首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Amphiphiles which induce either spiculated (echinocytic) or invaginated (stomatocytic) shapes in human erythrocytes, and ionophore A23187 plus Ca(2+), were studied for their capacity to induce shape alterations, vesiculation and hemolysis in the morphologically and structurally different lamprey and trout erythrocytes. Both qualitative and quantitative differences were found. Amphiphiles induced no gross morphological changes in the non-axisymmetric stomatocyte-like lamprey erythrocyte or in the flat ellipsoidal trout erythrocyte, besides a rounding up at higher amphiphile concentrations. No shapes with large broad spicula were seen. Nevertheless, some of the 'echinocytogenic' amphiphiles induced plasma membrane protrusions in lamprey and trout erythrocytes, from where exovesicles were shed. In trout erythrocytes, occurrence of corrugations at the cell rim preceded protrusion formation. Other 'echinocytogenic' amphiphiles induced invaginations in lamprey erythrocytes. The 'stomatocytogenic' amphiphiles induced invaginations in both lamprey and trout erythrocytes. Surprisingly, in trout erythrocytes, some protrusions also occurred. Some of the amphiphiles hemolyzed lamprey, trout and human erythrocytes at a significantly different concentration/membrane area. Ionophore A23187 plus Ca(2+) induced membrane protrusions and sphering in human and trout erythrocytes; however, the lamprey erythrocyte remained unperturbed. The shape alterations in lamprey erythrocytes, we suggest, are characterized by weak membrane skeleton-lipid bilayer interactions, due to band 3 protein and ankyrin deficiency. In trout erythrocyte, the marginal band of microtubules appears to strongly influence cell shape. Furthermore, the presence of intermediate filaments and nuclei, additionally affecting the cell membrane shear elasticity, apparently influences cell shape changes in lamprey and trout erythrocytes. The different types of shape alterations induced by certain amphiphiles in the cell types indicates that their plasma membrane phospholipid composition differs.  相似文献   

2.
The membrane skeleton, a protein lattice at the internal side of the red cell membrane, is principally composed of spectrin, actin and proteins 4.1 and 4.9. We have examined negatively stained red cell ghosts and demonstrated, on an ultrastructural level, a separation of the lipid bilayer from the membrane skeleton during echinocytic transformation. The electron micrographs of discoidal red cell ghosts suspended in hypotonic buffer revealed a filamentous reticulum that uniformly laminated the entire submembrane region. transformation of the discoidal ghosts into echinocytic form, as induced by incubation in isotonic buffer, resulted in a disruption of skeletal continuity underlying the surface contour of the membrane spicule. The submembrane reticulum extended into the base and the neck of the spiny processes of the crenated ghosts but was absent at the tip of these projections. In addition, membrane vesicles without a submembrane reticulum were detected either attached to the tips of the spicules or released into the supernatant from the echinocytic ghosts. Protein analysis revealed that the released vesicles were enriched in bands 3, 4.1 and 7 and contained very little of the membrane skeletal proteins, spectrin and actin. The data indicate that during echinocyte formation, parts of the lipid bilayer physically separate from the membrane skeleton, leading to a formation of skeleton-poor lipid vesicles.  相似文献   

3.
Human erythrocyte membranes from ACD preseved blood were digested with trypsin (Protein: trypsin=100:1) and analyzed by SDS PAGE. After digestion for 20 sec at 0°C, only ankyrin disappeared but other bands including spectrin, band 4.1 and band 3 remained intact. In contrast to intact membranes, treatment with chlorpromazine or MgATP or HEPES did not induce shape change in these membranes. The number of transformable cells correlated closely with the amount of remaining ankyrin. We conclude that ankyrin is necessary for their shape change. This is the first direct evidence that ankyrin is involved in the maintenance of red cell shape. Three additional lines of indirect evidence are also presented.  相似文献   

4.
We have examined the associations of purified red cell band 4.2 with red cell membrane and membrane skeletal proteins using in vitro binding assays. Band 4.2 bound to the purified cytoplasmic domain of band 3 with a Kd between 2 and 8 X 10(-7) M. Binding was saturable and slow, requiring 2-4 h to reach equilibrium. This finding confirms previous work suggesting that the principal membrane-binding site for band 4.2 lies within the 43-kDa cytoplasmic domain of band 3 (Korsgren, C., and Cohen, C. M. (1986) J. Biol. Chem. 261, 5536-5543). Band 4.2 also bound to purified ankyrin in solution with a Kd between 1 and 3.5 X 10(-7) M. As with the cytoplasmic domain of band 3, binding was saturable and required 4-5 h to reach equilibrium. Reconstitution with ankyrin of inside-out vesicles stripped of all peripheral proteins had no effect upon band 4.2 binding to membranes; similarly, reconstitution with band 4.2 had no effect upon ankyrin binding. This shows that ankyrin and band 4.2 bind to distinct loci within the 43-kDa band 3 cytoplasmic domain. Coincubation of ankyrin and band 4.2 in solution partially blocked the binding of both proteins to the membrane. Similarly, coincubation of bands 4.1 and 4.2 in solution partially blocked binding of both to membranes. In all cases, the data suggest the possibility that domains on each of these proteins responsible for low affinity membrane binding are principally affected. The data also provide evidence for an association of band 4.2 with band 4.1. Our results show that band 4.2 can form multiple associations with red cell membrane proteins and may therefore play an as yet unrecognized structural role on the membrane.  相似文献   

5.
A population of band 3 proteins in the human erythrocyte membrane is known to have restricted rotational mobility due to interaction with cytoskeletal proteins. We have further investigated the cause of this restriction by measuring the effects on band 3 rotational mobility of rebinding ankyrin and band 4.1 to ghosts stripped of these proteins as well as spectrin and actin. Rebinding either ankyrin or 4.1 alone has no detectable effect on band 3 mobility. Rebinding both these proteins together does, however, reimpose a restriction on band 3 rotation. The effect on band 3 rotational mobility of rebinding ankyrin and 4.1 are similar irrespective of whether or not band 4.2 is removed from the membrane. We suggest that ankyrin and 4.1 together promote the formation of slowly rotating clusters of band 3.  相似文献   

6.
Although immunological homologues of erythrocyte membrane proteins have been individually discovered in a wide variety of tissues and cultured cells, the major structural components of the membrane have not yet been demonstrated simultaneously in the same cell type. Thus, considerable uncertainty continues to exist concerning whether the red cell homologues form elements of a structure which is similar to or unique from the framework which supports the erythrocyte membrane. Because the red cell cytoskeletal proteins, spectrin, actin and band 4.1, have been previously found in the superficial cortex of the lens, we decided to determine whether the corresponding membrane anchoring components of band 3 and ankyrin also occur in this cell type. Using antiserum specific for band 3 and ankyrin, we report the existence of immunologically cross-reactive proteins of similar molecular weight. Because these anchoring proteins appear and disappear coordinately with the aforementioned cytoskeletal proteins during the intermediate stages of lens cell maturation, it is conceivable that an erythrocyte-like membrane structural organization may occur transiently in the eye lens.  相似文献   

7.
The relationship between erythrocyte shape and the critical cell volume was investigated. Agents able to increase the critical cell volume induced three main stable shapes of erythrocytes: discocytic, stomatocytic, and echinocytic. The absence of correlation between shape and critical cell volume under isoosmotic conditions suggests that relative differences between the surface areas of the inner and the outer leaflet of the cell membrane do not influence the critical volume of a cell.  相似文献   

8.
Gauthier E  Guo X  Mohandas N  An X 《Biochemistry》2011,50(21):4561-4567
The bulk of the red blood cell membrane proteins are partitioned between two multiprotein complexes, one associated with ankyrin R and the other with protein 4.1R. Here we examine the effect of phosphorylation of 4.1R on its interactions with its partners in the membrane. We show that activation of protein kinase C in the intact cell leads to phosphorylation of 4.1R at two sites, serine 312 and serine 331. This renders the 4.1R-associated transmembrane proteins GPC, Duffy, XK, and Kell readily extractable by nonionic detergent with no effect on the retention of band 3 and Rh, both of which also interact with 4.1R. In solution, phosphorlyation at either serine suppresses the capacity of 4.1R to bind to the cytoplasmic domains of GPC, Duffy, and XK. Phosphorylation also exerts an effect on the stability in situ of the ternary spectrin-actin-4.1R complex, which characterizes the junctions of the membrane skeletal network, as measured by the enhanced competitive entry of a β-spectrin peptide possessing both actin- and 4.1R-binding sites. Thus, phosphorylation weakens the affinity of 4.1R for β-spectrin. The two 4.1R phosphorylation sites lie in a domain flanked in the sequence by the spectrin- and actin-binding domain and a domain containing the binding sites for transmembrane proteins. It thus appears that phosphorylation of a regulatory domain in 4.1R results in structural changes transmitted to the functional interaction centers of the protein. We consider possible implications of our findings for the altered membrane function of normal reticulocytes and sickle red cells.  相似文献   

9.
Three major hypotheses have been proposed to explain the role of membrane-spanning proteins in establishing/maintaining membrane stability. These hypotheses ascribe the essential contribution of integral membrane proteins to (i) their ability to anchor the membrane skeleton to the lipid bilayer, (ii) their capacity to bind and stabilize membrane lipids, and (iii) their ability to influence and regulate local membrane curvature. In an effort to test these hypotheses in greater detail, we have modified both the membrane skeletal and lipid binding interactions of band 3 (the major membrane-spanning and skeletal binding protein of the human erythrocyte membrane) and have examined the impact of these modifications on erythrocyte membrane morphology, deformability, and stability. The desired changes in membrane skeletal and protein-lipid interactions were induced by 1) reaction of the cells with 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS), an inhibitor of band 3-mediated anion transport that dissociates band 3 into dimers (increasing its surface area in contact with lipid) and severs band 3 linkages to the membrane skeleton; 2) a fragment of ankyrin that ruptures the same ankyrin-band 3 bridge to the membrane skeleton, but drives the band 3 subunit equilibrium toward the tetramer (i.e. decreasing the band 3 surface area in contact with lipid); and 3) an antibody to the ankyrin-binding site on band 3 that promotes the same changes in band 3 skeletal and lipid interactions as the ankyrin fragment. We observed that although DIDS induced echinocytic morphological changes in the treated erythrocytes, it had little impact on either membrane deformability or stability. In contrast, resealing of either the ankyrin fragment or anti-band 3 IgG into erythrocytes caused spontaneous membrane fragmentation and loss of deformability/stability. Because these and other new observations cannot all be reconciled with any single hypothesis on membrane stability, we suggest that more than one hypothesis may be operative and provide an explanation of how each might individually contribute to net membrane stability.  相似文献   

10.
Structurally diverse ion transport proteins anchor the spectrin-actin cytoskeleton to the plasma membrane by binding directly to linker proteins of the ankyrin and protein 4.1 families. Cytoskeletal anchoring regulates cell shape and restricts the activity of ion transport proteins to specialised membrane domains. New directions are being forged by recent findings that localised anchoring by ion transport proteins regulates the ordered assembly of actin filaments and the actin-dependent processes of cell adhesion and motility.  相似文献   

11.
Infection of erythrocytes by the malaria parasite Plasmodium falciparum results in the export of several parasite proteins into the erythrocyte cytoplasm. Changes occur in the infected erythrocyte due to altered phosphorylation of proteins and to novel interactions between host and parasite proteins, particularly at the membrane skeleton. In erythrocytes, the spectrin based red cell membrane skeleton is linked to the erythrocyte plasma membrane through interactions of ankyrin with spectrin and band 3. Here we report an association between the P. falciparum histidine-rich protein (PfHRP1) and phosphorylated proteolytic fragments of red cell ankyrin. Immunochemical, biochemical and biophysical studies indicate that the 89 kDa band 3 binding domain and the 62 kDa spectrin-binding domain of ankyrin are co-precipitated by mAb 89 against PfHRP1, and that native and recombinant ankyrin fragments bind to the 5' repeat region of PfHRP1. PfHRP1 is responsible for anchoring the parasite cytoadherence ligand to the erythrocyte membrane skeleton, and this additional interaction with ankyrin would strengthen the ability of PfEMP1 to resist shear stress.  相似文献   

12.
This is a study of the morphology and transbilayer lipid distribution of human erythrocytes treated with chlorpromazine (CPZ) over extended time courses. At 0°C, treatment of dilauroylphosphatidyl[1-14C]choline-labeled erythrocytes with 120 μM CPZ produced an immediate stomatocytic transformation (t1/2<5 min) with no concurrent change in transbilayer distribution of radiolabeled lipid, as determined by bovine serum albumin extractability. At 37°C, CPZ treatment of cells produced two sequential morphological effects: immediate stomatocytosis (t1/2<1 min) with no concurrent change in radiolabel transbilayer distribution, followed by gradual increase in stomatocytic extent over several hours, with concurrent redistribution of radiolabeled lipid to the inner monolayer. Cells pretreated with vanadate at 37°C exhibited a triphasic morphological response: CPZ produced immediate stomatocytosis, followed by a transient reversion to echinocytes lasting about 2 h, before returning to stomatocytic morphologies over the next several hours. The echinocytic reversion was accompanied by exposure of phosphatidylserine on the cell surface, as indicated by increased activation of exogenous prothrombinase. These findings suggest that while CPZ induces transbilayer lipid redistribution over extended time periods (which may mediate the complex morphological transformations observed), the early stomatocytic response elicited by addition of CPZ is not due to lipid reorganization.  相似文献   

13.
The phosphorylation of the cytoplasmic domain of band 3 by the human erythrocyte membrane kinase and casein kinase A has been investigated. The cytoplasmic domain of band 3 was released from erythrocyte vesicles by treatment with alpha-chymotrypsin and isolated as a 43,000-Da peptide. Both the membrane kinase and casein kinase A catalyzed the incorporation of about 1 mol of phosphate per mole of the band 3 fragment. The phosphorylation of the band 3 fragment by both kinases was not additive, suggesting that the two enzymes might recognize the same phosphorylation sites. Also in support of this notion was the observation that the phosphopeptide maps of the band 3 fragment phosphorylated by the two kinases were identical. Phosphoamino acid analysis of the band 3 fragment phosphorylated by casein kinase A revealed the presence of approximately equal amounts of phosphoserine and phosphothreonine and, to a lesser extent, phosphotyrosine. The interaction between the 43,000-Da peptide with ankyrin and the effect of phosphorylation on this interaction have been examined. The band 3 fragment was found to form two different types of complexes, termed C1 and C2, with ankyrin in a saturable manner. The C1 and C2 complexes contained about 1.7 and 0.43 mol of band 3 fragment per mole of ankyrin, respectively. Interestingly, these binding stoichiometries were found to be reduced by half by the phosphorylation of ankyrin but not by the phosphorylation of the band 3 fragment. The results suggest that the structure and dynamics of the erythrocyte membrane cytoskeletal network may be regulated by phosphorylation.  相似文献   

14.
Spontaneous protein deamidation of labile Asn residues, generating L-isoaspartates and D-aspartates, is associated with cell aging and is enhanced by an oxidative microenvironment; to minimize the damage, the isoaspartate residues can be 'repaired' by a specific L-isoaspartate (D-aspartate) protein O-methyltransferase (PIMT). As both premature aging and chronic oxidative stress are typical features of Down's syndrome (DS), we tested the hypothesis that deamidated proteins may build up in trisomic patients. Blood samples were obtained from children with karyotypically confirmed full trisomy 21 and from age-matched healthy controls. Using recombinant PIMT as a probe, we demonstrated a dramatic rise of L-isoaspartates in erythrocyte membrane proteins from DS patients. The content of D-aspartate was also significantly increased. The integrity of the repair system was checked by evaluating methionine transport, PIMT specific activity, and intracellular concentrations of adenosylmethionine and adenosylhomocysteine. The overall methylation pathway was directly monitored by incubating fresh red blood cells with methyl-labeled methionine; a three-fold increase of protein methyl esters was detected in trisomic children. Deamidated species include ankyrin, band 4.1, band 4.2 and the integral membrane protein band 3; ankyrin and band 4.1 were significantly hypermethylated in DS. When DS red blood cells were subjected to oxidative treatment in vitro, the increase of protein deamidation paralleled lipid peroxidation and free radical generation. We observed a similar pattern in Epstein-Barr virus B-lymphocytes from trisomic patients. In conclusion, our findings support the hypothesis that protein instability at asparagine sites is a biochemical feature of DS, presumably depending upon the oxidative microenvironment. The possible pathophysiological implications are discussed.  相似文献   

15.
We have studied the effects of band 4.1 phosphorylation on its association with red cell inside-out vesicles stripped of all peripheral proteins. Band 4.1 bound to these vesicles in a saturable manner, and binding was characterized by a linear Scatchard plot with an apparent Kd of 1-2 x 10(-7) M. Phosphorylation of band 4.1 by purified protein kinase C reduced its ability to bind to membranes, resulting in a reduction in the apparent binding capacity of the membrane by 60-70% but little or no change in the apparent Kd of binding. By contrast, phosphorylation of band 4.1 by cAMP-dependent kinase had no effect on membrane binding. Digestion of the stripped inside-out vesicles with trypsin cleaved 100% of the cytoplasmic domain of band 3 but had little or no effect on glycophorin. Binding of band 4.1 to these digested vesicles was reduced by 70%. Phosphorylation of band 4.1 by protein kinase C had no effect on its binding to the digested vesicles, suggesting that the cytoplasmic domain of band 3 contained the phosphorylation-sensitive binding sites. This was confirmed by direct measurement of band 4.1 binding to the purified cytoplasmic domain of band 3. Phosphorylation of band 4.1 by protein kinase C reduced its binding to the purified 43-kDa domain by as much as 90%, while phosphorylation by cAMP-dependent kinase was without effect. These results show a selective effect of protein kinase C phosphorylation on the binding of band 4.1 to one of its membrane receptors, band 3, and suggest a mechanism whereby one of the key red cell-skeletal membrane associations may be modulated.  相似文献   

16.
Phosphorylation of ankyrin decreases its affinity for spectrin tetramer   总被引:5,自引:0,他引:5  
The effects of phosphorylation on the interaction between spectrin and ankyrin were investigated. Spectrin and ankyrin were phosphorylated using purified human erythrocyte membrane and cytosolic (casein kinase A) kinases. These two kinases have similar properties as well as activities toward spectrin and ankyrin. Both kinases catalyzed the incorporation of about 2 mol of phosphate/mol of spectrin and about 7 mol of phosphate/mol of ankyrin. These phosphates were incorporated primarily into seryl and threonyl residues of the proteins. The phosphopeptide maps of ankyrin phosphorylated by the membrane kinase and casein kinase A were identical. Binding studies indicate that ankyrin exhibits different affinities for spectrin dimers (KD = 2.5 +/- 0.9 X 10(-6) M) and tetramers (KD = 2.7 +/- 0.8 X 10(-7) M). These dissociation constants were not appreciably affected by the phosphorylation of spectrin. On the other hand, phosphorylation of ankyrin was found to significantly reduce its affinity for either phosphorylated or unphosphorylated spectrin tetramers (KD = 1.2 +/- 0.1 X 10(-6) M) but not spectrin dimers (KD = 2.5 +/- 0.4 X 10(-6) M). The same results were obtained using either the membrane kinase or casein kinase A as the phosphorylating enzyme. The above observation suggests that ankyrin phosphorylation may provide an important mechanism for the regulation of the erythrocyte membrane cytoskeletal network.  相似文献   

17.
While the temporal sequences of the synthesis and assembly of membrane skeletal proteins has been studied during erythroid maturation, relatively little is known about the events which initiate the assembly of membrane skeleton at the early stages of mammalian erythroid commitment. To investigate the early events that initiate the assembly of the membrane skeleton in mammalian erythroid cells, we have studied the synthesis and assembly of membrane skeletal proteins in murine Rauscher erythroleukemia virus-transformed cells. These cells are blocked in differentiation at around the early progenitor (burst forming unit-erythroid, BFUe) cell stage but can be induced to differentiate in vitro. Pulse-labeling studies reveal that Rauscher cells actively synthesize alpha spectrin, beta spectrin, ankyrin and band 4.1 proteins. However, the synthesis of the band 3 protein and its mRNA are barely detectable in these cells. The peripheral membrane skeletal components assemble only transiently in the membrane skeleton and turn over rapidly, resulting in about 20-fold lower steady state levels than are found in mature erythrocytes. Upon induction with erythropoietin and dimethyl sulfoxide, the mRNA level and synthesis of band 3 are increased about 50-fold. In contrast, the synthesis of spectrin, ankyrin and band 4.1 is increased only about 1.5 to 2.0-fold. However, after induction, the fraction of these proteins assembled on the membrane is increased, their half-lives on the membrane are nearly doubled with a concomitant 4 to 5-fold increase in their steady-state levels. These results suggest that the synthesis of peripheral membrane proteins is detected at the earliest stages of erythroid commitment and increases only slightly during further differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
L Backman 《FEBS letters》1990,262(1):107-110
Aqueous two-phase systems have been used to study the human red cell during metabolically induced shape changes. When the discoid character of the cells was lost in favour of echinocytic forms, the partition increased both in charge-sensitive and in charge-insensitive two-phase systems. Reversal of the shape transformation by ATP repletion not only led to shape recovery but also restored the initial partition. Therefore it is apparent that red cells exhibit a shape-dependent partition behaviour. As the partition is dependent on surface properties (such as charge and hydrophobicity) of the partitioned material, the results show that the shape changes caused rearrangement of the membrane and thereby exposure of or greater accessibility of binding groups on the cell surface. The similar partition behaviour in the charge-sensitive and charge-insensitive phase systems show that the increased partition was caused mainly by increased hydrophobic interactions between the cells and the upper phase. The observed partition behaviour therefore suggests that the echinocytic cells acquire a higher affinity for the upper phase by repacking the lipid bilayer or at least the outer leaflet into a less efficient packed and thus more fluid structure.  相似文献   

19.
We have previously shown that 2,3-diphosphoglycerate (2,3-DPG) inhibits the phosphorylation of erythrocyte membrane cytoskeletal proteins by endogenous casein kinases. Here, we report that 2,3-DPG stimulates the phosphorylation of protein 4.1 by protein kinase C. Studies with red cell membrane preparations showed that while the phosphorylation of most of the membrane proteins by endogenous membrane-bound kinases and purified kinase C was inhibited by 2,3-DPG, the phosphorylation of protein 4.1 was slightly enhanced by the metabolite. The effect of 2,3-DPG was further examined using purified protein 4.1 preparations. Our results indicate that 2,3-DPG stimulates both the rate and the extent of phosphorylation of purified protein 4.1 by kinase C. The amount of phosphate incorporated was found to double to 2 mol of phosphate per mole of protein 4.1 in the presence of 10 mM 2,3-DPG. The increase in phosphorylation was distributed over all phosphorylation sites as revealed by an analysis of the labeling patterns of phosphopeptides resolved by high performance liquid chromatography, but a significantly higher incorporation was detected in two of the phosphopeptides. The stimulatory effect of 2,3-DPG on the phosphorylation of protein 4.1 was observed only with kinase C. Phosphorylation by the cytosolic erythrocyte casein kinase and the cyclic AMP-dependent protein kinase was inhibited by 2,3-DPG. Moreover, the stimulatory effect of 2,3-DPG seemed to be unique to the phosphorylation of protein 4.1 since a similar effect had not been observed with other protein kinase C substrates. Our results suggest that 2,3-DPG may play an important role in the regulation of cytoskeletal interactions.  相似文献   

20.
Is an intact cytoskeleton required for red cell urea and water transport?   总被引:1,自引:0,他引:1  
In order to determine the membrane protein(s) responsible for urea and water transport across the human red cell membrane, we planned to reconstitute purified membrane proteins into phosphatidylcholine vesicles. In preparatory experiments, we reconstituted a mixture of all of the red cell integral membrane proteins into phosphatidylcholine vesicles, but found that p-chloromercuribenzenesulfonate (pCMBS), which normally inhibits osmotic water permeability by approximately 90%, has no effect on this preparation. The preparation was also unable to transport urea at the high rates found in red cells, though glucose transport was normal. White ghosts, washed free of hemoglobin and resealed, also did not preserve normal urea and pCMBS-inhibitable water transport. One-step ghosts, prepared in Hepes buffer in a single-step procedure, without washing, retained normal urea and pCMBS-inhibitable water transport. Perturbations of the cytoskeleton in one-step ghosts, by removal of tropomyosin, or by severing the ankyrin link which binds band 3 to spectrin, caused the loss of urea and pCMBS-inhibitable water transport. These experiments suggest that an unperturbed cytoskeleton may be required for normal urea and pCMBS-inhibitable water transport. They also show that the pCMBS inhibition of water transport is dissociable from the water transport process and suggest a linkage between the pCMBS water transport inhibition site and the urea transport protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号