首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autistic disorder (AD) is a neurodevelopmental disorder that affects approximately 2-10/10,000 individuals. Chromosome 15q11-q13 has been implicated in the genetic etiology of AD based on (1) cytogenetic abnormalities; (2) increased recombination frequency in this region in AD versus non-AD families; (3) suggested linkage with markers D15S156, D15S219, and D15S217; and (4) evidence for significant association with polymorphisms in the gamma-aminobutyric acid receptor subunit B3 gene (GABRB3). To isolate the putative 15q11-q13 candidate AD gene, a genomic contig and physical map of the approximately 1.2-Mb region from the GABA receptor gene cluster to the OCA2 locus was generated. Twenty-one bacterial artificial chromosome (BAC) clones, 32 P1-derived artificial chromosome (PAC) clones, and 2 P1 clones have been isolated using the markers D15S540, GABRB3, GABRA5, GABRG3, D15S822, and D15S217, as well as 34 novel markers developed from the end sequences of BAC/PAC clones. In contrast to previous findings, the markers D15S822 and D15S975 have been localized within the GABRG3 gene, which we have shown to be approximately 250 kb in size. NotI and numerous EagI restriction enzyme cut sites were identified in this region. The BAC/PAC genomic contig can be utilized for the study of genomic structure and the identification and characterization of genes and their methylation status in this autism candidate gene region on human chromosome 15q11-q13.  相似文献   

2.
用人染色体14q24.3区带探针池直接分离表达顺序   总被引:4,自引:1,他引:3  
张民  余龙 《实验生物学报》1997,30(3):241-246
本文报道了从显微切割的人染色体区带直接分离区带专一性表达序列的方法和结果。  相似文献   

3.
We have applied a targeted physical mapping approach, based on the isolation of bovine region-specific large-insert clones using homologous human sequences and chromosome microdissection, to enhance the physical gene map of the telomeric region of BTA18 and to prove its evolutionary conservation. The latter is a prerequisite to exploit the dense human gene map for future positional cloning approaches. Partial sequencing and homology search were used to characterize 20 BACs targeted to the BTA18q2.4-q2.6 region. We used fluorescence in situ hybridization (FISH) to create physical maps of 11 BACs containing 15 gene loci; these BACs served as anchor loci. Using these approaches, 12 new gene loci (CKM, STK13, PSCD2, IRF3, VASP, ACTN4, ITPKC, CYP2B6, FOSB, DMPK, MIA, SIX5) were assigned on BTA18 in the bovine cytogenetic map. A resolved physical map of BTA18q2.4-q2.6 was developed, which encompasses 28 marker loci and a comparative cytogenetic map that contains 15 genes. The mapping results demonstrate the high evolutionary conservation between the telomeric region of BTA18q and HSA19q.  相似文献   

4.
Ninety four NotI-STS markers to seventy two individual NotI clones were developed basing on DNA nucleotide sequences from NotI-"jumping" and "linking" NotI-libraries of human chromosome 3. The localization of NotI-STS markers and their ordering on chromosome was established by combined data of RH-mapping (our data), contig-mapping, cytogenetic mapping and in silico mapping. Performed comparison of NotI-STS DNAs with human genome sequences revealed two gaps in the regions, 3p21.33 (marker NLI-256) and 3p21.31 (NL3-005), and segmental duplication. Identical DNA fragments are localized in the regions 12q and 3p22-21.33 (marker NL3-007). In the region 3q28-q29 (marker NLM-084) a fragment was detected with its identical copies present also on chromosomes 1, 2, 15 and 19. For 69 NotI-STSs, significant homologies with nucleotide sequences of 70 genes and two cDNAs were detected taking in consideration homologies to NotI-STS 5'- and 3'-terminal sequences. Association of NotI-STSs with genes is confirmed by high correlation of gene density distribution with the density of NotI-STS markers on the map of human chromosome 3. Obtained data evidence possibility of NotI-STS marker application as gene markers and allow considering constructed NotI-map as gene map of human chromosome 3.  相似文献   

5.
To identify new DNA markers around the neurofibromatosis-2 gene on human chromosome 22, the critical region (22q12-q13.1) was microdissected and microcloned from GTG-banded metaphase chromosomes. Eighteen thousand recombinant clones were obtained. Twenty-seven of 55 clones tested (50%) detected single-copy DNA sequences. Nine of nine clones analyzed in detail were found to map to chromosome 22. Interestingly one clone (EAN04) is part of the leukemia inhibitory factor gene which has previously been mapped to 22q11.2-q13.1. Four clones (EAN01, EAN47, EAN57, and EAN68) detect DNA polymorphisms. These probes were used to compare constitutional and tumor genotypes of 41 patients with acoustic neurinoma. Loss of constitutional heterozygosity was identified in 17 of 31 informative cases (55%). From our data we conclude that the microdissection library is a valuable resource for physical and genetic mapping studies in neurofibromatosis-2.  相似文献   

6.
Human chromosomal regions 8q23.3-q24.11 and 2q33-qter were microdissected, DNAs from the regions were amplified with the primer-linker method of polymerase chain reaction (PCR), and their DNA libraries were constructed by cloning into pUC19. The primer-linker PCR involved Sau3AI digestion of microdissected chromosomal DNAs, ligation of the digests to a 10mer DNA linker and 24mer primer, filling the recessed 3' ends, and PCR amplification using the 24mer DNA as a primer. A total of 3.5 x 10(4) pUC19 recombinants (8q library) from the 8q region and 5.0 x 10(4) pUC clones (2q library) from the 2q region were obtained. From the 8q library, 60 pUC clones were selected, while 88 pUC-clones were selected from the 2q library. These clones were Southern blot analyzed on hybrid cell panels with or without human chromosome 8 or 2. Twelve (20%) of the 60 8q-derived clones were unique DNA sequences, and 9 were subjected to deletion analysis in the genomic DNA of two patients, one with trichorhino-phalangeal syndrome (TRPS) type I and the other with TRPS type II, both with del(8) (q23.3q24.13). Five of the 9 pUC clones tested showed a one-copy density in both patients, an indication that the clones map to the region deleted in both patients. Screening a genomic DNA library constructed in the phage revealed a clone with a 9.4-kb insert and a one-copy density in both patients. From the 2q library, 15 (17%) of the 88 pUC clones obtained were unique sequences. When a phage library was screened, 8 clones were obtained: 4 were identical and 2 were overlapping sequences.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Twenty-two and eight significant quantitative trait loci for economically important traits have been located on porcine chromosomes (SSC) 2q and SSC16 respectively, both of which have been shown to correspond to human chromosome 5 (HSA5) by chromosome painting. To provide a comprehensive comparative map for efficient selection of candidate genes, we assigned 117 genes from HSA5 using a porcine radiation hybrid (IMpRH) panel. Sixty-six genes were assigned to SSC2 and 48 to SSC16. One gene was suggested to link to SSC2 markers and another to SSC6. One gene did not link to any gene, expressed sequence tag or marker in the map, including those in the present investigation. This study demonstrated the following: (1) SSC2q21-q28 corresponds to the region ranging from 74.0 to 148.2 Mb on HSA5q13-q32 and the region from 176.0 to 179.3 Mb on HSA5q35; (2) SSC16 corresponds to the region from 1.4 to 68.7 Mb on HSA5p-q13 and to the region from 150.4 to 169.1 Mb on HSA5q32-q35 and (3) the conserved synteny between HSA5 and SSC2q21-q28 is interrupted by at least two sites and the synteny between HSA5 and SSC16 is also interrupted by at least two sites.  相似文献   

8.
To better map the location of the von Recklinghausen neurofibromatosis (NF1) gene, we have characterized a somatic cell hybrid designated 7AE-11. This microcell-mediated, chromosome-transfer construct harbors a centromeric segment and a neo-marked segment from the distal long arm of human chromosome 17. We have identified 269 cosmid clones with human sequences from a 7AE-11 library and, using a panel of somatic cell hybrids with a total of six chromosome 17q breakpoints, have mapped 240 of these clones on chromosome 17q. The panel included a hybrid (NF13) carrying a der(22) chromosome that was isolated from an NF1 patient with a balanced translocation, t(17;22) (q11.2;q11.2). Fifty-three of the cosmids map into a region spanning the NF13 breakpoint, as defined by the two closest flanking breakpoints (17q11.2 and 17q11.2-q12). RFLP clones from a subset of these cosmids have been mapped by linkage analysis in normal reference families, to localize the NF1 gene more precisely and to enhance the potential for genetic diagnosis of this disorder. The cosmids in the NF1 region will be an important resource for testing DNA blots of large-fragment restriction-enzyme digests from NF1 patient cell lines, to detect rearrangements in patients' DNA and to identify the 17;22 NF1 translocation breakpoint.  相似文献   

9.
D S Gerhard  E Lawrence  J Wu  H Chua  N Ma  S Bland  C Jones 《Genomics》1992,13(4):1133-1142
The determination of the physical map of human chromosome 11 will require more clones than are currently available. We have isolated an additional 1001 new markers in a bacteriophage vector from a somatic cell hybrid cell line that contains most of chromosome 11, except the middle of the short arm. These markers were localized to five different regions, 11p15-pter, 11p12-cen, 11q11-q14, 11q14-q23, and 11q23-qter, by a panel of previously characterized somatic cell hybrids. The region 11q11-14 harbors genes that have been shown to be important in breast cancer, B-cell lymphomas, centrocytic lymphomas, asthma, and multiple endocrine neoplasia, type 1 (MEN1). To determine the positions of the recombinant clones located there, we developed a new series of radiation-reduced somatic cell hybrids. These hybrids, together with those previously characterized, allowed us to map the 11q11-q14 markers into 11 separate segregation groups.  相似文献   

10.
Radiation hybrid mapping (RH mapping) is considered as one of the main methods of constructing physical maps of mammalian genomes. In introduction, theoretical prerequisites of developing of the RH mapping and statistical methods of data analysis are discussed. Comparative characteristics of universal commercial panels of the radiation hybrid somatic cells (RH panels) are shown. In experimental part of the work, RH mapping is used to localise nucleotide sequences adjacent to NotI sites of human chromosome 3 with the aim to integrate contig map of NotI clones to comprehensive maps of human genome. Five nucleotide sequences adjacent to the sites of integration of papilloma virus in human genome and expressed in the cells of cervical cancer were localised. It was demonstrated that the region 13q14.3-q21.1 was enriched with nucleotide sequences involved in the processes of oncogenesis. RH mapping can be considered as one of the most perspective applications of the modern radiation biology in the field of molecular genetics, that is, in constructing physical maps of mammalian genomes with high resolution level.  相似文献   

11.
Construction of a GT polymorphism map of human 9q.   总被引:31,自引:0,他引:31  
To construct a framework map of human chromosome 9 consisting of highly informative markers, we identified 36 cosmid clones from chromosome 9 that contained long GT repeat sequences. The cosmids were found to cluster on the long arm of the chromosome, particularly in the q32-34 region. Thirteen highly informative polymorphisms from 9q were identified, with median observed heterozygosity 0.75 and median calculated heterozygosity based upon allele frequencies of 0.75. These new GT repeat polymorphisms (D9S56, D9S58-67), as well as anchor GT polymorphisms for D9S15 (MCT112, 9q13), and ABL and ASS (both 9q34.1) were utilized to construct a linkage map of human 9q by the typing of the Venezuelan Reference Pedigree. Care was taken to avoid errors, including analysis of the data with CHROMLOOK and verification of all double crossover events detected within a 30 cM interval by repetition of the marker analysis. The map was generated using the MAPMAKER program. All positions in the resulting map are favored by odds of greater than 10(4):1. The map has a sex-averaged length of 90 cM (Kosambi function) with a single maximum intermarker recombination fraction of 26%. All other intermarker recombination fractions are less than 15%. As D9S15 is known to be closely linked to markers on proximal 9p, and ASS/ABL are in band 34.1, this set of GT polymorphisms spans the length of 9q and provides a useful panel for linkage analysis of disease genes to this region. The marker order was confirmed by in situ hybridization of the cosmid clones to metaphase spreads of normal human chromosomes, which indicated an excess of recombination in the telomeric region in comparison to centromeric 9q, in agreement with previous chiasmata distribution observations. Two spontaneous new mutations for these GT repeat markers were identified, giving an overall observed spontaneous mutation rate of 0.00045 per locus per gamete. Direct observation of new mutations has not been previously reported for dinucleotide polymorphisms, but the observed rate is consistent with frequencies observed for other VNTR polymorphisms.  相似文献   

12.
In this study, we present a comprehensive 5000-rad radiation hybrid map of a 40-cM region on equine chromosome 4 (ECA4) that contains quantitative trait loci for equine osteochondrosis. We mapped 29 gene-associated sequence tagged site markers using primers designed from equine expressed sequence tags or BAC clones in the ECA4q12-q22 region. Three blocks of conserved synteny, showing two chromosomal breakpoints, were identified in the segment of ECA4q12-q22. Markers from other segments of HSA7q mapped to ECA13p and ECA4p, and a region of HSA7p was homologous to ECA13p. Therefore, we have improved the resolution of the human-equine comparative map, which allows the identification of candidate genes underlying traits of interest.  相似文献   

13.
The physical and comparative map of GGA15 was improved by the construction of 9 BAC contigs around loci previously mapped on GGA15 by linkage analysis. In total, 240 BAC clones were isolated, covering 30–35% of GGA15, and 120 STS were developed (104 STS derived from BAC end sequences and 18 STS derived within genes). Seventeen chicken orthologues of human genes located on human Chr 22q11-q12 were directly mapped within BAC contigs of GGA15. Furthermore, the partial sequences of the chicken BAC clones were compared with sequences present in the EMBL/GenBank databases and revealed matches to 26 genes, ESTs, and genomic clones located on HSA22q11-q12 and HSA12q24. These results provide a better alignment of GGA15 with the corresponding regions in human and mouse, and improve our knowledge of the evolution and dynamics of the vertebrate genome. GenBank Accession Numbers: The nucleotide sequence data reported in this paper have been submitted to GenBank and have been assigned the accession numbers BZ592394-BZ592544.  相似文献   

14.
To improve the physical and comparative map of chicken chromosome 24 (GGA24; former linkage group E49C20W21) bacterial artificial chromosome (BAC) contigs were constructed around loci previously mapped on this chromosome by linkage analysis. The BAC clones were used for both sample sequencing and BAC end sequencing. Sequence tagged site (STS) markers derived from the BAC end sequences were used for chromosome walking. In total 191 BAC clones were isolated, covering almost 30% of GGA24, and 76 STS were developed (65 STS derived from BAC end sequences and 11 STS derived within genes). The partial sequences of the chicken BAC clones were compared with sequences present in the EMBL/GenBank databases, and revealed matches to 19 genes, expressed sequence tags (ESTs) and genomic clones located on human chromosome 11q22-q24 and mouse chromosome 9. Furthermore, 11 chicken orthologues of human genes located on HSA11q22-q24 were directly mapped within BAC contigs of GGA24. These results provide a better alignment of GGA24 with the corresponding regions in human and mouse and identify several intrachromosomal rearrangements between chicken and mammals.  相似文献   

15.
Aldose reductase (alditol:NAD(P)+ 1-oxidoreductase; EC 1.1.1.21) (AR) catalyzes the reduction of several aldehydes, including that of glucose, to the corresponding sugar alcohol. Using a complementary DNA clone encoding human AR, we mapped the gene sequences to human chromosomes 1, 3, 7, 9, 11, 13, 14, and 18 by somatic cell hybridization. By in situ hybridization analysis, sequences were localized to human chromosomes 1q32-q42, 3p12, 7q31-q35, 9q22, 11p14-p15, and 13q14-q21. As a putative functional AR gene has been mapped to chromosome 7 and a putative pseudogene to chromosome 3, the sequences on the other seven chromosomes may represent other active genes, non-aldose reductase homologous sequences, or pseudogenes.  相似文献   

16.
cDNA surveying is a straightforward approach for identifying sequences in genomic clones expressed in specific tissues. It has been applied to a subchromosomal region of human chromosome 19 (19q13.2-q13.4), a region that contains several known expressed sequences including the locus for myotonic dystrophy (DM). Genomic clones were selected from this region by probing a human placental cosmid library with a chromosome 19q-specific minisatellite sequence, or human genomic clones were isolated from a cosmid library constructed from a human chromosome 19q13.2-q13.3 hamster hybrid cell line using human repetitive DNA as probe. Pooled cDNAs synthesized from RNA of specific tissues characteristically affected in DM were depleted in repetitive sequences and used as hybridization probes against gridded cosmid arrays. DNA from the cDNA-positive cosmid clones was transferred to nylon filters and reprobed with cDNAs to identify restriction fragments that were expressed in these tissues. Hybridizing restriction fragments were subcloned, sequenced, and demonstrated to be nonrepetitive. Primer pairs complementary to subcloned sequences were constructed and used for PCR amplification of cDNA synthesized from RNA of tissues affected in myotonic dystrophy. PCR products were sequenced to verify the identity of expressed genomic DNA and its corresponding cDNA.  相似文献   

17.

Background  

Chromosome 15 contains many segmental duplications, including some at 15q11-q13 that appear to be responsible for the deletions that cause Prader-Willi and Angelman syndromes and for other genomic disorders. The current version of the human genome sequence is incomplete, with seven gaps in the proximal region of 15q, some of which are flanked by duplicated sequence. We have investigated this region by conducting a detailed examination of the sequenced genomic clones in the public database, focusing on clones from the RP11 library that originates from one individual.  相似文献   

18.
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS or SACS) is a neurodegenerative disease frequent in northeastern Québec. In a previous study, we localized the disease gene to chromosome region 13q11 by identifying excess sharing of a marker allele in patients followed by linkage analysis and haplotyping. To create a detailed physical map of this region, we screened CEPH mega-YACs with 41 chromosome 13 sequence-tagged-sites (STSs) known to map to 13q11-q12. The YAC contig, composed of 27 clones, extends on the genetic map from D13S175 to D13S221, an estimated distance of at least 19.3 cM. A high-resolution BAC and PAC map that includes the ARSACS critical region flanked by D13S1275 and D13S292 was constructed. These YAC and BAC/PAC maps allowed the accurate placement of 29 genes and ESTs previously mapped to the proximal region of chromosome 13q. We confirmed the position of two candidate genes within the critical region and mapped the other 27 genes and ESTs to nearby intervals. Six BAC/PAC clones form a contig between D13S232 and D13S787 for sequencing within the ARSACS critical region.  相似文献   

19.
The q23-q33 region of human chromosome 5 encodes a large number of growth factors, growth factor receptors, and hormone/neurotransmitter receptors. This is also the general region into which several disease genes have been mapped, including diastrophic dysplasia, Treacher Collins syndrome, hereditary startle disease, the myeloid disorders that are associated with the 5q-syndrome, autosomal-dominant forms of hereditary deafness, and limb girdle muscular dystrophy. We have developed a framework physical map of this region using cosmid clones isolated from the Los Alamos arrayed chromosome 5-specific library. Entry points into this library included 14 probes to genes within this interval and one anonymous polymorphic marker locus. A physical map has been constructed using fluorescence in situ hybridization of these cosmids on metaphase and interphase chromosomes, and this is in good agreement with the radiation hybrid map of the region. The derived order of loci across the region is cen-IL4-IL5-IRF1-IL3-IL9-EGR1-CD14-FGFA-GRL-D5S207-ADRB2-SPARC-RPS14-CSF1R-ADRA1, and the total distance spanned by these loci is approximately 15 Mb. The framework map, genomic clones, and contig expansion within 5q23-q33 should provide valuable resources for the eventual isolation of the clinically relevant loci that reside in this region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号