首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report calculated vibrational spectra in the range of 0–3,500 cm?1 of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) molecules adsorbed on a model aluminum surface. A molecular film was modeled using two approaches: (1) density functional theory (DFT) was used to optimize a single RDX molecule interacting with its periodic images, and (2) a group of nine molecules extracted from the crystal structure was deposited on the surface and interacted with its periodic images via molecular dynamics (MD) simulations. In both cases, the molecule was initialized in the AAA conformer geometry having the three nitro groups in axial positions, and kept that conformation in the DFT examination, but some molecules were found to change to the AAE conformer (two nitro groups in axial and one in equatorial position) in the MD analysis. The vibrational spectra obtained from both methods are similar to each other, except in the regions where collective RDX intermolecular interactions (captured by MD simulations) are important, and compare fairly well with experimental findings.
Figure
Snapshot of RDX molecules adsorbed on an Al (111) surface  相似文献   

2.
A combined and sequential use of quantum mechanical (QM) calculations and classical molecular dynamics (MD) simulations was made to investigate the σ and π types of hydrogen bond (HB) in benzene-water and pyrrole-water as clusters and as their liquid mixture, respectively. This paper aims at analyzing similarities and differences of these HBs resulted from QM and MD on an equal footing. Based on the optimized geometry at ωb97xD/aug-cc-pVTZ level of theory, the nature and property of σ and π types of HBs are unveiled by means of atoms in molecules (AIM), natural bond orbital (NBO) and energy decomposition analysis (EDA). In light of the above findings, MD simulation with OPLS-AA and SPC model was applied to study the liquid mixture at different temperatures. The MD results further characterize the behavior and structural properties of σ and π types HBs, which are somewhat different but reasonable for the clusters by QM. Finally, we provide a reasonable explanation for the different solubility between benzene/water and pyrrole/water.
Figure
The σ and π types of hydrogen bond as benzene-water and pyrrole-water clusters in gas; Snapshot of benzene/water and pyrrole/water as 1:1 liquid mixture extracted from the MD simulations  相似文献   

3.
The adsorption behaviors of three carboxyl hydroxamic acids on diaspore (010) and kaolinite (001) have been studied by density functional theory (DFT) and molecular dynamics (MD) method. The results indicated that carboxyl hydroxamic acids could adsorb on diaspore surface by ionic bonds and hydrogen bonds, and adsorb on kaolinite surface by hydrogen bonds. The models of carboxyl hydroxamic acids adsorbed on diaspore and kaolinite surfaces are proposed.
Figure
Carboxyl hydroxamic acids with different number of polar groups on the surfaces of diaspore (010) and kaolinite (001)  相似文献   

4.
The imine intermediates of tazobactam and sulbactam bound to SHV-1 β-lactamase were investigated by molecular dynamics (MD) simulation respectively. Hydrogen bond networks around active site were found different between tazobactam and sulbactam acyl-enzymes. In tazobactam imine intermediate, it was observed that the triazolyl ring formed stable hydrogen bonds with Asn170 and Thr167. The results suggest that conformation of imine determined the population of intermediates. In imine intermediate of tazobactam, the triazolyl ring is trapped in Thr_Asn pocket, and it restricts the rotation of C5-C6 bond so that tazobactam can only generate trans enamine intermediate. Further, conformational cluster analyses are performed to substantiate the results. These findings provide an explanation for the corresponding experimental results, and will be potentially useful in the development of new inhibitors.
Figure
The distribution of dihedral angle N4-C5-C6-C7 in two systems (imine_taz and imine_sul) along MD simulations  相似文献   

5.
A molecular dynamics simulation is carried out to explore the possibility of using sI clathrate hydrate as hydrogen storage material. Metastable hydrogen hydrate structures are generated using the LAMMPS software. Different binding energies and radial distribution functions provide important insights into the behavior of the various types of hydrogen and oxygen atoms present in the system. Clathrate hydrate cages become more stable in the presence of guest molecules like hydrogen.
Figure
Metastable sI hydrogen hydrate studied by classical molecular dynamics simulation  相似文献   

6.
7.
To elucidate the structural stability and the unfolding dynamics of the animal prion protein, the temperature induced structural evolution of turtle prion protein (tPrPc) and bank vole prion protein (bvPrPc) have been performed with molecular dynamics (MD) simulation. The unfolding behaviors of secondary structures showed that the α-helix was more stable than β-sheet. Extension and disruption of β-sheet commonly appeared in the temperature induced unfolding process. The conversion of α-helix to π-helix occurred more readily at the elevating temperature. Furthermore, it was suggested in this work that the unfolding of prion protein could be regulated by the temperature.
Figure
Molecular dynamics simulation of temperature induced unfolding of animal prion protein  相似文献   

8.
Benzimidazole-based polymer membranes like poly(2,5-benzimidazole) (ABPBI) doped with phosphoric acid (PA) are electrolytes that exhibit high proton conductivity in fuel cells at elevated temperatures. The benzimidazole (BI) moiety is an important constituent of these membranes, so the present work was performed in order to achieve a molecular understanding of the BI–PA interactions in the presence of varying levels of the PA dopant, using classical molecular dynamics (MD) simulations. The various hydrogen-bonding interactions, as characterized based on structural properties and hydrogen-bond lifetime calculations, show that both BI and PA molecules exhibit dual proton-acceptor/donor functionality. An examination of diffusion coefficients showed that the diffusion of BI decreases with increasing PA uptake, whereas the diffusion of PA slightly increases. The hydrogen-bond lifetime calculations pointed to the existence of competitive hydrogen bonding between various sites in BI and PA.
Figure
Structure and dynamics of phosphoric acid doped benzimidazole mixtures  相似文献   

9.
A full-length model of integrase (IN) of the human immunodeficiency virus type 1 (HIV-1) was constructed based on the distinctly resolved X-ray crystal structures of its three domains, named N-terminal, catalytic core and C-terminal. Thirty-one already known inhibitors with varieties of structural differences as well as nine newly tested ones were docked into the catalytic core. The molecular dynamic (MD) and binding properties of these complexes were obtained by MD calculations. The binding energies calculated by molecular mechanic/Poisson Boltzmann solvation area were significantly correlationed with available IC50. Four inhibitors including two newly designed were also docked into the full-length model and their MD behaviors and binding properties were calculated. It was found that one of the newly designed compounds forms a better complex with HIV-1 IN compared to the rest including raltegravir. MD calculations were performed with AMBER suite of programs using ff99SB force field for the proteins and the general Amber force field for the ligands. In conclusion, the results have produced a promising standpoint not only in the construction of the full-length model but also in development of new drugs against it. However, the role of multimer formation and the involvement of DNAs, and their subsequent effect on the complexation and inhibition, are required to arrive at a conclusive decision.
Figure
The correlation of IC50 values with the binding energies calculated by MM-PBSA/GBSA for the inhibitors of HIV-1 integrase (left). The interaction site of the complex of HIV-1 integrase with a newly designed ligand (right).  相似文献   

10.
MP2(full)/aug-cc-pVDZ(-PP) computations predict that new triangular bonding complexes (where X? is a halide and H–C refers to a protic solvent molecule) consist of one halogen bond and two hydrogen bonds in the gas phase. Carbon tetrabromide acts as the donor in the halogen bond, while it acts as an acceptor in the hydrogen bond. The halide (which commonly acts as an acceptor) can interact with both carbon tetrabromide and solvent molecule (CH3CN, CH2Cl2, CHCl3) to form a halogen bond and a hydrogen bond, respectively. The strength of the halogen bond obeys the order CBr4???Cl? > CBr4???Br? > CBr4???I?. For the hydrogen bonds formed between various halides and the same solvent molecule, the strength of the hydrogen bond obeys the order C-H???Cl? > C-H???Br? > C-H???I?. For the hydrogen bonds formed between the same halide and various solvent molecules, the interaction strength is proportional to the acidity of the hydrogen in the solvent molecule. The diminutive effect is present between the hydrogen bonds and the halogen bond in chlorine and bromine triangular bonding complexes. Complexes containing iodide ion show weak cooperative effects.
Figure
The triangular bonding complexes consisting of halogen bond and hydrogen bonds were predict in the gas phase by computational quantum chemistry.  相似文献   

11.
Easy methods to study the smart energetic TNT/CL-20 co-crystal   总被引:1,自引:0,他引:1  
2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a high-energy nitramine explosive with high mechanical sensitivity. 2,4,6-trinitrotoluene (TNT) is insensitive but by no means a high performance explosive. To reveal the significant importance and smart-material functionality of the energetic-energetic co-crystals, the stability, mechanical and explosive properties TNT/CL-20 co-crystal, TNT crystal and CL-20 crystal were studied. Non-hydrogen bonded non-covalent interactions govern the structures of energetic-energetic co-crystals. However, it is very difficult to accurately calculate the non-covalent intermolecular interaction energies. In this paper, the local conformation and the intricate non-covalent interactions were effectively mapped and analyzed from the electron density (ρ) and its derivatives. The results show that the two components TNT and CL-20 are connected mainly by nitro–aromatic interactions, and nitro–nitro interactions. The steric interactions in TNT/CL-20 could not be confronted with the attractive interactions. Moreover, the scatter graph of TNT crystal reveals the reason why TNT is brittle. The detailed electrostatic potential analysis predicted that the detonation velocities (D) and impact sensitivity for the compounds both increase in the sequence of CL-20 > TNT/CL-20 co-crystal > TNT. Additionally, TNT/CL-20 co-crystal has better malleability than its pure components. This demonstrates the capacity and the feasibility of realizing explosive smart materials by co-crystallization, even if strong hydrogen bonding schemes are generally lacking in energetic materials.
Figure
Scatter graph (left) and gradient isosurface (right) of intermolecular interactions in TNT/CL-20 co-crystal  相似文献   

12.
Pure polysulfone (PSF) and its composites with chitosan (CST), hyaluronic acid (HA), conventional poly(amidoamine), and hydroxyl poly(amidoamine) dendrimers as the membranes for separation of the gases, methane, carbon dioxide, hydrogen sulfide, nitrogen, and oxygen have been studied by molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) simulations. The transport properties (solubility, diffusivity, and permeability) of pure and gas mixtures in the membranes were calculated and the results of the simulations were compared with the available experimental data. The simulated structural properties of the pure and composite PSF membranes including occupied volume, free volume, surface area, fractional free volume (FFV), and radius of gyration (R g ) were evaluated and their effects on the separability of the gases by the membranes were analyzed and interpreted by the obtained results.
Figure
?  相似文献   

13.
Insulin-like growth factor-binding proteins (IGFBPs) control bioactivity and distribution of insulin-like growth factors (IGFs) through high-affinity complex of IGFBP and IGF. To get more insight into the binding interaction of IGF system, the site-directed mutagenesis and force-driving desorption methods were employed to study the interaction mechanism of IGFBP4 and IGF-I by molecular dynamics (MD) simulation. In IGF-I, residues Gly7 to Asp12 were found to be the hot spots and they mainly anchored on the N-domain of IGFBP4. The contact area, the shape and size of protein, the surroundings of the binding site, the hydrophobic and electrostatic interaction between the two proteins worked as a complex network to regulate the protein-protein interaction. It was also found that the unfolding of the helix was not inevitable in the mutant, and it could be regulated by careful selection of the substituted amino acid.
Figure
Binding network of IGF-I on the cavity surface of IGFBP4  相似文献   

14.
A density functional theory study was carried out to predict the electrostatic potentials as well as average local ionization energies on both the outer and the inner surfaces of carbon, boron-nitride (BN), boron-phosphide (BP) and silicon-carbide (SiC) single-walled nanotubes. For each nanotube, the effect of tube radius on the surface potentials and calculated average local ionization energies was investigated. It is found that SiC and BN nanotubes have much stronger and more variable surface potentials than do carbon and BP nanotubes. For the SiC, BN and BP nanotubes, there are characteristic patterns of positive and negative sites on the outer lateral surfaces. On the other hand, a general feature of all of the systems studied is that stronger potentials are associated with regions of higher curvature. According to the evaluated surface electrostatic potentials, it is concluded that, for the narrowest tubes, the water solubility of BN tubes is slightly greater than that of SiC followed by carbon and BP nanotubes.
Figure
Computed surface electrostatic potential (a) and average ionization potential energy (b) of the (6,0) Si24C24H12 nanotube. Color ranges for VS(r), in kcal?mol?1: red >22.91, yellow 3.83–22.91, green ?15.25–3.82, blue <?15.25. Color ranges for ī(r), in eV: red >11.35, yellow 9.63–11.35, green 7.91–9.63, blue <7.91. Black circles Surface maxima, blue surface minima.  相似文献   

15.
Quantum chemical computations (B3LYP/LACVP**) were applied to assess the impact of Au(I) complexation on activation barriers for sequential electrocyclization reactions (one a 1,2-dihydroazete ring-opening and another a pentadienyl cation ring-closure) proposed to occur during a complex reaction cascade that converts alkynes and imines to cyclopentenimines.
Figure
Gold in a complex cascade reaction  相似文献   

16.
Human epidermal growth factor receptor 2 (ErbB2) is a transmembrane oncoprotein that is over expressed in breast cancer. A successful therapeutic treatment is a monoclonal antibody called trastuzumab which interacts with the ErbB2 extracellular domain (ErbB2-ECD). A better understanding of the detailed structure of the receptor-antibody interaction is indeed of prime interest for the design of more effective anticancer therapies. In order to discuss the flexibility of the complex ErbB2-ECD/trastuzumab, we present, in this study, a multi-nanosecond molecular dynamics simulation (MD) together with an analysis of fluctuations, through a principal component analysis (PCA) of this system. Previous to this step and in order to validate the simulations, we have performed a detailed analysis of the variable antibody domain interactions with the extracellular domain IV of ErbB2. This structure has been statically elucidated by x-ray studies. Indeed, the simulation results are in excellent agreement with the available experimental information during the full trajectory. The PCA shows eigenvector fluctuations resulting in a hinge motion in which domain II and CH domains approach each other. This move is likely stabilized by the formation of H-bonds and salt bridge interactions between residues of the dimerization arm in the domain II and trastuzumab residues located in the CH domain. Finally, we discuss the flexibility of the MD/PCA model in relation with the static x-ray structure. A movement of the antibody toward the dimerization domain of the ErbB2 receptor is reported for the first time. This finding could have important consequences on the biological action of the monoclonal antibody.
Figure
Trastuzumab Fab approaching the ErbB2 dimerization arm  相似文献   

17.
The adsorption of CO onto Ni-doped boron nitride nanotubes (BNNTs) was investigated using density functional theory at the B3LYP/LanL2DZ level of theory. The structures of the Ni-doped BNNTs and their CO-adsorbed configurations were obtained. It was found that the strength of adsorption of CO onto Ni-doped perfect BNNTs is higher than that on defective BNNTs. The electronic properties of all of the adsorption configurations of CO on Ni-doped BNNTs are reported.
Figure
The optimized structures of CO adsorption on Ni-doped BNNTs  相似文献   

18.
Selective inhibition of the nitric oxide synthase isoforms (NOS) is a promising approach for the treatment of various disorders. However, given the high active site conservation among all NOS isoforms, the design of selective inhibitors is a challenging task. Analysis of the X-ray crystal structures of the NOS isoforms complexed with known inhibitors most often gives no clues about the structural determinants behind the selective inhibition since the inhibitors share the same binding conformation. Aimed at a better understanding of the structural factors responsible for selective inhibition of NOS isoforms we have performed MD simulations for iNOS, nNOS and eNOS complexed with Nω-NO2-L-Arg (1), and with the aminopyridine derivatives 2 and 3. The slightly better selectivity of 1 for nNOS may be assigned to the presence of extra charge–charge interactions due to its “extended” conformation. While the high affinity of 2 for iNOS can be explained by the formation of an iNOS-specific subpocket upon binding, the lack of affinity for eNOS is associated to a conformational change in Glu363. The strong van der Waals and electrostatic interactions between 3 and the active site of nNOS are most likely responsible for its higher affinity for this isoform. Owing to the elongated and narrow binding pocket of iNOS, the correct positioning of 3 over the heme group is difficult, which may account for its lower affinity toward this isoform. Brought together, our results might help to rationalize the design of selective NOS inhibitors.
Figure
Overall RMSD of the protein backbone over 8 ns simulation is shown for the complexes 3:eNOSmonomer and 3:eNOSdimer  相似文献   

19.
The solvation and the solvatochromic behavior of the 5-(methylthio)-5′-nitro-2,2′-bithiophene 1 in diethyl ether, dichloromethane, acetonitrile, methanol and formamide was theoretically investigated with an iterative molecular and quantum mechanics (QM/MM) approach. Calculated longest-wavelength solvatochromic absorption band of 1, obtained as averages of statistically uncorrelated configurations, including the solute and explicit solvent molecules of the first and second solvation layer, were in excellent agreement with the experimental results.
Figure
Study of the solvation and the solvatochromism of a donor-acceptor bithiophene in a wide range of solvent polarities  相似文献   

20.
In this work we investigated the outside binding mode between a cationic porphyrin and a nucleotide pair of DNA, adenine-thymine and guanine-cytosine, in a supramolecular assembly. We used two structural models (semi-extended, extended) that differ in the size of porphyrin, two kinds of theoretical methods: a three layer ONIOM (B3LYP/6-31G(d)/PM3/UFF), and DFT B3LYP/6-31G(d,p), and three cationic porphyrins. ONIOM method was first tested on the semi-extended model that was calculated in four environments: gas phase, solution phase using an explicit solvent model (H2O), in the presence of a sodium cation (Na+) and in both (H2O + Na+). From interaction energy results, we found that the affinity of the cationic substituent by the adenine nucleotide is favored upon the thymine nucleotide. The extended model that considers the whole porphyrin was applied in the gas phase to the four nucleotides. All the cationic porphyrins showed affinity by the nucleotides in the order adenine > guanine > thymine > cytosine. The interaction energy values for outside binding showed a strong porphyrin-nucleotide interaction (≈-90 kcal?mol-1), that slightly varies between the nucleotides suggesting that this kind of cationic porphyrin has a little selectivity for some of them. We also found that the effect of the nature of the cationic substituent (chain length) in the porphyrin on the outside binding is small (≈2–13 kcal?mol-1). Coherence between the results showed that ONIOM is a useful tool to get a reasonable molecular geometry to be used as a starting point in calculations of density functional theory.
Figure
A three-layer ONIOM model for the outside binding of cationic porphyrins and nucleotide pair DNA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号