首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Encystment of myxamoebae ofPhysarum polycephalum was induced by transferring the amoebae to a high salt medium of 1/60 M Sørensen buffer (pH 6.0) containing 0.125 M NaCl, 1.6 mM MgCl2 and 0.18 mM CaCl2. The induction of cysts was blocked by inhibitors of protein synthesis, such as puromycin, cycloheximide and streptomycin. However, inhibitors of RNA synthesis, such as actinomycin D, proflavin and 8-azaguanine did not block the transformation. These results suggest that in the cyst formation,de novo RNA synthesis is not involved, whereas protein synthesis is required. Cyst formation was more strongly inhibited by inhibitors of oxidative phosphorylation than by other respiratory poisons. It seems that oxidative phosphorylation takes part in the energy supply of this differentiation.  相似文献   

2.
Up to 80% of total cellular hexokinase (EC 2.1.7.4) activity in pea (Pisum sativum L.) leaves was found to be associated with particulate fractions. Fractionation on sucrose density gradients showed this particulate activity to be associated exclusively with mitochondria. In the presence of glucose and ATP, the bound mitochondrial hexokinase could support rates of O2 uptake of up to 30% of normal ADP-stimulated rates. This stimulation of O2 uptake by hexokinase was completely sensitive to oligomycin, indicating that it resulted from an increase in the supply of ADP for mitochondrial oxidative phosphorylation. Spectrophotometric measurements of the mitochondrial hexokinase activity showed that ADP could support rapid rates of activity provided oxidizable substrates were also present to support the conversion of ADP to ATP in oxidative phosphorylation. Carboxyatractyloside, an inhibitor of adenine-nucleotide uptake by mitochondria, inhibited this ADP-supported activity, but had no effect on hexokinase activity in the presence of added ATP, demonstrating that the hexokinase enzyme was located external to the inner mitochondrial membrane. Oligomycin also inhibited ADP-supported activity but had no effect on ATP-supported hexokinase activity. Glucose (Km 53 μM) was the preferred substrate of pea-leaf mitochondrial hexokinase compared with fructose (Km 5.1 mM). Hexokinase was not solubilised in the presence of glucose-6-phosphate.  相似文献   

3.
  1. The lipid composition of mitochondria isolated from a fatty acid desaturase mutant ofSaccharomyces cerevisiae may be extensively manipulated by growing the organism on defined supplements of unsaturated fatty acid (UFA).
  2. The fatty acid composition of the mitochondrial lipids closely follows that of the whole cells from which the mitochondria are isolated. UFA-depleted mitochondria contain normal levels of sterols, neutral lipids and total phospholipids, but have much lower levels of phosphatidyl inositides.
  3. UFA-depleted mitochondria possess a full complement of cytochromes, oxidase both NAD-linked and flavoprotein-linked substrates at normal rates, and have levels of succinate and malate dehydrogenases similar to those of UFA-supplemented mitochondria. However, UFA-depletion has a marked effect on the ability of cytochromec to reactivate the NADH oxidase activity of cytochromec-depleted mitochondria.
  4. The efficiency of oxidative phosphorylation decreases progressively with the UFA content of the mitochondria, and oxidative phosphorylation is completely lost in mitochondria containing approximately 20% UFA.
  5. The incorporation of UFA into the lipids of UFA-depleted mitochondriain vivo results in a recoupling of oxidative phosphorylation. Recoupling is insensitive to both chloramphenicol and cycloheximide, indicating that all the proteins necessary for oxidative phosphorylation are present in UFA-depleted mitochondria, and that the less of oxidative phosphorylation is a purely lipid lesion.
  6. ATPase activity is apparently unaffected by UFA-depletion, but32Pi-ATP exchange activity is lost in mitochondria which have been extensively depleted in UFA.
  7. Valinomycin stimulates the respiration of UFA-supplemented mitochondria in media containing potassium, but has no effect on the respiration of UFA-depleted mitochondria, suggesting that active transport of potassium is lost as a result of UFA-depletion.
  相似文献   

4.
Leishmaniasis is a growing health problem in many parts of the world partly due to drug resistance of the parasite. This study reports on the fisibility of studying mitochondrial properties of two forms of wild-type L. donovani through the use of selective inhibitors. Amastigote forms of L. donovani exhibited a wide range of sensitivities to these inhibitors. Mitochondrial complex II inhibitor thenoyltrifluoroacetone and FoF1-ATP synthase inhibitors oligomycin and dicyclohexylcarbodiimide were refractory to growth inhibition of amastigote forms, whereas they strongly inhibited the growth of promastigote forms. This result indicated that complex II and FoF1-ATP synthase were not functional in amastigote forms suggesting the presence of attenuated oxidative phosphorylation in the mitochondria of amastigote forms. In contrast, mitochondrial complex I inhibitor rotenone and complex III inhibitor antimycin A inhibited cellular multiplication and substrate level phosphorylation in amastigote forms, suggesting the role of complex I and complex III for the survival of amastigote forms. Further we studied the mitochondrial activities of both forms by measuring oxygen consumption and ATP production. In amastigote form, substantial ATP formation by substrate level phosphorylation was observed in NADPH-fumarate, NADH-fumarate, NADPH-pyruvate and NADH-pyruvate redox couples. None of the redox couple generated ATP formation was inhibited by FoF1-ATP synthase inhibitor oligomycin. Therefore, we may conclude that there are significant differences between these two forms of L. donovani in respect of mitochondrial bioenergetics. Our results demonstrated bioenergetic disfunction of amastigote mitochondria. Therefore, these alterations of metabolic functions might be a potential chemotherapeutic target.  相似文献   

5.
LYR motif-containing 1 (LYRM1) was recently discovered to be involved in adipose tissue homeostasis and obesity-associated insulin resistance. We previously demonstrated that LYRM1 overexpression might contribute to insulin resistance and mitochondrial dysfunction. Additionally, knockdown of LYRM1 enhanced insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes. We investigated whether knockdown of LYRM1 in 3T3-L1 adipocytes could rescue insulin resistance and mitochondrial dysfunction induced by the cyanide p-trifluoromethoxyphenyl-hydrazone (FCCP), a mitochondrion uncoupler, to further ascertain the mechanism by which LYRM1 is involved in obesity-associated insulin resistance. Incubation of 3T3-L1 adipocytes with 1 µM FCCP for 12 h decreased insulin-stimulated glucose uptake, reduced intracellular ATP synthesis, increased intracellular reactive oxygen species (ROS) production, impaired insulin-stimulated Glucose transporter type 4 (GLUT4) translocation, and diminished insulin-stimulated tyrosine phosphorylation of Insulin receptor substrate-1 (IRS-1) and serine phosphorylation of Protein Kinase B (Akt). Knockdown of LYRM1 restored insulin-stimulated glucose uptake, rescued intracellular ATP synthesis, reduced intracellular ROS production, restored insulin-stimulated GLUT4 translocation, and rescued insulin-stimulated tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt in FCCP-treated 3T3-L1 adipocytes. This study indicates that FCCP-induced mitochondrial dysfunction and insulin resistance are ameliorated by knockdown of LYRM1.  相似文献   

6.
  1. Out of 20 exogeneous substrates only ethanol and, to a much lesser extent, lactate and pyruvate were shown to be capable of stimulating the respiration of Acholeplasma laidlawii cells. However, none of these substrates changed the initial rate of active transport of 3-O-methyl-d-glucose (3-O-MG).
  2. From inhibitory analyses and spectroscopic data, it is apparent that the respiratory chain of A. laidlawii has no cytochromes and is probably not responsible for oxidative phosphorylation.
  3. Valinomycin and nigericin stimulated cell respiration only in the presence of K+-ions, while monensin stimulated it in the presence of Na+-ions.
  4. 3-O-MG transport was shown to be sensitive to uncouplers, ATPase inhibitors and arsenate are resistant to a majority of respiratory inhibitors tested. This suggested that there was no relationship between respiration and carbohydrate transport in the A. laidlawii cells. Further evidence was provided by the absence of respiratory stimulation during the transport of non-metabolizing carbohydrates.
  相似文献   

7.
8.
Mitofusin 2 (Mfn2) is a dynamin-like protein anchored in the outer mitochondrial membrane that plays a crucial role in ensuring optimal mitochondrial morphological homeostasis. It has been shown that reduced expression of Mfn2 is associated with insulin resistance, but the mechanism is still unclear. We investigated whether Mfn2 deficiency leads to impaired insulin sensitivity via elevated oxidative stress. L6 skeletal muscle cells were treated with palmitate and Mfn2 expression was repressed by transfection with antisense Mfn2. Levels of antioxidant enzymes, reactive oxygen species (ROS), the phosphorylation of c-Jun N-terminal Kinase (JNK) and nuclear factor-κB (NF-κB) and the mitochondrial membrane potential (Δψm) were measured. The results showed palmitate-induced insulin resistance of skeletal muscle cells was accompanied by Mfn2 repression. Meanwhile, the cells had decreased Δψm and activity of antioxidant enzymes which could increase production of ROS, phosphorylation of JNK and NF-κB. When Mfn2 was up-regulated in palmitate-treated cells, oxidative stress and insulin resistance was alleviated. Furthermore, knock-down of Mfn2 in control cells enhanced oxidative stress. Mfn2 deficiency led to increased superoxide concentration and activation of JNK as well as NF-κB associated with insulin signaling. In conclusion, Mfn2 is a potent repressor for oxidative stress and regulation of Mfn2 expression may prove to be a potential method to circumvent insulin resistance.  相似文献   

9.
10.
The contribution of trypanosomatid mitochondrial complex I for energy transduction has long been debated. Herein, we summarize current knowledge on the composition and relevance of this enzyme. Bioinformatic and proteomic analyses allowed the identification of many conserved and trypanosomatid-specific subunits of NADH:ubiquinone oxidoreductase, revealing a multifunctional enzyme capable of performing bioenergetic activities and possibly, also of functioning in fatty acid metabolism. A multimeric structure organized in 5 domains of more than 2 MDa is predicted, in contrast to the 1 MDa described for mammalian complex I. The relevance of mitochondrial complex I within the Trypanosomatidae family is quite diverse with its NADH oxidation activity being dispensable for both procyclic and bloodstream Trypanosoma brucei, whereas in Phytomonas serpens the enzyme is the only respiratory complex able to sustain membrane potential. Aside from complex I, trypanosomatid mitochondria contain a type II NADH dehydrogenase and a NADH-dependent fumarate reductase as alternative electron entry points into the respiratory chain and thus, some trypanosomatids may have bypassed the need for complex I. The involvement of each of these enzymes in the maintenance of the mitochondrial redox balance in trypanosomatids is still an open question and requires further investigation.  相似文献   

11.
12.
This work was aimed to provide further information about toxicology of TiO2 nanoparticles (NPs) on Vicia narbonensis L., considering different endpoints. After exposure to TiO2 nanoparticle suspension (mixture of rutile and anatase, size <100 nm) at four different concentrations (0.2, 1.0, 2.0 and 4.0 ‰), the seeds of V. narbonensis were let to germinate in controlled environmental conditions. After 72 h, the extent of the success of the whole process (seed germination plus root elongation) was recorded as the vigour index, an indicator of possible phytotoxicity. After the characterisation of the hydric state of different materials, oxidative stress and enzymatic and nonenzymatic antioxidant responses were considered as indicators of possible cytotoxicity and to assess if damage induced by TiO2 NPs was oxidative stress-dependent. Cytohistochemical detection of in situ DNA fragmentation as genotoxicity endpoint was monitored by TUNEL reaction. The treatments with TiO2 NPs in our system induced phytotoxic effects, ROS production and DNA fragmentation. The nonenzymatic and enzymatic antioxidant responses were gradually and differentially activated and were able to maintain the oxidative damage to levels not significantly different from the control. On the other hand, the results of DNA fragmentation suggested that the mechanisms of DNA repair were not effective enough to eliminate early genotoxicity effects.  相似文献   

13.
Advanced glycation end products (AGEs) and methylglyoxal (MG), an important intermediate in AGEs synthesis, are thought to contribute to protein aging and to the pathogenesis of age-and diabetes-associated complications. This study was intended to investigate brain mitochondria bioenergetics and oxidative status of rats previously exposed to chronic treatment with MG and/or with pyridoxamine (PM), a glycation inhibitor. Brain mitochondrial fractions were obtained and several parameters were analyzed: respiratory chain [states 3 and 4 of respiration, respiratory control ratio (RCR), and ADP/O index] and phosphorylation system [transmembrane potential (ΔΨm), ADP-induced depolarization, repolarization lag phase, and ATP levels]; hydrogen peroxide (H2O2) production levels, mitochondrial aconitase activity, and malondialdehyde levels as well as non-enzymatic antioxidant defenses (vitamin E and glutathione levels) and enzymatic antioxidant defenses (glutathione disulfide reductase (GR), glutathione peroxidase (GPx), and manganese superoxide dismutase (MnSOD) activities). MG treatment induced a statistical significant decrease in RCR, aconitase and GR activities, and an increase in H2O2 production levels. The administration of PM did not counteract MG-induced effects and caused a significant decrease in ΔΨm. In mitochondria from control animals, PM caused an adaptive mechanism characterized by a decrease in aconitase and GR activities as well as an increase in both α-tocopherol levels and GPx and MnSOD activities. Altogether our results show that high levels of MG promote brain mitochondrial impairment and PM is not able to reverse MG-induced effects.  相似文献   

14.
15.
Urocortin-2 (UCN2) is cardioprotective in ischemia/reperfusion injury (I/R) through short-lived activation of ERK1/2. Key factors involved in I/R, e.g. apoptosis, mitochondrial damage, p38 kinase, and Bcl-2 family, have not been well-investigated in UCN2-induced cardioprotection. We assessed the role of p38-MAPK in anti-apoptotic Bcl-2 signaling and mitochondrial stabilization as a putative mechanisms in UCN2-induced cardioprotection. Isolated hearts from adult Sprague–Dawley rats and cultured H9c2 cells were subjected to I/R protocols with or without 10 nM UCN2 treatment. The effect of a specific p38 inhibitor SB202190 was tested in H9c2 cells. Cardiac function, LDH release, and mitochondrial membrane potential (MMP) were used to assess the degree of myocardial injury in hearts and H9c2 cells. Post-perfusion, hearts were collected for Western blot analyses or mitochondria/cytosol isolation to analyze p38 activation and Bcl-2 family members. UCN2 treatment improved rate-pressure product (58 ± 5 vs. 31 ± 4 % of Baseline; P < 0.05) and decreased LDH release (20 ± 9 vs. 90 ± 40 mU/ml LDH, P < 0.01) at the end of 60 min reperfusion. UCN2 reduced phospho-p38 levels and Bax activation. UCN2 increased the expression of Bcl-2 and inhibited the accumulation of p-Bim. With additional experiments, it was confirmed that UCN2 increases the phosphorylation of ERK1/2 in the early phase of UCN2 treatment and increases the overshot recovery of ERK1/2 phosphorylation during reperfusion. UCN2 and SB202190 partially prevented the loss of MMP induced by I/R. However, combined treatment with UCN2 and SB202190 did not provide additive benefit. UCN2 is cardioprotective in I/R in association with reduced phosphorylation of p38 together with the increased ERK1/2 activation and increased Bcl-2 family member pro-survival signaling. These changes may stabilize cardiac mitochondria, similar to p38 inhibitors, as part of a pro-survival mechanism during I/R.  相似文献   

16.
Tubulin, a well-known component of the microtubule in the cytoskeleton, has an important role in the transport and positioning of mitochondria in a cell type dependent manner. This review describes different functional interactions of tubulin with cellular protein complexes and its functional interaction with the mitochondrial outer membrane. Tubulin is present in oxidative as well as glycolytic type muscle cells, but the kinetics of the in vivo regulation of mitochondrial respiration in these muscle types is drastically different. The interaction between VDAC and tubulin is probably influenced by such factors as isoformic patterns of VDAC and tubulin, post-translational modifications of tubulin and phosphorylation of VDAC. Important factor of the selective permeability of VDAC is the mitochondrial creatine kinase pathway which is present in oxidative cells, but is inactive or missing in glycolytic muscle and cancer cells. As the tubulin-VDAC interaction reduces the permeability of the channel by adenine nucleotides, energy transfer can then take place effectively only through the mitochondrial creatine kinase/phosphocreatine pathway. Therefore, closure of VDAC by tubulin may be one of the reasons of apoptosis in cells without the creatine kinase pathway. An important question in tubulin regulated interactions is whether other proteins are interacting with tubulin. The functional interaction may be direct, through other proteins like plectins, or influenced by simultaneous interaction of other complexes with VDAC.  相似文献   

17.
Oxidative damage has been implicated in disorders associated with abnormal copper metabolism and also Cu2+ overloading states. Besides, mitochondria are one of the most important targets for Cu2+, an essential redox transition metal, induced hepatotoxicity. In this study, we aimed to investigate the mitochondrial toxicity mechanisms on isolated rat liver mitochondria. Rat liver mitochondria in both in vivo and in vitro experiments were obtained by differential ultracentrifugation and the isolated liver mitochondria were then incubated with different concentrations of Cu2+. Our results showed that Cu2+ induced a concentration and time-dependent rise in mitochondrial ROS formation, lipid peroxidation, and mitochondrial membrane potential collapse before mitochondrial swelling ensued. Increased disturbance in oxidative phosphorylation was also shown by decreased ATP concentration and decreased ATP/ADP ratio in Cu2+-treated isolated mitochondria. In addition, collapse of mitochondrial membrane potential (MMP), mitochondrial swelling, and release of cytochrome c following of Cu2+ treatment were well inhibited by pretreatment of mitochondria with CsA and BHT. Our results showed that Cu2+ could interact with respiratory complexes (I, II, and IV). This suggests that Cu2+-induced liver toxicity is the result of metal’s disruptive effect on liver hepatocyte mitochondrial respiratory chain that is the obvious cause of Cu2+-induced ROS formation, lipid peroxidation, mitochondrial membrane potential decline, and cytochrome c expulsion which start cell death signaling.  相似文献   

18.
Defining how extramitochondrial high-energy phosphate acceptors influence the rates of heart oxidative phosphorylation is essential for understanding the control of myocardial respiration. When the production of phosphocreatine is coupled to electron transport via mitochondrial creatine kinase, the net reaction can be expressed by the balanced equation: creatine + Pi----phosphocreatine + H2O. This suggests that rates of oxygen consumption could be regulated by changes in [creatine], [Pi], or [phosphocreatine], alone or in combination. The effects of altering these metabolites upon mitochondrial rates of respiration were examined in vitro. Rat heart mitochondria were incubated in succinate-containing oxygraph medium (pH 7.2, 37 degrees C) supplemented with five combinations of creatine (1.0-20 mM), phosphocreatine (0-25 mM), and Pi (0.25-5.0 mM). In all cases, the mitochondrial creatine kinase reaction was initiated by additions of 0.5 mM ATP. To emphasize the duality of control, the results are presented as three-dimensional stereoscopic projections. Under physiological conditions, with 5.0 mM creatine, increases in Pi or decreases in phosphocreatine had little influence upon mitochondrial respiration. When phosphocreatine was held constant (15 mM), changes in [creatine] modestly stimulated respiratory rates, whereas Pi again showed little effect. With 1.0 mM Pi, respiration clearly became dependent upon changes in [creatine] and [phosphocreatine]. Initially, respiratory rates increased as a function of [creatine]. However, at [phosphocreatine] values below 10 mM, product "deinhibition" was observed, and respiratory rates rapidly increased to 80% State 3. With 2.0 mM Pi or higher, respiration could be regulated from State 4 to 100% State 3. Overall, the data show how increasing [creatine] and decreasing [phosphocreatine] influence the rates of oxidative phosphorylation when mediated by mitochondrial creatine kinase. Thus, these changes may become secondary cytoplasmic signals regulating heart oxygen consumption.  相似文献   

19.
Calycopterin is a flavonoid compound isolated from Dracocephalum kotschyi that has multiple medical uses, as an antispasmodic, analgesic, anti-hyperlipidemic, and immunomodulatory agents. However, its biological activity and the mechanism of action are poorly investigated. Herein, we investigated the apoptotic effect of calycopterin against the human hepatoblastoma cancer cell (HepG2) line. We discovered that calycopterin-treated HepG2 cells were killed off by apoptosis in a dose-dependent manner within 24 h, and was characterized by the appearance of nuclear shrinkage, cleavage of poly (ADP-ribose) polymerase and DNA fragmentation. Calycopterin treatment also affected HepG2 cell viability: (a) by inhibiting cell cycle progression at the G2/M transition leading to growth arrest and apoptosis; (b) by decreasing the expression of mitotic kinase cdc2, mitotic phosphatase cdc25c, mitotic cyclin B1, and apoptotic factors pro-caspases-3 and -9; and (c) increasing the levels of mitochondrial apoptotic-related proteins, intracellular levels of reactive oxygen species, and nitric oxide. We further examined the phosphorylation of extracellular signal-related kinase (ERK 1/2), c-Jun N-terminal kinase, and p-38 mitogen-activated protein kinases (MAPKs) and found they all were significantly increased in HepG2 cells treated with calycopterin. Interestingly, we discovered that treated cells had significantly lower Akt phosphorylation. This mode of action for calycopterin in our study provides strong support that inhibition of PI3K/Akt and activation of MAPKs are pivotal in G2/M cell cycle arrest and apoptosis of human hepatocarcinoma cells mediated by calycopterin.  相似文献   

20.
Mineral phosphate solubilization by bacteria is mediated through secretion of organic acids, among which citrate is one of the most effective. To overproduce citrate in bacterial systems, an artificial citrate operon comprising of genes encoding NADH-insensitive citrate synthase of E. coli and Salmonella typhimurium sodium-dependent citrate transporter was constructed. In order to improve its mineral phosphate solubilizing (MPS) ability, the citrate operon was incorporated into E. hormaechei DHRSS. The artificial citrate operon transformant secreted 7.2 mM citric acid whereas in the native strain, it was undetectable. The transformant released 0.82 mM phosphate in flask studies in buffered medium containing rock phosphate as sole P source. In fermenter studies, similar phenotype was observed under aerobic conditions. However, under microaerobic conditions, no citrate was detected and P release was not observed. Therefore, an artificial citrate gene cluster containing Vitreoscilla hemoglobin (vgb) gene under its native promoter, along with artificial citrate operon under constitutive tac promoter, was constructed and transformed into E. hormaechei DHRSS. This transformant secreted 9 mM citric acid under microaerobic conditions and released 1.0 mM P. Thus, incorporation of citrate operon along with vgb gene improves MPS ability of E. hormaechei DHRSS under buffered, microaerobic conditions mimicking rhizospheric environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号