首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 872 毫秒
1.
2.
Braun P 《Proteomics》2012,12(10):1499-1518
Protein interactions mediate essentially all biological processes and analysis of protein-protein interactions using both large-scale and small-scale approaches has contributed fundamental insights to the understanding of biological systems. In recent years, interactome network maps have emerged as an important tool for analyzing and interpreting genetic data of complex phenotypes. Complementary experimental approaches to test for binary, direct interactions, and for membership in protein complexes are used to explore the interactome. The two approaches are not redundant but yield orthogonal perspectives onto the complex network of physical interactions by which proteins mediate biological processes. In recent years, several publications have demonstrated that interactions from high-throughput experiments can be equally reliable as the high quality subset of interactions identified in small-scale studies. Critical for this insight was the introduction of standardized experimental benchmarking of interaction and validation assays using reference sets. The data obtained in these benchmarking experiments have resulted in greater appreciation of the limitations and the complementary strengths of different assays. Moreover, benchmarking is a central element of a conceptual framework to estimate interactome sizes and thereby measure progress toward near complete network maps. These estimates have revealed that current large-scale data sets, although often of high quality, cover only a small fraction of a given interactome. Here, I review the findings of assay benchmarking and discuss implications for quality control, and for strategies toward obtaining a near-complete map of the interactome of an organism.  相似文献   

3.
4.
The importance of regulatory control in metabolic processes is widely acknowledged, and several enquiries (both local and global) are being made in understanding regulation at various levels of the metabolic hierarchy. The wealth of biological information has enabled identifying the individual components (genes, proteins, and metabolites) of a biological system, and we are now in a position to understand the interactions between these components. Since phenotype is the net result of these interactions, it is immensely important to elucidate them not only for an integrated understanding of physiology, but also for practical applications of using biological systems as cell factories. We present some of the recent “-omics” approaches that have expanded our understanding of regulation at the gene, protein, and metabolite level, followed by analysis of the impact of this progress on the advancement of metabolic engineering. Although this review is by no means exhaustive, we attempt to convey our ideology that combining global information from various levels of metabolic hierarchy is absolutely essential in understanding and subsequently predicting the relationship between changes in gene expression and the resulting phenotype. The ultimate aim of this review is to provide metabolic engineers with an overview of recent advances in complementary aspects of regulation at the gene, protein, and metabolite level and those involved in fundamental research with potential hurdles in the path to implementing their discoveries in practical applications.  相似文献   

5.
The importance of regulatory control in metabolic processes is widely acknowledged, and several enquiries (both local and global) are being made in understanding regulation at various levels of the metabolic hierarchy. The wealth of biological information has enabled identifying the individual components (genes, proteins, and metabolites) of a biological system, and we are now in a position to understand the interactions between these components. Since phenotype is the net result of these interactions, it is immensely important to elucidate them not only for an integrated understanding of physiology, but also for practical applications of using biological systems as cell factories. We present some of the recent "-omics" approaches that have expanded our understanding of regulation at the gene, protein, and metabolite level, followed by analysis of the impact of this progress on the advancement of metabolic engineering. Although this review is by no means exhaustive, we attempt to convey our ideology that combining global information from various levels of metabolic hierarchy is absolutely essential in understanding and subsequently predicting the relationship between changes in gene expression and the resulting phenotype. The ultimate aim of this review is to provide metabolic engineers with an overview of recent advances in complementary aspects of regulation at the gene, protein, and metabolite level and those involved in fundamental research with potential hurdles in the path to implementing their discoveries in practical applications.  相似文献   

6.
Protein-protein interactions are central to biology and, in this 'post-genomic era', prediction of these interactions has become the goal of many computational efforts. Close inspection of even relatively simple biological regulatory circuitry reveals multiple levels of control of the contributing protein interactions. The fundamental probability that an interaction will occur under a given set of conditions is difficult to predict because the relationship between structure and energy is not known. Layered on this basic difficulty are allosteric control mechanisms involving post-translational modification or small ligand binding. In addition, many biological processes involve multiple protein-protein interactions, some of which may be cooperative or even competitive. Finally, although the emphasis in predicting protein interactions is based on equilibrium thermodynamic principles, kinetics can be a major controlling feature in these systems. This complexity reinforces the necessity of performing detailed quantitative studies of the component interactions of complex biological regulatory systems. Results of such studies will help us to bridge the gap between our knowledge of structure and our understanding of functional biology.  相似文献   

7.
8.
9.
10.
Protein-protein interactions are recognized as one of the fundamental mechanisms for relaying the intra- and intercellular signals that are required for normal cellular activities affecting growth, development, and maintenance of homeostasis in tissues and organs. The yeast two-hybrid screen has become a valuable tool for identifying protein-protein interactions. The gap junction protein connexin 43 (Cx43) has been implicated in a number of biological processes including development and cellular growth control. To further advance our understanding of the ways in which Cx43 may influence these cellular activities, and to extend our knowledge of the regulation of Cx43 function and/or processing, we have employed the yeast two-hybrid screen technique to identify Cx43-interacting proteins. We present detailed methods for the yeast two-hybrid screen of a mouse embryonic cDNA library using the C terminus of Cx43 as "bait." We also describe additional methods to confirm the interactions between Cx43 and the identified proteins. These methods include in vitro binding assays, coimmunoprecipitation, and subcellular localization using immunofluorescence microscopy.  相似文献   

11.
12.
The interactions between peptides and membranes mediate a wide variety of biological processes, and characterization of the molecular details of these interactions is central to our understanding of cellular events such as protein trafficking, cellular signaling and ion-channel formation. A wide variety of biophysical techniques have been combined with the use of model membrane systems to study peptide-membrane interactions, and have provided important information on the relationship between membrane-active peptide structure and their biological function. However, what has generally not been reported is a detailed analysis of the affinity of peptide for different membrane systems, which has largely been due to the difficulty in obtaining this information. To address this issue, surface plasmon resonance (SPR) spectroscopy has recently been applied to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. This article provides an overview of these recent applications that demonstrate the potential of SPR to enhance our molecular understanding of membrane-mediated peptide function.  相似文献   

13.
14.
15.
16.
Bcl-2 family proteins have important roles in tumor initiation, progression and resistance to therapy. Pro-survival Bcl-2 proteins are regulated by their interactions with pro-death BH3-only proteins making these protein–protein interactions attractive therapeutic targets. Although these interactions have been extensively characterized biochemically, there is a paucity of tools to assess these interactions in cells. Here, we address this limitation by developing quantitative, high throughput microscopy assays to characterize Bcl-2 and BH3-only protein interactions in live cells. We use fluorescent proteins to label the interacting proteins of interest, enabling visualization and quantification of their mitochondria-localized interactions. Using tool compounds, we demonstrate the suitability of our assays to characterize the cellular activity of putative therapeutic molecules that target the interaction between pro-survival Bcl-2 and pro-death BH3-only proteins. In addition to the relevance of our assays for drug discovery, we anticipate that our work will contribute to an improved understanding of the mechanisms that regulate these important protein–protein interactions within the cell.  相似文献   

17.
18.
19.
Metal nanoclusters (NCs) are a new type of nanoprobe with great potential in various biological applications. For biocompatible and efficient utilization of NCs, a thorough understanding of their interactions with biological systems is highly important. Herein, we focus on recent studies addressing interactions between metal NCs and proteins as well as implications for their further biological application. These findings show that protein adsorption not only affects the photophysical properties of NCs, but also influences their subsequent biological behavior, i.e., cellular uptake and cytotoxicity. Moreover, specific protein–NC interactions have also been harnessed to develop novel protein discrimination strategies.  相似文献   

20.
The recent explosion of high throughput experimental technologies for characterizing protein interactions has generated large amounts of data describing interactions between thousands of proteins and producing genome scale views of protein assemblies. The systems level views afforded by these data hold great promise of leading to new knowledge but also involve many challenges. Deriving meaningful biological conclusions from these views crucially depends on our understanding of the approximation and biases that enter into deriving and interpreting the data. The challenges and rewards of interaction proteomics are reviewed here using as an example the latest comprehensive high throughput analyses of protein interactions in yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号