首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gaku Takimoto  Kenta Suzuki 《Oikos》2016,125(4):535-540
Mutualism is a fundamental building block of ecological communities and an important driver of biotic evolution. Classic theory suggests that a pairwise two‐species obligate mutualism is fragile, with a large perturbation potentially driving both mutualist populations into extinction. In nature, however, there are many cases of pairwise obligate mutualism. Such pairwise obligate mutualisms are occasionally associated with additional interactions with facultative mutualists. Here, we use a mathematical model to show that when a two‐species obligate mutualism has a single additional link to a third facultative mutualist, the obligate mutualism can become permanently persistent. In the model, a facultative mutualist interacts with one of two inter‐dependent obligate mutualists, and the facultative mutualist enhances the persistence not only of its directly interacting obligate mutualist, but also that of the other obligate mutualist indirectly, enabling the permanent coexistence of the three mutualist species. The effect of the facultative mutualist is strong; it can allow a three‐species permanent coexistence even when two obligate mutualists by themselves are not sustainable (i.e. not locally stable). These results suggest that facultative mutualists can play a pivotal role for the persistence of obligate mutualisms, and contribute to a better understanding on the mechanisms maintaining more complex mutualistic networks of multiple species.  相似文献   

2.
The paradox of mutualism is typically framed as the persistence of interspecific cooperation, despite the potential advantages of cheating. Thus, mutualism research has tended to focus on stabilizing mechanisms that prevent the invasion of low‐quality partners. These mechanisms alone cannot explain the persistence of variation for partner quality observed in nature, leaving a large gap in our understanding of how mutualisms evolve. Studying partner quality variation is necessary for applying genetically explicit models to predict evolution in natural populations, a necessary step for understanding the origins of mutualisms as well as their ongoing dynamics. An evolutionary genetic approach, which is focused on naturally occurring mutualist variation, can potentially synthesize the currently disconnected fields of mutualism evolution and coevolutionary genetics. We outline explanations for the maintenance of genetic variation for mutualism and suggest approaches necessary to address them.  相似文献   

3.
In ecological communities, numerous species coexist and affect each others’ population levels via various types of interspecific interactions. Previous ecological theory explaining multispecies coexistence tended to focus on a single interaction type, such as antagonism, competition, or mutualism, and its consequences on population dynamics. Hence, it remains unclear what, if any, contribution multiple coexisting interaction types have on the multispecies coexistence. Here, we show that the coexistence of multiple interaction types can be essential for multispecies coexistence. We present a simple model in which the exploiter and mutualist adaptively switch between two competing resource species. An adaptive mutualist, which favors the more abundant species, provides a mechanism of majority-advantage and, thus, potentially inhibits the coexistence of resource species. In the absence of an exploiter, an adaptive mutualist leads to competitive exclusion at the resource species level. However, the coexistence of an adaptive exploiter and a mutualist allows the coexistence of all species in the community, because the mutualist-mediated “winner” tends to be suppressed by the adaptive exploiter. The mutualist indirectly increases the abundance of the exploiter through mutualistic interactions, thereby indirectly supporting this coexistence mechanism. In fact, coexistence may occur even if the exploiter or mutualist alone cannot mediate the coexistence of two resources. We conclude that the coexistence of mutualism and antagonism may be the key to the persistence of the four-species module in the presence of adaptive switching.  相似文献   

4.
Mutualistic and antagonistic interactions coexist in nature. However, little is understood about their relative roles and interactive effects on multispecies coexistence. Here, using a three-species population dynamics model of a resource species, its exploiter, and a mutualist species, we show that a mixture of different interaction types may lead to dynamics that differ completely from those of the isolated interacting pairs. More specifically, a combination of globally stable antagonistic and mutualistic subsystems can lead to unstable population oscillations, suggesting the potential difficulty in the coexistence of antagonism and mutualism. Mutualism-induced instability arises from the indirect positive effect of mutualism on the exploiter. Furthermore, for a three-species system with a stronger mutualistic interaction to persist stably, a weaker antagonistic interaction is required. Network studies of communities composed of one type of interaction may not capture the dynamics of natural communities.  相似文献   

5.
Many mutualisms host "exploiter" species that consume the benefits provided by one or both mutualists without reciprocating. Exploiters have been widely assumed to destabilize mutualisms, yet they are common. We develop models to explore conditions for local coexistence of obligate plant/pollinating seed parasite mutualisms and nonpollinating exploiters. As the larvae of both pollinators and (at a later time) exploiters consume seeds, we examine the importance of intraspecific and (asymmetric) interspecific competition among and between pollinators and exploiters for achieving three-way coexistence. With weak intra- and interspecific competition, exploiters can invade the stable mutualism and coexist with the mutualists (either stably or with oscillations), provided the exploiters' intrinsic birthrate (b(E)) slightly exceeds that of the pollinators. At higher b(E), all three species go locally extinct. When facing strong interspecific competition, exploiters cannot invade and coexist with the mutualists if intraspecific competition in pollinators and exploiters is weak. However, strong intraspecific competition in pollinators and exploiters facilitates exploiter invasion and coexistence and greatly expands the range of b(E) over which stable coexistence occurs. Our results suggest that mutualist/exploiter coexistence may be more easily achieved than previously thought, thus highlighting the need for a better understanding of competition among and between mutualists and exploiters.  相似文献   

6.
Like altruism, mutualism, cooperation between species, evolves only by enhancing all participants' inclusive fitness. Mutualism evolves most readily between members of different kingdoms, which pool complementary abilities for mutual benefit: some of these mutualisms represent major evolutionary innovations. Mutualism cannot persist if cheating annihilates its benefits. In long-term mutualisms, symbioses, at least one party associates with the other nearly all its life. Usually, a larger host harbours smaller symbionts. Cheating is restrained by vertical transmission, as in Buchnera; partner fidelity, as among bull-thorn acacias and protective ants; test-based choice of symbionts, as bobtail squid choose bioluminescent bacteria; or sanctioning nonperforming symbionts, as legumes punish nonperforming nitrogen-fixing bacteria. Mutualisms involving brief exchanges, as among plants and seed-dispersers, however, persist despite abundant cheating. Both symbioses and brief-exchange mutualisms have transformed whole ecosystems. These mutualisms may be steps towards ecosystems which, like Adam Smith's ideal economy, serve their members' common good.  相似文献   

7.
Plants engage in multiple root symbioses that offer varying degrees of benefit. We asked how variation in partner quality persists using a resource‐ratio model of population growth. We considered the plant's ability to preferentially allocate carbon to mutualists and competition for plant carbon between mutualist and nonmutualist symbionts. We treated carbon as two nutritionally interchangeable, but temporally separated, resources—carbon allocated indiscriminately for the construction of the symbiosis, and carbon preferentially allocated to the mutualist after symbiosis establishment and assessment. This approach demonstrated that coexistence of mutualists and nonmutualists is possible when fidelity of the plant to the mutualist and the cost of mutualism mediate resource competition. Furthermore, it allowed us to trace symbiont population dynamics given varying degrees of carbon allocation. Specifically, coexistence occurs at intermediate levels of preferential allocation. Our findings are consistent with previous empirical studies as well the application of biological market theory to plantroot symbioses.  相似文献   

8.

Background

As global environmental change accelerates, biodiversity losses can disrupt interspecific interactions. Extinctions of mutualist partners can create “widow” species, which may face reduced ecological fitness. Hypothetically, such mutualism disruptions could have cascading effects on biodiversity by causing additional species coextinctions. However, the scope of this problem – the magnitude of biodiversity that may lose mutualist partners and the consequences of these losses – remains unknown.

Methodology/Principal Findings

We conducted a systematic review and synthesis of data from a broad range of sources to estimate the threat posed by vertebrate extinctions to the global biodiversity of vertebrate-dispersed and -pollinated plants. Though enormous research gaps persist, our analysis identified Africa, Asia, the Caribbean, and global oceanic islands as geographic regions at particular risk of disruption of these mutualisms; within these regions, percentages of plant species likely affected range from 2.1–4.5%. Widowed plants are likely to experience reproductive declines of 40–58%, potentially threatening their persistence in the context of other global change stresses.

Conclusions

Our systematic approach demonstrates that thousands of species may be impacted by disruption in one class of mutualisms, but extinctions will likely disrupt other mutualisms, as well. Although uncertainty is high, there is evidence that mutualism disruption directly threatens significant biodiversity in some geographic regions. Conservation measures with explicit focus on mutualistic functions could be necessary to bolster populations of widowed species and maintain ecosystem functions.  相似文献   

9.
Hamilton's theory of kin selection has revolutionized and inspired fifty years of additional theories and experiments on social evolution. Whereas Hamilton's broader intent was to explain the evolutionary stability of cooperation, his focus on shared genetic history appears to have limited the application of his theory to populations within a single species rather than across interacting species. The evolutionary mechanisms for cooperation between species require both spatial and temporal correlations among interacting partners for the benefits to be not only predictable but of sufficient duration to be reliably delivered. As a consequence when the benefits returned by mutualistic partners are redirected to individuals other than the original donor, cooperation usually becomes unstable and parasitism may evolve. However, theoretically, such redirection of mutualistic benefits may actually reinforce, rather than undermine, mutualisms between species when the recipients of these redirected benefits are genetically related to the original donor. Here, I review the few mathematical models that have used Hamilton's theory of kin selection to predict the evolution of mutualisms between species. I go on to examine the applicability of these models to the most well‐studied case of mutualism, pollinating seed predators, where the role of kin selection may have been previously overlooked. Future detailed studies of the direct, and indirect, benefits of mutualism are likely to reveal additional possibilities for applying Hamilton's theory of kin selection to mutualisms between species.  相似文献   

10.
Mutualism is ubiquitous in nature and is thought to have played a key role in the history of life. However, how mutualism could evolve despite being prone to unilateral exploitation is a puzzling question in evolutionary ecology. Some theoretical studies have shown that spatial structure of habitat can facilitate the emergence and maintenance of mutualism. However, they are based on the simple assumption that the trait in question is discrete: each individual is either a mutualist or a non-mutualist. In this article I develop a simple simulation model of coevolution of facultative symbiosis using a one-shot continuous Prisoner's Dilemma game to investigate the evolutionary dynamics of mutualism between two species. In this model I assume continuous traits for both species from -1 (fully deceptive) to 1 (fully cooperative). The habitat has a dual-lattice structure, each layer is inhabited by one species. Interspecific interaction is restricted between two corresponding sites of the two layers. Without limitation on the magnitude of a single mutation, I find that mutualism can arise and persist when the intrinsic reproduction rate is low (but is above a threshold) and the benefit/cost ratio of the cooperative strategy is large, which is consistent with Yamamura et al. [2004. Evolution of mutualism through spatial effects. J. Theor. Biol. 226, 421-428]. In these cases, extreme antagonism often evolves starting from a neutral population that seems nearly stable, but once mutualism arises, the cooperative individuals quickly increase and both the populations eventually become mutualistic on average, although they are polymorphic. However, when the effect of a single mutation was limited to be small, extreme antagonism is much likely to dominate unless the intrinsic reproduction rate is low. When only one species is allowed to evolve, mutualism arises when the initial strategy of the other species is cooperative. Otherwise, excessive deception evolves in the former, and the latter often becomes driven to extinction.  相似文献   

11.
Interspecific mutualisms are often vulnerable to instability because low benefit : cost ratios can rapidly lead to extinction or to the conversion of mutualism to parasite-host or predator-prey interactions. We hypothesize that the evolutionary stability of mutualism can depend on how benefits and costs to one mutualist vary with the population density of its partner, and that stability can be maintained if a mutualist can influence demographic rates and regulate the population density of its partner. We test this hypothesis in a model of mutualism with key features of senita cactus (Pachycereus schottii)-senita moth (Upiga virescens) interactions, in which benefits of pollination and costs of larval seed consumption to plant fitness depend on pollinator density. We show that plants can maximize their fitness by allocating resources to the production of excess flowers at the expense of fruit. Fruit abortion resulting from excess flower production reduces pre-adult survival of the pollinating seed-consumer, and maintains its density beneath a threshold that would destabilize the mutualism. Such a strategy of excess flower production and fruit abortion is convergent and evolutionarily stable against invasion by cheater plants that produce few flowers and abort few to no fruit. This novel mechanism of achieving evolutionarily stable mutualism, namely interspecific population regulation, is qualitatively different from other mechanisms invoking partner choice or selective rewards, and may be a general process that helps to preserve mutualistic interactions in nature.  相似文献   

12.
The exploitation of mutualisms   总被引:8,自引:0,他引:8  
Mutualisms (interspecific cooperative interactions) are ubiquitously exploited by organisms that obtain the benefits mutualists offer, while delivering no benefits in return. The natural history of these exploiters is well-described, but relatively little effort has yet been devoted to analysing their ecological or evolutionary significance for mutualism. Exploitation is not a unitary phenomenon, but a set of loosely related phenomena: exploiters may follow mixed strategies or pure strategies at either the species or individual level, may or may not be derived from mutualists, and may or may not inflict significant costs on mutualisms. The evolutionary implications of these different forms of exploitation, especially the threats they pose to the stability of mutualism, have as yet been minimally explored. Studies of this issue are usually framed in terms of a "temptation to defect" that generates a destabilizing conflict of interest between partners. I argue that this idea is in fact rather inappropriate for interpreting most observed forms of exploitation in mutualisms. I suggest several alternative and testable ideas for how mutualism can persist in the face of exploitation.  相似文献   

13.
We develop an approach for studying population dynamics resulting from mutualism by employing functional responses based on density-dependent benefits and costs. These functional responses express how the population growth rate of a mutualist is modified by the density of its partner. We present several possible dependencies of gross benefits and costs, and hence net effects, to a mutualist as functions of the density of its partner. Net effects to mutualists are likely a monotonically saturating or unimodal function of the density of their partner. We show that fundamental differences in the growth, limitation, and dynamics of a population can occur when net effects to that population change linearly, unimodally, or in a saturating fashion. We use the mutualism between senita cactus and its pollinating seed-eating moth as an example to show the influence of different benefit and cost functional responses on population dynamics and stability of mutualisms. We investigated two mechanisms that may alter this mutualism's functional responses: distribution of eggs among flowers and fruit abortion. Differences in how benefits and costs vary with density can alter the stability of this mutualism. In particular, fruit abortion may allow for a stable equilibrium where none could otherwise exist.  相似文献   

14.
The evolution of mutualisms presents a puzzle. Why does selection favour cooperation among species rather than cheaters that accept benefits but provide nothing in return? Here we present a general model that predicts three key factors will be important in mutualism evolution: (i) high benefit to cost ratio, (ii) high within‐species relatedness and (iii) high between‐species fidelity. These factors operate by moderating three types of feedback benefit from mutualism: cooperator association, partner‐fidelity feedback and partner choice. In defining the relationship between these processes, our model also allows an assessment of their relative importance. Importantly, the model suggests that phenotypic feedbacks (partner‐fidelity feedback, partner choice) are a more important explanation for between‐species cooperation than the development of genetic correlations among species (cooperator association). We explain the relationship of our model to existing theories and discuss the empirical evidence for our predictions.  相似文献   

15.

Background  

The persistence of cooperative relationships is an evolutionary paradox; selection should favor those individuals that exploit their partners (cheating), resulting in the breakdown of cooperation over evolutionary time. Our current understanding of the evolutionary stability of mutualisms (cooperation between species) is strongly shaped by the view that they are often maintained by partners having mechanisms to avoid or retaliate against exploitation by cheaters. In contrast, we empirically and theoretically examine how additional symbionts, specifically specialized parasites, potentially influence the stability of bipartite mutualistic associations. In our empirical work we focus on the obligate mutualism between fungus-growing ants and the fungi they cultivate for food. This mutualism is exploited by specialized microfungal parasites (genus Escovopsis) that infect the ant's fungal gardens. Using sub-colonies of fungus-growing ants, we investigate the interactions between the fungus garden parasite and cooperative and experimentally-enforced uncooperative ("cheating") pairs of ants and fungi. To further examine if parasites have the potential to help stabilize some mutualisms we conduct Iterative Prisoner's Dilemma (IPD) simulations, a common framework for predicting the outcomes of cooperative/non-cooperative interactions, which incorporate parasitism as an additional factor.  相似文献   

16.
Tom E. X.Miller 《Oikos》2007,116(3):500-512
Interspecific facultative mutualisms typically involve guilds of interacting species, and species within a guild can vary in the quality of services they provide. For plants that secrete extrafloral nectar (EFN), visitation by multiple ant species that vary in anti–herbivore abilities may result in reduced benefits, relative to an exclusive association with a high-quality mutualist. This raises the intriguing problem of how facultative ant-plant mutualisms persist, given that EFN is costly to produce, yet may confer diminishing returns as partner diversity increases. I tested the prediction that association with two ant partners ( Crematogaster opuntiae and Liometopum apiculatum ) weakens benefits to the EFN-producing tree cholla cactus ( Opuntia imbricata ). I found that only one ant ( L. apiculatum ) provided protection against herbivores and seed predators. However, this species associated with cacti more frequently than Crematogaster across multiple temporal scales. Within years, Liometopum showed greater constancy on plants they occupied, more frequently colonized vacant plants, and replaced but were never replaced by Crematogaster . Across years of plant development, Liometopum was more abundant on reproductive plants and showed greater overlap with cactus enemies. Simulations of cactus lifetime reproductive output indicated that associating with high- and low-quality mutualists did not significantly reduce plant benefits relative to an exclusive L. apiculatum – O. imbricata association. The results suggest that non-random interaction frequencies, possibly driven by competition, may contribute to the maintenance of facultative mutualisms involving multiple, qualitatively different partners.  相似文献   

17.
Specialist insects share obligate mutualisms with some contemporary cycad species whereby the insect's pollination services are rewarded with a nursery in which the insect's larvae consume the postdispersal male cone. I prevented visits of the pollinator moth Anatrachyntis sp. to male Cycas micronesica (Cycadaceae) cones to show that consumption of the cone tissue by the mutualist hastened initiation of the plant's subsequent reproductive event. This is the first documented case where removal of a postdispersal cycad pollination organ speeds up subsequent reproductive events, and the current paradigm that the offering of cone tissue as a nursery is a sacrifice by the plant in return for the pollination services is therefore inaccurate. In C. micronesica, the herbivory stage of pollination mutualism confers a cryptic benefit of cone tissue disposal, which translates into an increase in ultimate lifetime reproductive effort. The plant population relies on the pollinator for moving gametes, as well as for increasing the number of male coning events. The dual benefits afforded to the plant by associating with this pollinator shows that mutualism can operate simultaneously on very different traits.  相似文献   

18.
Interspecific mutualisms have been playing a central role in the functioning of all ecosystems since the early history of life. Yet the theory of coevolution of mutualists is virtually nonexistent, by contrast with well-developed coevolutionary theories of competition, predator-prey and host-parasite interactions. This has prevented resolution of a basic puzzle posed by mutualisms: their persistence in spite of apparent evolutionary instability. The selective advantage of 'cheating', that is, reaping mutualistic benefits while providing fewer commodities to the partner species, is commonly believed to erode a mutualistic interaction, leading to its dissolution or reciprocal extinction. However, recent empirical findings indicate that stable associations of mutualists and cheaters have existed over long evolutionary periods. Here, we show that asymmetrical competition within species for the commodities offered by mutualistic partners provides a simple and testable ecological mechanism that can account for the long-term persistence of mutualisms. Cheating, in effect, establishes a background against which better mutualists can display any competitive superiority. This can lead to the coexistence and divergence of mutualist and cheater phenotypes, as well as to the coexistence of ecologically similar, but unrelated mutualists and cheaters.  相似文献   

19.
Numerical models have suggested that the dynamics within mutualisms are not important for the maintenance of diversity. In this study it is demonstrated that the dynamics within mutualism can contribute to the maintenance of diversity within its participants, using a general model of frequency dependence between two mutualistically interacting guilds. Specifically, it is demonstrated that while mutualisms may exhibit positive feedback in density, there may be a negative feedback within a mutualism as a result of the change in composition within the interacting guild. Such a negative feedback results from an asymmetry in the delivery of benefit between participants of the mutualism that generates a negative interguild frequency dependence. This dynamic contributes to the maintenance of diversity within the interacting guilds. Conditions are identified for the maintenance of diversity and the maximization of benefit from mutualism within the context of the model. The utility of these conditions for testing hypotheses using data from the mutualistic interaction between plants and mycorrhizal fungi is then demonstrated.  相似文献   

20.
Mutualism can be favored over exploitation of mutualism when interests of potential heterospecific partners are aligned so that individual organisms are beneficial to each others' continued growth, survival, and reproduction, that is, when exploitation of a particular partner individual is costly. A coral reef sponge system is particularly amenable to field experiments probing how costs of exploitation can be influenced by life-history characteristics. Pairwise associations among three of the sponge species are mutually beneficial. A fourth species, Desmapsamma anchorata, exploits these mutualisms. Desmapsamma also differs from the other species by growing faster, fragmenting more readily, and suffering higher mortality rates. Evaluating costs and benefits of association in the context of the complex life histories of these asexually fragmenting sponges shows costs of exploitation to be high for the mutualistic species but very low for this essentially weedy species. Although it benefits from association more than the mutualist species, by relying on their superior tensile strength and extensibility to reduce damage by physical disturbance, exploitation is favored because each individual host is of only ephemeral use. These sponges illustrate how life-history differences can influence the duration of association between individuals and, thus, the role of partner fidelity in promoting mutualism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号