 110,000, 90,000, and 65,000 proteins. The cycloheximide was then washed out and the cells were incubated at 46 degrees C. HSP synthesis did not recover during the 46 degrees C incubation. This cycloheximide treatment also partially inhibited the development of thermotolerance. These results suggest that for CHO cells to express thermotolerance when exposed to the supralethal temperature of 46 degrees C protein synthesis is necessary.  相似文献   

11.
Cultured murine mammary carcinoma cells M8013 could be made thermotolerant by a priming heat treatment, 30 min at 43 degrees C, applied 5 h prior to subsequent heat treatment. The sensitivity of non-tolerant and thermotolerant cells to either radiation or heat combined with radiation was investigated. Analysis of survival curves with respect to D0 and N showed that thermotolerance had no influence on the radiation sensitivity of the cells. Thermal enhancement of radiation effects (in combined heat/irradiation treatments) was however reduced as a result of thermotolerance. When thermal enhancement ratios were (D0) plotted as a function of the cell killing effects of heat treatment alone, thermotolerance did not seem to have any influence. This latter observation suggests that thermotolerance modifies the effectiveness of the heat treatment for heat-induced cell lethality and radiosensitization equally. Comparison of our in vitro results with several in vivo data on normal tissues suggest that the reduction in 'effective' treatment temperature which has been observed in the in vivo studies as a result of thermotolerance may be explained by equal modification of the effects of heat by thermotolerance both for its direct effects and the radiosensitization.  相似文献   

12.
Exposure of HA-1 Chinese hamster fibroblasts to amino acid analogs has been shown to have a heat-sensitizing effect as well as inducing the heat shock response (Li and Laszlo, 1985a). In this study, we have examined the effect of amino acid analogs on the development of thermotolerance after a brief heat shock or exposure to sodium arsenite and the effect of amino acid analogs on cells that are already thermotolerant. Exposure of HA-1 cells to amino acid analogs inhibited the development of thermotolerance following a mild heat shock or treatment with sodium arsenite. However, cells that were already thermotolerant were resistant to the sensitizing action of amino acid analogs. The refractoriness of thermotolerant cells to amino acid analog treatment developed in parallel with thermotolerance. The uptake of the arginine analog, canavanine, and its incorporation into proteins was not altered in the thermotolerant cells. Furthermore, another biological consequence of exposure to amino acid analogs, sensitization to ionizing radiation, also was not altered in the thermotolerant cells. The inhibition of the development of thermotolerance by amino acid analogs and the refractoriness of thermotolerant cells to the heat-sensitizing action of amino acid analogs lend further support the role of heat-shock proteins in the phenomenon of thermotolerance. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Heat shock protein synthesis and thermotolerance in Salmonella typhimurium   总被引:2,自引:0,他引:2  
The resistance of stationary phase Salmonella typhimurium to heating at 55 degrees C was greater in cells grown in nutritionally rich than in minimal media, but in all media tested resistance was enhanced by exposing cells to a primary heat shock at 48 degrees C. Chloramphenicol reduced the acquisition of thermotolerance in all media but did not completely prevent it in any. The onset of thermotolerance was accompanied by increased synthesis of major heat shock proteins of molecular weight about 83, 72, 64 and 25 kDa. When cells were shifted from 48 degrees C to 37 degrees C, however, thermotolerance was rapidly lost with no corresponding decrease in the levels of these proteins. There is thus no direct relationship between thermotolerance and the cellular content of the major heat shock proteins. One minor protein of molecular weight about 34 kDa disappeared rapidly following a temperature down-shift. Its presence in the cell was thus correlated with the thermotolerant state.  相似文献   

14.
In this study we investigated the effect of heat on the proteins of the particulate fraction (PF) of HeLa S3 cells using electron spin resonance (ESR) and thermal gel analysis (TGA). ESR detects overall conformational changes in proteins, while TGA detects denaturation (aggregation due to formation of disulfide bonds) in specific proteins. For ESR measurements the -SH groups of the proteins were labelled with a maleimido bound spin label (4-maleimido-tempo). The sample was heated inside the ESR spectrometer at a rate of 1 degree C/min. ESR spectra were made every 2-3 degrees C between 20 degrees C and 70 degrees C. In the PF of untreated cells conformational changes in proteins were observed in three temperature stretches: between 38 and 44 degrees C (transition A, TA); between 47 and 53 degrees C (transition B, TB); and above 58 degrees C (transition C, TC). With TGA, using the same heating rate, we identified three proteins (55, 70, and 90 kD) which denatured during TB. No protein denaturation was observed during TA, while during TC denaturation of all remaining proteins in the PF occurred. When the ESR and TGA measurements were done with the PF of (heat-induced) thermotolerant cells, TA was unchanged while TB and TC started at higher temperatures. The temperature shift for the onset of these transitions correlated with the degree of thermotolerance that was induced in the cells. These results suggest that protection against heat-induced denaturation of proteins in the PF is involved in heat induced thermotolerance.  相似文献   

15.
The induction of and recovery from heat-induced perturbations in several cellular parameters were examined in normal, transiently thermotolerant, and permanently heat-resistant HA-1 Chinese hamster fibroblasts. The initial heat-induced perturbations in total cellular protein synthesis, RNA synthesis, vimentin-containing intermediate filaments, and nuclear protein mass were similar in the three different cell types which display various levels of thermal resistance as determined by clonogenic survival. The posthyperthermia recovery from the heat-induced perturbations in all of the cellular parameters was more rapid in both the permanently heat-resistant cells and in the transiently thermotolerant cells. This response was observed in cells in which transient thermotolerance was induced by either a mild heat shock or exposure to sodium arsenite. The development and decay of the capacity for more rapid recovery from the initial heat-induced perturbations in total cellular protein and RNA synthesis paralleled the development and decay of clonogenic thermotolerance. Overall, these results support the notion that more rapid recovery from similar levels of heat-induced perturbations in various cellular parameters are a salient feature of both the transiently and permanently heat-resistant state.  相似文献   

16.
Exposure of cells to heat induces thermotolerance, a transient resistance to subsequent heat challenges. It has been shown that thermotolerance is correlated in time with the enhanced synthesis of heat shock proteins. In this study, the association of induced heat shock proteins with various cellular fractions was investigated and the heat-induced changes in skeletal protein composition in thermotolerant and control cells was compared. All three major heat shock proteins induced in Chinese hamster fibroblasts after a 46 degrees C, 4-min heat treatment (70, 87, and 110 kDa) were purified with the cytoplasmic fraction, whereas only the 70-kDa protein was also found in other cell fractions, including that containing the cellular skeleton. Immediately after a second heat treatment at 45 degrees C for 45 min, the 110-kDa protein from thermotolerant cells also purified extensively with the cellular skeletal fraction. In this regard, the 110-kDa protein behaved similarly to many other cellular proteins, since we observed an overall temperature-dependent increase in the total labeled protein content of the high-salt-resistant cellular skeletal fraction after heat shock. Pulse-chase studies demonstrated that this increased protein content gradually returned to normal levels after a 3-hr incubation at 37 degrees C. The alteration or recovery kinetics of the total labeled protein content of the cellular skeletal fraction after heat shock did not correlate with the dramatic increase in survival observed in thermotolerant cells. The relationship between heat shock proteins and thermotolerance, therefore, does not correlate directly with changes in the heat-induced cellular alterations leading to differences in protein fractionation.  相似文献   

17.
The cellular heat shock response leads to the enhanced synthesis of a family of heat shock proteins and the development of thermotolerance. In CHO cells, however, heat shock also leads to enhanced synthesis of a 50 kD glycoprotein and elevated activity of N-acetylgalactosaminyltransferase (GalNAcT). In this study we showed increased GalNAcT activity during thermotolerance expression in all of five mammalian cell lines included in the study. However, there was no simple correlation between cellular heat sensitivity of unheated control cells and basal levels of GalNAcT activity, measured toward the same exogenous acceptor apomucin. Although GalNAcT was elevated in thermotolerant cells, GalNAcT activity itself did not exhibit thermotolerance in terms of reduced sensitivity to heat inactivation. The increase in GalNAcT activity after heating was similar in exponentially growing and plateau-phase cultures and was inhibited neither by cycloheximide nor actinomycin D. However, the inhibitors by themselves also increased GalNAcT activity in unheated control cells. Chemical inducers of thermotolerance (arsenite and diamide) increased GalNAcT activity, but the increase was modest when compared to that following hyperthermia. In addition to GalNAcT, two other glycosyltransferases with specificity for O-glycans, alpha 1,2-fucosyltransferase and alpha 2,6-sialyltransferase, also showed increased activity after hyperthermia and during thermotolerance development. Together with previously published data, these results support the hypothesis that heat-induced activation of O-glycan-specific glycosyltransferases plays a physiological role in the cellular heat shock response and in thermotolerance development.  相似文献   

18.
We investigated the correlation between the development of acute thermotolerance and the phosphorylation, synthesis, and expression of the HSP28 family in murine L929 cells. Following heating at 43 degrees C for 30 min, thermotolerance developed rapidly in exponential-phase cells and reached its maximum 4-9 h after heat shock. Maximal thermal resistance was maintained for 24 h and then gradually decayed. However, heat-induced phosphorylation of HSP28 was not detected. Furthermore, HSP28 synthesis during incubation at 37 degrees C for 12 h following heat shock was not detected by [3H]-leucine labeling followed by two-dimensional polyacrylamide gel electrophoresis. In addition, Northern blots failed to demonstrate expression of the HSP28 gene. Unlike HSP28, the expression of constitutive and inducible HSP70 genes, along with the synthesis of their proteins, was observed during incubation at 37 degrees C after heat shock. These results demonstrate that HSP28 synthesis and its phosphorylation are not required to develop acute thermotolerance in L929 cells.  相似文献   

19.
Using a bovine papilloma virus-based vector, mouse mammary adenocarcinoma cells have been transformed to express elevated amounts of functional calmodulin (CaM) (Rasmussen and Means, 1987) and another Ca2(+)-binding protein, parvalbumin (PV) (Rasmussen and Means, 1989) that is not normally synthesized in these cells. Parental cells (C127) and cells transformed by the vector alone (BPV-1), the vector containing a CaM gene (CM-1), or the vector containing parvalbumin (PV-1) were used to study the effect of increased synthesis of Ca2(+)-binding proteins on heat-stress protein (HSP) synthesis and cell survival following heating at 43 degrees C. The induction, stability, and repression of the synthesis of most HSPs after 43 degrees C heating was not significantly affected by increased amounts of Ca2(+)-binding proteins, but the rate of synthesis of all three isoforms of the 26-kDa HSP (HSP26) was greatly reduced. C127 cells, which have about one half as much CaM as do BPV-1 cells, synthesized the most HSP26. CM-1 cells, which have more than fourfold higher levels of CaM than do BPV-1 cells, had a rate of synthesis of HSP26 approaching that of unheated cells. BPV-1 cells, with a two-fold increase in CaM, were intermediate in HSP26 synthesis. This effect on HSP26 synthesis may be largely related to the Ca2(+)-binding capacity of CaM rather than to a specific CaM-regulated function, since PV-1 cells also showed reduced rates of HSP26 synthesis. Survival experiments showed that reduced HSP26 synthesis in cells with increased amounts of Ca2(+)-binding proteins did not significantly alter intrinsic resistance to continuous 43 degrees C heating. Thermotolerance was not reduced and appeared to develop more rapidly in CM-1 and PV-1 cells. These results suggest that (1) the signal for HSP26 synthesis can be largely abrogated by elevated Ca2+ binding protein levels, and (2) if these HSPs are involved in thermotolerance development, that function may be associated with intracellular Ca2+ homeostasis.  相似文献   

20.
Short exposure (1-2 h) of cultured cells, derived from a transplantable murine mammary carcinoma, to sodium arsenite, 2,4-dinitrophenol (DNP), carbonylcyanide-3-chlorophenylhydrazone (CCP) or disulfiram, induced resistance to a subsequent heat treatment, similar to heat-induced thermotolerance. Optimum resistance to a test heat treatment of 45 min at 45 degrees C after sodium arsenite exposure was obtained at a concentration of 300 microM, after DNP exposure at 3mM, after CCP at 300 microM and after disulfiram exposure in the range 1-30 microM. Exposure of cells to CCP, sodium arsenite or disulfiram led to enhanced synthesis of some proteins with the same molecular weight as 'heat shock' proteins. The pattern of enhanced synthesis of these proteins was agent specific. We could not detect significantly enhanced synthesis of the proteins after DNP using one-dimensional gel electrophoresis. These results suggest that enhanced stress protein synthesis is not a prerequisite for the development of thermal resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号