首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Oxygen isotope analysis of planktonic and benthic foraminifera in piston core S-2 collected from the Shatsky Rise (33°21.75N, 159°07.70E; water depth 3107 m) provides a paleoceanographic record for the last 540 000 years in the northwestern Pacific Ocean. Although peaks in the abundance of sinistral Neogloboquadrina pachyderma occur during Marine Isotope Stage 2, and particularly 6 and 12, the southward shifting of the Subarctic front did not reach the core site during these glacial periods. However, mass accumulation rates of total organic carbon, biogenic opal, and terrigenous matter contents indicate that surface productivity increased during cold periods. In addition, the C/N ratio analyzed in organic matter reached values of up to 10 during glacial periods. These results imply that delivery of eolian dust to this site was enhanced by strengthened westerly winds during glacial periods. Down-core fluctuations in δ13C values of Globigerinoides ruber and Globorotalia inflata nearly overlap, particularly during the period from 540 to 260 ka. This latter trend suggest that the subtropical surface water mass prevailed at the core site throughout that period, based upon the very small vertical δ13C gradient through water column in modern Kuroshio Current water.  相似文献   

2.
We determined the faunal composition and total number of tests (#/g) of planktic foraminifera (> 125 μm) in core KH00-05 GOA 6 near Oman in order to decipher monsoon-induced variability of oceanographic productivity in the open-ocean upwelling area in the northwest Arabian Sea. The core contains a continuous record of sedimentation over the last 230 kyr, with the age model based on oxygen isotope and accelerator mass spectrometry 14C dates. We focused on species (Globigerina bulloides and Globigerinita glutinata) typical for SW monsoonal upwelling and species typical for NE monsoon conditions (Neogloboquadrina incompta, Neogloboquadrina dutertrei, Globigerinoides ruber, and Globigerinoides sacculifer). The changes in relative abundance of these monsoonal indicators suggest that the open-ocean upwelling area was dominated by the SW monsoon during interglacial periods, but by the NE monsoon during glacial periods.Increases in total test abundance during glacial periods confirmed that the NE monsoon rather than SW monsoon contributes largely to planktic foraminiferal productivity in this area. We argue that three types of circumstances resulted in high productivity, with nine high productivity events occurring at a 23-kyr frequency. The first type caused high productivity events at 102 and 199 ka (interglacial periods), characterized by the dominance of upwelling species, indicating high productivity during strong SW monsoons, correlated with high July insolation at 45° N. An exceptional high productivity event occurred at 37 ka during interglacial marine isotope stage (MIS) 3, with contributions from both SW and NE monsoons. The second type of high productivity event occurred at 61, 147, and 175 ka, during glacial periods, characterized by dominance of NE monsoon species, and correlated with low January insolation at 45° N. In addition, a high productivity event at 85 ka (interglacial period) also was induced by enhanced NE monsoons. The last two high productivity events occurred during transitional periods from glacial to interglacial (MIS 6/5.5 and 2/1), were characterized by the replacement of NE monsoon species with upwelling species, and corresponded to abrupt climate warming, suggesting that they are related to both accelerated SW monsoon systems and reduced NE monsoon systems.  相似文献   

3.
The paleoceanography of the Tasman Sea over the past 250,000 years was studied using benthic (>75 μm size fraction) and planktonic foraminifera (>149 μm size fraction) from three cores collected along 162°E traverse between 25°S and 30°S on the Lord Howe Rise. Planktonic foraminiferal oxygen isotope stratigraphy dates the cores between OIS 1 and 11. R-mode cluster and Q-mode factor analyses were carried out on benthic foraminiferal faunas, and Q-mode factor analysis and the modern analog technique (MAT) were used in analyzing planktonic foraminiferal faunas. Distinct benthic faunas across latitude from north (25°S) to south (30°S and 35°S) reflects the difference in primary productivity level in the overlying surface water. The MAT result is thought to express latitudinal shifts of the Tasman Front over the last 250,000 years with: (1) the Tasman Front at 35°S during the oxygen isotope stage (OIS) 1 (post-glacial period); (2) migration of the front nearby 25°S during the last glacial period (OIS 2–OIS 4) and slightly northward of its present position during the penultimate glacial period (OIS 6); and (3) a return of the front to near 35°S during OIS 5 and OIS 7. Based on time-series and spatial variations of benthic foraminiferal factor typified by Pseudoparrella exigua and Uvigerina peregrina and one variety, southern-winter mixing and convection along the Tasman Front may have strengthened during the interglacial OIS 7 in particular.  相似文献   

4.
Calcareous nannoplankton assemblages from a Late Quaternary deep-sea core (GC07; 46°09′S, 146°17′E) south of Australia provide information on regional palaeoceanography and palaeoclimate changes in the Southern Ocean, in particular the movement of the Subtropical Front for the past 130 ka years. Marine Isotope Stages 1–5 are identified through changes in calcareous nannoplankton assemblages, supported by 14C dates, and oxygen isotope and %CaCO data.Two distinct assemblages are recognised: a warm water assemblage with higher abundances of Calcidiscus leptoporus, Emiliania huxleyi, Helicosphaera.carteri, Syracosphaera pulchra, Gephyrocapsa caribbeanica and Gephyrocapsa oceanica; and, a cold water assemblage with higher abundances of Gephyrocapsa muellerae and Coccolithus pelagicus. Alternation between these two assemblages downcore in GC07 reflect movement of the Subtropical Front across the location and can be correlated to Marine Isotope Stages (MIS) 1–5. Sediments with a cold water assemblage indicate the position of the Subtropical Front equatorward of the site when transitional to sub-antarctic waters were overlying the site. Conversely sediments with a warm water assemblage indicate the Subtropical Front was poleward of GC07 when warmer, subtropical waters were over the site. MIS 1 and 5 are interpreted as warmer than MIS 3 (based on species composition) with the Subtropical Front more poleward than for MIS 3. During MIS 3 the Subtropical Front is interpreted as adjacent to or immediately poleward of GC07. Some species including C. leptoporus and C. pelagicus show negative covariance and are considered to be reliable species in identifying glacial and interglacial intervals in this region.Comparison with established biostratigraphy based on calcareous nannoplankton showed the datum event for the reversal between E. huxleyi and G. muellerae of 73 ka in transitional waters is not applicable in this region. The reversal between these two species occurs between 48 and 30 cm downcore in GC07 with a 14C date of 11 020 year BP at 49–48 cm, i.e. the reversal event is younger than this date.  相似文献   

5.
Oxygen and carbon isotopes of foraminifera were analyzed in core PC4, water depth 1366 m, off northern Japan, near the east side of the Tsugaru Strait (130 m depth) between the open northwestern Pacific Ocean and the Japan Sea. At present, the site is at the confluence of the Tsugaru Warm Current which flows eastwards out of the Sea of Japan through the Tsugaru Strait, the subarctic Oyashio Current and the subtropic Kuroshio Current. During the Last Glacial Maximum (LGM), the Oyashio Current penetrated further to the South and outflow from the Japan Sea was restricted by glacio-eustatic sea level lowering.The isotopic values of the planktic foraminifer Neogloboquadrina pachyderma (sinistral) and the benthic foraminifer Uvigerina akitaensis reflect rapid millennial-scale paleoceanographic changes between 34 and 6 ka. Hydrographic changes during deglaciation were related to events at high northern latitudes, but Holocene hydrographic changes were dominated by local effects, such as the development of the outflow of the Tsugaru Warm Current. High values of planktic δ18O during the LGM reflect the southward advance of the Oyashio Current. These values decreased by 0.3‰ from 19.4 to 18.9 ka, then increased by 0.5‰ at 18 ka, with highest values between 17.5 and 15 ka. The δ18O oscillations between 19.4 and 15 ka may reflect millennial-scale warm–cold oscillations during Heinrich event 1. Planktic microfossil data indicate that cold Oyashio waters flowed from the northwestern Pacific into the Japan Sea via the Tsugaru Strait between 17 and 16 ka, consistent with the occurrence of the highest planktic δ18O values in core PC4. Planktic δ18O values rapidly decreased by 0.9‰ at 15 ka, possibly reflecting the effects of both a rapid increase in fresh water flux and rising temperatures in the subarctic North Pacific. During the Younger Dryas, cold event planktic δ18O values increased by 0.5‰, followed by a gradual decrease by 1‰ from the early to middle Holocene, reflecting a gradual increase in eastward outflow via the Tsugaru Strait with sea level rise. Both planktic and benthic foraminiferal δ13C values oscillated between 34 and 10 ka, at relatively large amplitudes (about 0.5‰), then remained relatively stable during the last 10 kyr. Several negative planktic and benthic ( − 0.7‰) δ13C excursions were present in sediment dated between the precipitation of secondary carbonates during episodic methane release possibly associated with methane release from continental margin sediments.  相似文献   

6.
《Marine Micropaleontology》2007,62(4):196-208
Oxygen and carbon isotopes of foraminifera were analyzed in core PC4, water depth 1366 m, off northern Japan, near the east side of the Tsugaru Strait (130 m depth) between the open northwestern Pacific Ocean and the Japan Sea. At present, the site is at the confluence of the Tsugaru Warm Current which flows eastwards out of the Sea of Japan through the Tsugaru Strait, the subarctic Oyashio Current and the subtropic Kuroshio Current. During the Last Glacial Maximum (LGM), the Oyashio Current penetrated further to the South and outflow from the Japan Sea was restricted by glacio-eustatic sea level lowering.The isotopic values of the planktic foraminifer Neogloboquadrina pachyderma (sinistral) and the benthic foraminifer Uvigerina akitaensis reflect rapid millennial-scale paleoceanographic changes between 34 and 6 ka. Hydrographic changes during deglaciation were related to events at high northern latitudes, but Holocene hydrographic changes were dominated by local effects, such as the development of the outflow of the Tsugaru Warm Current. High values of planktic δ18O during the LGM reflect the southward advance of the Oyashio Current. These values decreased by 0.3‰ from 19.4 to 18.9 ka, then increased by 0.5‰ at 18 ka, with highest values between 17.5 and 15 ka. The δ18O oscillations between 19.4 and 15 ka may reflect millennial-scale warm–cold oscillations during Heinrich event 1. Planktic microfossil data indicate that cold Oyashio waters flowed from the northwestern Pacific into the Japan Sea via the Tsugaru Strait between 17 and 16 ka, consistent with the occurrence of the highest planktic δ18O values in core PC4. Planktic δ18O values rapidly decreased by 0.9‰ at 15 ka, possibly reflecting the effects of both a rapid increase in fresh water flux and rising temperatures in the subarctic North Pacific. During the Younger Dryas, cold event planktic δ18O values increased by 0.5‰, followed by a gradual decrease by 1‰ from the early to middle Holocene, reflecting a gradual increase in eastward outflow via the Tsugaru Strait with sea level rise. Both planktic and benthic foraminiferal δ13C values oscillated between 34 and 10 ka, at relatively large amplitudes (about 0.5‰), then remained relatively stable during the last 10 kyr. Several negative planktic and benthic (∼  0.7‰) δ13C excursions were present in sediment dated between the precipitation of secondary carbonates during episodic methane release possibly associated with methane release from continental margin sediments.  相似文献   

7.
Two sediment cores from the Murray Canyons area, south of Kangaroo Island, South Australia, were investigated for proxy-records to reconstruct past productivity of the surface waters in the area over the last 175 ka. The proxies used included concentrations of aragonite, low- and high-Mg calcite, total carbonate, total organic carbon, sulfur and δ13C of Globigerina bulloides. Cyclic increases in palaeoproductivity were observed to be in tune with insolation minima at 30°S.

The atmospheric conditions during insolation minima were comparable to present winter patterns, when strong westerly winds dominate over the area and bring dust from the central desert areas. During the last insolation minimum (last glacial maximum: LGM), the Murray Canyons laid directly under the “Eastern Australian Dust Plume”. Dust could have fertilized surface waters and initiated the observed productivity “increases” on a precessional time scale. The core from the more westerly canyons is richer in organic matter; this could be attributed to the influx of organic matter from shallower water, which is carried by an overflow of hypersaline water from the Spencer Gulf to the deep ocean, using the western canyons as conduits. There is no evidence that the “Palaeo-Murray River”, which debouches close to the core sites during sealevel lowstands, was a major source of nutrients for surface waters. Although total carbonate concentrations remained high, planktonic foraminifers were fewer in numbers during these periods, possibly due to reduced light penetration caused by suspended river material. A deglacial minimum in δ13C of Globigerina bulloides, observed in other cores from the southern hemisphere and attributed to a major hydrographic change south of the Polar Front, is also visible in our two cores, thus attesting to the global significance of the event.  相似文献   


8.
Measurements of stable-isotope ratios of water extracted from stems and, in some studies, soils are increasingly being used to study the integrated root function of field-growing plants. This study explored if additional measurements on water extracted from roots could indicate the activity of roots in different areas of the soil profile and their influence on canopy water sources, so providing advantages over more common sampling strategies. Studies were conducted on trees and shrubs located in diverse habitats: a saline, semi-arid floodplain, a subhumid mountain-range front and a cold desert. At each site, roots, soil immediately surrounding the roots, and plant stems were sampled. Roots were taken from different depths in the soil, to approximately 2 m at one site. Overall, 80% of roots sampled had H isotope ratios different from the surrounding soil. The differences up to 37, were significant (p<0.05) at two of the sites. Thus water in most of the roots sampled did not come entirely, if at all, from the surrounding soil, illustrating movement and possible mixing of water within the root system. This condition was not simply related to the availability of water surrounding the soil, which was also measured. There were also differences in root and stem H isotope ratios (up to 17) in 67% of samples, although the difference was only significant in shallow samples from the floodplain. The general similarity in stem and root 2H values indicates that most roots sampled were involved in the main supply of water to the canopy. Patterns of root function varied between the individual sites. Trees were primarily using groundwater at the floodplain and mountain front sites, as the surface soils had mean matric potentials of-1800 kPa. At the mountain front site, the surface roots were transporting groundwater to the canopy in isolation form the surrounding soil. In contrast, surface roots at the floodplain were taking up water from the surrounding soil, although this water was not a significant source in the trees' overall water supply. This activity of surface roots would not have been evident from the 2H data without the root samples. At the cold desert the roots in moist surface soil provided the main source of water for the shrubs. There too the root data indicated different water uptake patterns than otherwise would have been assumed. The root data showed that groundwater could not have been a water source, a conclusion which had been reached in a previous study. Thus measurements of stable isotope ratios in root water may be a valuable tool in assessing water uptake patterns and root function.  相似文献   

9.
Investigations on foraminifers from Upper Pleistocene–Holocene sediments were carried out on twelve cores from the western Ross Sea continental margin (Drygalski, Joides, North Victoria Land Basins) as part of a “Progetto Nazionale di Ricerche in Antartide” (P.N.R.A.) multidisciplinary project. Data on the foraminiferal frequency, species diversity, tests abundance and their state of preservation were presented as a synthesis of 404 core samples to establish their relationships with the main glacial and marine lithofacies of this area. A total of 126 benthic species, pertaining to 73 genera have been identified; just few taxa, such as Cibicides spp., Globocassidulina spp., Trifarina angulosa and Miliammina spp. being the most ubiquitous and in some cases the dominant species of these paleoenvironments. Two variants of Neogloboquadrina pachyderma, including thin and thick-shelled forms have been recovered. We propose to use these results to provide the degree of glacial control during the Last Glacial Maximum and the following Holocene retreat of the ice sheets. High test fragmentation, low diversity and density tests reflect higher glacial influence of the ice sheet in the Drygalski Basin, whereas the decreasing percentage of fragmentation and a relative increase of density and diversity in Drygalski, Joides and North Victoria Land Basins indicate the paleoenvironmental passage from the ice sheet to the ice shelf condition. The ice shelf retreat is well evidenced in the Joides Basin by a succession of levels barren of foraminifers alternating with high-density levels, rich in T. angulosa, followed by a total disappearance of the calcareous foraminifers. Open-marine settings indicative of lower glacial influence and increased corrosiveness of the water masses is testified by the Miliammina foraminiferal assemblage during the Holocene in Drygalski and Joides Basins cores. On the contrary, rich and abundant benthic and planktonic assemblages characterize the Holocene paleoenvironment of the North Victoria Land area, indicating that the water masses were less corrosive with respect to the other areas. In addition to the glacial reworking of the tests, and the dissolution due to the corrosive water mass conditions, the volcaniclastic sediments recovered in the North Victoria Land Basin cores also affected the condition of test preservation. In volcaniclastic sediments, older than about 20 ka BP, the foraminifers concentration tends to zero and, when present, their tests are highly damaged or completely broken.  相似文献   

10.
A 5.4 m peat core from the Sandy Run Creek (SRC) valley in the upper Coastal Plain of Georgia shows that before 30 ka the valley had an aggradational sandy floor with shallow swales and low ridges of 1–2 m amplitude suggesting a braided stream pattern and a low water table. The climate from 30–25 ka was cool and dry and the vegetation open grassland with stands of pine and spruce that produced few fires. At ca. 16 ka a warmer, wetter climate caused SRC to meander and incise the valley fill removing some previously deposited sediment at the site of our peat core so that sediments of 13 ka rest directly on sediments deposited at 25 ka. After ca. 13 ka higher groundwater levels initiated vertical accretion of floodplains allowing peat accumulation in shallow depressions across the valley. Pollen from the Younger Dryas period (ca. 13–11 ka) indicates a cool, moist environment of open oak woodland, mesic trees, riparian populations of alder, and reduced levels of pine. By the early to mid Holocene, tupelo and oak dominated over pine indicating wetter conditions, while sand stringers in peat record periodic heavy rains, an elevated water table, and intervals of substantial runoff. Cooling after ca. 4.5 ka brought drier and more variable conditions. Fires increased and southern pine replaced tupelo and oak. The absence of sand stringers in peat younger than 4.5 ka indicates fewer intense rainfall events.  相似文献   

11.
Summary Sea ice cores were obtained from eleven fast ice stations and one floe in the Weddell Sea, Antarctica in January–February 1985. All cores from the north eastern part of the Weddell Sea contained numerous living and dead planktic foraminifers of the species Neogloboquadrina pachyderma (Ehrenberg), while cores drilled in southern parts were barren of foraminifers with one exception. Foraminiferal abundances were variable, with numbers up to 320 individuals per liter melted sea ice. Distribution of foraminifers appears to be patchy, parallel cores taken less than 30 cm apart contained numbers which varied considerably. On the other hand, three cores taken on a transect each more than 3 km apart showed striking similarities. In general, small dead tests were found in the upper parts of the sea ice cores while large living individuals mainly occurred in lower sections. Abundant diatoms probably serve as a food source for the foraminifers. Correlation of foraminiferal abundance with salinity, chlorophyll and nutrient profiles are inconsistent. The possible mechanism of incorporation of N. pachyderma into the ice is discussed.  相似文献   

12.
The traditional interpretation of Coccolithus pelagicus as a cold water proxy is examined based on its distribution patterns in the water column off the Portuguese coast (using data from eleven cruises) and in Holocene surface sediment samples and Quaternary cores from the same region.Coccolithus pelagicus is common in the Portuguese upwelling system, an area where surface waters are predominantly of subtropical origin. Although revealing an affinity for low temperature upwelled waters, the species was found in waters up to 18°C associated with riverine plume and shelf-break fronts. C. pelagicus seemed to consistently occupy a particular ecological niche, between other phytoplankton groups, related to moderate turbulence conditions combined with nutrient availability. From this behaviour, it is proposed that C. pelagicus can be used as a tracer of the periphery of areas of enhanced productivity.Coccolithus pelagicus preferences for fronts of moderate temperature and salinity gradients are tentatively used to explain particular features of its sedimentary record. The repeated increase of C. pelagicus in thanatocoenoses (surface sediment assemblages) close to three river mouths, on the Portuguese shelf, are interpreted as a positive response to the development of riverine plumes. On the other hand, inconsistencies in the correlation between sea surface cooler-glacial and warmer-interglacial isotope stages and the relative abundance pattern of C. pelagicus during the Late Quaternary, as registered in two Galicia Bank piston cores (42°N), are tentatively explained in terms of shifts in the extent of the outer limit of the local palaeoproductivity belt off the Iberian Peninsula.  相似文献   

13.
Because of their location at the confluence of polar and subtropical airmasses and near a transition zone between the cold Labrador Current and the Gulf Stream, the Atlantic Provinces experience some of the most dynamic climate conditions in Canada. Major climate changes occurred during the Holocene, as shown by pollen records from lakes, but previous paleoceanographic studies, based on low-resolution proxy-data records do not show major changes during the past 8000 years. Therefore, the Holocene history of Canada's Atlantic region was examined using a high-resolution palynological record from the Scotian Shelf (La Have Basin). Sea surface conditions were reconstructed using proxy-data from dinoflagellate cysts and paleobioclimatic transfer functions. Ocean–atmosphere interactions are determined by onshore–offshore correlation of marine and pollen records from Nova Scotia.Results show a succession of major paleoceanographic events. Sea surface temperatures (SST) (February and August) up to 5°C higher than today's average and slightly higher salinity are reconstructed between 10.5 and 8.5 ka. The last pulse of meltwater from the residual ice sheet affected the shelf waters between 8.5 and 6.5 ka by lowering the SST (in February) and the salinity. Most previous studies failed to record this event. Since 6.5 ka, August temperature generally remained around today's value, while February temperature was generally 2°C above it, except for recurring colder and lower salinity intervals. These cold intervals have a recurrence of about 1000 years. A slight cooling of summer SST is recorded in the last 500 years.Comparison with climatic reconstructions from Nova Scotia pollen records shows a difference in timing between ocean and atmosphere. The onset of the climatic optimum (hypsithermal) in Nova Scotia lags by about 2000 years (until 8 ka) relative to the ocean but it lasted longer. The Neoglacial cooling in Atlantic Canada however, started earlier (2 ka) than the late Holocene ocean cooling.La Have Basin's Holocene paleoceanography presents some differences from most other studies from the region: (1) the hypsithermal started earlier; (2) the last pulse of meltwater is recorded; (3) the last 6500 years are punctuated by colder intervals.Increased productivity and blooms of toxic algae in the early Holocene are probably due to a combination of factors: increased nutrients and a greater stability of the water column because of meltwaters, higher SST and increased upwelling or storm activity.  相似文献   

14.
Three gravity cores were collected in north-western Ross Sea (Coulman Island and Cape Adare areas) during 1998 and 1999 “Progetto Nazionale Ricerche in Antartide”. Several carbonate-rich levels, from Late Pleistocene to Holocene in age, interbedded with glacial marine sequences were recovered. Examination of the compositional characters (X-ray structure, texture, water, TOC and CaCO3 contents) and taphonomic data (fabric of the fossil concentration, degree of preservation of foraminifers and bryozoans, together with paleoecological inferences) has allowed the preliminary documentation of oscillations of the ice-shelf front in this area. Benthic foraminifer tests in glacial marine sediments older than the Last Glacial Maximum are often badly preserved (abraded and broken), testifying to the persistent transport of these sediments. In the younger sediments, an increased concentration of Neogloboquadrina pachyderma occurs, indicating more open water conditions. The occurrence of a mainly autochthonous fauna in muddy sediments in between two volcanic events in the Coulman Island area could indicate stable environmental conditions. The occurrence of limited % of fragmented foraminifers indicates the decreasing influence of glacial reworking. In the Cape Adare area, mass flow events were common during the Holocene retreat of the ice shelf. Several bioclastic-rich deposits (stylasterids and bryozoans assemblage) in the studied core with interbedded muddy sediments could indicate mass transport events from neighboring shallow environments. During undisturbed open-marine conditions, represented by muddy sedimentation, foraminifers and other calcareous taxa colonized the previous coarse-textured skeletal substratum.  相似文献   

15.
ESR and U-series analyses of teeth from the palaeoanthropological site of Hexian which containedHomo erectusremains, illustrate the limited effectiveness of stand-alone ESR and U-series age estimates on faunal materials. The problem lies in the unknown U-uptake history causing very large uncertainties in the age results of both techniques. This study demonstrates the particular strength that lies in the integration of ESR and U-series dating analyses allowing the estimation of the U-uptake history. We obtained a combined ESR/U-series age estimate of 412±25 ka (average of six analyses on two teeth). This pinpoints the deposition of the faunal remains to the time of the transition between oxygen isotope stages 12 and 11. This is in agreement with the faunal composition which show a mixture of cold adapted northern mammals and more subtropical-tropical southern elements. The age also implies that the advanced HexianHomo erectusoccurred at a similar time as the less advancedHomo erectusspecimens at Locality 1 at Zhoukoudian (LI-LIII).  相似文献   

16.
The distribution of forty-four coccolithophore species in one hundred deep-sea core-tops from the southwest Indian Ocean is described. Three coccolith assemblages have been recognised (Maputo, Agulhas Current and deep water) by the relative abundances of four ecologically significant coccolithophore species (Gephyrocapsa oceanica, Emiliania huxleyi, Calcidiscus leptoporus and Umbilicosphaera sibogae). Their biogeographical distribution appears to be related to water temperature, nutrient concentration and dissolution.The degree of preservation of coccoliths and foraminifera indicates that the carbonate lysocline lies somewhere between 3500 and 4000 m, resulting in the concentration of dissolution-resistant microfossils below this depth.Stable oxygen isotope ratios of the planktonic foraminiferal species Globigerinoides sacculifer range between −1.5 to −1.0‰ PDB (equal to 22.8–25.1°C) and occur in a narrow band on the sea floor beneath the “A” route of the Agulhas Current.These values are about 0.5 per mil PDB lighter than samples analyzed on either side of this band and can be explained by the Agulhas Current's elevated temperature at the ocean surface of 2–3°C. Thus an oxygen isotope imprint of the Agulhas Current exists beneath it on the sea floor.The Agulhas Current is probably the major factor influencing sedimentation, sediment-distribution patterns and geological features in the study area. At present it is voluminous and fast flowing, possibly eroding sediments up to 2500 m below the surface.The oxygen-isotope ratios and nannoplankton counts obtained in this study indicate, however, that the majority of samples are most probably recent or at least not older than 85,000 years. This implies that sediments are accumulating on the ocean floor and that the Agulhas Current does not have a pronounced erosional influence, at least in areas from which cores were retrieved for this study.  相似文献   

17.
The Kuroshio Current is the major western boundary current of the North Pacific Ocean and has had a large impact on surface water character and climate change in the northwestern Pacific region. The Kuroshio Current becomes a distinctive surface flow in the Ryukyu Arc region after diverging from the North Equatorial Current and passing through the Okinawa Trough. Therefore, the Ryukyu Arc area can be called the Kuroshio source region. We reconstructed post-21-ka time–space changes in surface water masses in the Ryukyu Arc region using 15 piston cores which were dated by planktonic δ18O stratigraphy and AMS 14C ages. Our analysis utilized spatial and temporal changes in planktonic foraminiferal assemblages which were classified into the Kuroshio, Subtropical, Coastal, and Cold water groups on the basis of modern faunal distributions in the study region. These results indicate that the Kuroshio Current and adjacent surface water masses experienced major changes during: (1) the Last Glacial Maximum (LGM), and (2) the so-called Pulleniatina minimum event (PME) from 4,500 to 3,000 yr BP. The Kuroshio LGM event corresponds to severe global cooling and is marked by decreases in planktonic δ18O values and estimated sea-surface temperature (SST) with the dominance of the Cold water group of planktonic foraminifera. Cooling within the Kuroshio source region was enhanced during the LGM event because the Kuroshio Current was forced eastward due to the formation of a land bridge between Taiwan and the southern Ryukyu Arc which prohibited its flow into the Okinawa Trough. Except for the severe reduction and disappearance of the Pulleniatina group, no clear cooling signal was identified during the PME based on δ18O values, estimated SST values and variations in the composition of planktonic foraminiferal faunas. The PME assemblages are marked by high abundances of Neogloboquadrina dutertrei, a distinctive Kuroshio type species, along with other species assigned to the Coastal and Central water groups. Subtle ecological differences exist between Pulleniatina obliquiloculata and N. dutertrei; i.e. P. obliquiloculata exhibits lower rates of reproduction under conditions of lower primary productivity in the central Equatorial Pacific Ocean. El Niño-like conditions in the Equatorial Pacific Ocean result in lower rates of surface transport in the Kuroshio Current. In turn, this response triggers lower rates of primary productivity in central equatorial surface waters as well as in the upstream Kuroshio source region, ultimately resulting in a lower abundance of P. obliquiloculata. Thus, we interpret the PME as a possible proxy signal of El Niño-like conditions and enhancement of the El Niño Southern Oscillation climate system after the PME in the tropical and sub-tropical Pacific Ocean.  相似文献   

18.
A combined study of foraminifera, diatoms and stable isotopes in marine sediments off North Iceland records major changes in sea surface conditions since about 15 800 cal years (yr) BP. Results are presented from two gravity cores obtained at about 400 m water depth from two separate sedimentary basins on each side of the submarine Kolbeinsey Ridge. The chronology of the sedimentary record is based partly on AMS 14C dates, partly on the Vedde and the Saksunarvatn tephra markers, as well as the historical Hekla AD 1104 tephra. During the regional deglaciation, the planktonic foraminiferal assemblages are characterised by consistently high percentages of sinistrally coiled Neogloboquadrina pachyderma. However, major environmental variability is reflected by changes in stable isotope values and diatom assemblages. Low δ18O values indicate a strong freshwater peak as well as possible brine formation by sea-ice freezing during a pre-Bølling interval (Greenland Stadial 2), corresponding to the Heinrich 1 event. The foraminifera suggest a strong concurrent influence of relatively warm and saline Atlantic water, and both the foraminifera and the diatoms suggest mixing of cold and warm water masses. Similar but weaker environmental signals are observed during the Younger Dryas (Greenland Stadial 1) around the level of the Vedde Ash. Each freshwater peak is succeeded by an interval of severe cooling both at the beginning of the Bølling–Allerød Interstadial Complex (Greenland Interstadial 1) and during the Preboreal, presumably associated with the onset of intense deep water formatiom in the Nordic Seas. The Holocene thermal optimum, between 10 200 and about 7000 cal years (yr) BP, is interrupted by a marked cooling of the surface waters around 8200 cal yr BP. This cold event is clearly expressed by a pronounced increase in the percentages of sinistrally coiled N. pachyderma, corresponding to a temperature decrease of about 3°C. A general cooling in the area is indicated after 7000–6000 cal yr BP, both by the diatom data and by the planktonic foraminiferal data. After a severe cooling around 6000 cal yr BP, the planktonic foraminiferal assemblages suggest a warmer interval between 5500 and 4500 cal yr BP. Minor temperature fluctuations are reflected both in the foraminiferal and in the diatom data in the upper part of the record, but the time resolution of the present data is not high enough to pick up details in environmental changes through the late Holocene.  相似文献   

19.
Paleo-sea-surface temperatures in the northeastern- and southeastern-parts of the Japan Sea were reconstructed for the last 160 kyr using alkenone temperatures (UK37-temperatures). UK37-temperatures at two sites show distinct glacial–interglacial changes during the last 160 kyr except for the interval corresponding to middle MIS 3 to MIS 2. On orbital-timescales, UK37-temperature tends to be high during MIS 5e, MIS 5c, and MIS 5a, which coincides with the intervals of stronger East Asian summer monsoon activity. The amplitude of temperature fluctuations in the Japan Sea is significantly higher than those in the neighboring seas. We suggest that the SST variation was amplified by the increasing source water (Kuroshio water) temperature and the changes in the volume transport of the Tsushima Warm Current (TWC) and/or the north–south oscillation of the sub-polar front position within the Japan Sea. Millennial-scale temperature fluctuations in the Japan Sea show that the temperature at the northern site was higher than that at the southern site during warmer periods of MIS 5, which is called “temperature reversal.” By analogy with modern oceanography, the temperature reversal could reflect the enhanced volume transport of the TWC and the spatial relationship between the studied site and the branches of the TWC, which is an essential factor in north–south temperature reversal around the eastern Japan Sea. Temperature drops were found at 114 ka, 111 ka, 93 ka, 87 ka, and 77 ka in MIS 5. Those events were associated with an increase in organic carbon and alkenone contents and can be correlated with the abundance peaks of ice-rafted debris (IRD) at Site GH05-1208 in the northern Japan Sea, suggesting that the surface water was cooled by enhanced mixing and consequent upwelling in a stronger winter monsoon regime.  相似文献   

20.
Orphan Basin is a deep-water basin on the continental margin off Newfoundland, which throughout the late Quaternary received proglacial sediment from local ice that crossed the continental shelf. Sediment from more distant sources was transported southward in the Labrador Current as proglacial plumes and in icebergs. Five sedimentary facies related to glacial processes are distinguished in cores recovered from Orphan Basin: hemipelagic sediment, nepheloid-layer deposits (layered mud), beds rich in ice-rafted detritus (IRD), sand and mud turbidites, and glaciogenic debris-flow deposits. IRD-rich beds correspond to periods of intensified iceberg calving, and layered mud, turbidites, and glaciogenic debris-flow deposits with glacial meltwater discharge.

In the Late Wisconsinan, eight periods of meltwater discharge and iceberg calving from the Newfoundland ice sheet are interpreted from the sediment facies in Orphan Basin. These discharges coincide with the terminations of the colder periods of the D–O cycles recorded in Greenland ice cores. The oldest minor meltwater event (27.5–28.5 cal ka) corresponds to the first Late Wisconsinan ice advance across the Grand Banks and NE Newfoundland Shelf. The following three meltwater discharges (23–23.5, 23.8–24.5, and 25–27 cal ka) deposited sand turbidites and glaciogenic debris-flow deposits seaward of Trinity Trough, which was occupied by an ice stream at this time, and mud turbidites in the southern part of the basin derived from a mid-shelf ice margin on the Grand Banks. Four periods of meltwater discharge occurred during the deglaciation and are centered at 15, 18.5, 19.75, and 20.75 cal ka. The youngest is correlated to Heinrich event 1. In the literature, the 18.5 and 20.75 cal ka events have been recorded in multiple glacial settings in the North Atlantic, and therefore, are interpreted as large-scale events of meltwater discharge and iceberg calving, but in Orphan Basin the 19.75 cal ka event is also of similar scale.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号