首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between‐year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively “fast species” and governed by environmental variability) and diving (relatively “slow species” and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history, environmental variability contributed more to variation in species abundances than did density. Our findings underscore the need for more studies on populations of the same species in different environments to verify the generality of current explanations about population dynamics and its association with species life history.  相似文献   

2.
Abstract: Staging areas and migratory stopovers of wetland birds have the potential to function as geographic bottlenecks; entire populations within a flyway may be affected by the quality and quantity of available wetland habitat at stopover sites. Although approximately 90% of playa wetlands in the Rainwater Basin (RWB) region of south-central Nebraska, USA, have been destroyed, the area still provides essential stopover habitat for >10 million waterfowl each spring. We evaluated community patterns and species associations to assess importance of assembly rules in structuring wetland bird communities during migration and to better facilitate multispecies conservation and management strategies. We surveyed 36–40 playas twice weekly in the RWB and observed approximately 2.6 million individual migratory wetland birds representing 72 species during 3 spring migrations 2002–2004. We evaluated spatial and temporal species co-occurrence patterns of geese, dabbling ducks, diving ducks, and shorebirds using null model analysis. Goose species co-occurrence scores did not differ from random in any year of the study, suggesting that goose species frequently use the same habitats during migration. Co-occurrence patterns among dabbling ducks were not different than expected by chance in any year; however, when we evaluated co-occurrence at a weekly scale, dabbling ducks co-occurred less often than expected during weeks of peak migration (high abundance), indicating that dabbling duck species spatially segregated at high densities. Diving duck co-occurrence patterns did not differ from random in any year, suggesting that diving duck species used the same habitats during migration. Shorebird species co-occurred less often than expected in 2002 and 2004, and during weeks of high shorebird abundance, indicating that shorebird communities were distinctly structured during those times. Most association values among lesser snow geese (Chen caerulescens) and dabbling duck species were positive, indicating dabbling ducks did not avoid wetlands with snow geese, a concern for waterfowl managers. However, we frequently observed snow geese and dabbling ducks using different microhabitats within a wetland, which indicate species associations and co-occurrence patterns may have occurred at a finer spatial scale than we measured. This approach of co-occurrence analysis will allow wildlife managers charged with multispecies management at migration stopover sites to make informed conservation and management decisions based on community structure rather than historic single-species approaches.  相似文献   

3.
Benoy  Glenn A.  Nudds  Thomas D.  Dunlop  Erin 《Hydrobiologia》2002,481(1-3):47-59
During the breeding season, migratory waterfowl are attracted to wetlands characterized by high macroinvertebrate availability. Many of these prairie potholes are fishless and this apparent void is filled, at least partially, by tiger salamanders. Based on gut contents from 98 tiger salamanders and published diet data from over 1500 ducks, we show that there is general overlap in diet between both larval and adult tiger salamanders and 10 duck species. Furthermore, when the ducks were split into foraging guilds and compared with tiger salamanders, prey type overlap was 1.7 times higher and prey size was 1.8 times higher with dabbling ducks than diving ducks. Field surveys show that tiger salamander density is more highly correlated with diving duck density across potholes than dabbling duck density. Tiger salamanders have higher diet overlap with dabbling ducks than diving ducks whereas tiger salamanders have higher spatial overlap with diving ducks than dabbling ducks suggesting that these consumers coarsely partition diet and habitat resources. It has been reported that tiger salamanders have specialized diets that are associated with foraging preferences for benthic habitats. This view is too narrow: in southwestern Manitoba, Canada, tiger salamanders are more general consumers with diets more like dabbling ducks that forage mostly in planktonic and littoral habitats. Our results suggest that dabbling and diving ducks are, to different extents, liable to the effects of indirect interactions, specifically competition for common prey, with tiger salamanders.  相似文献   

4.
Abstract: Researchers have successfully designed aerial surveys that provided precise estimates of wintering populations of ducks over large physiographic regions, yet few conservation agencies have adopted these probability-based sampling designs for their surveys. We designed and evaluated an aerial survey to estimate abundance of wintering mallards (Anas platyrhynchos), dabbling ducks (tribe Anatini) other than mallards, diving ducks (tribes Aythini, Mergini, and Oxyurini), and total ducks in western Mississippi, USA. We used design-based sampling of fixed width transects to estimate population indices (Ǐ), and we used model-based methods to correct population indices for visibility bias and estimate population abundance (Ň) for 14 surveys during winters 2002–2004. Correcting for bias increased estimates of mallards, other dabbling ducks, and diving ducks by an average of 40–48% among all surveys and contributed 48–61% of the estimated variance of Ň. However, mean-squared errors were consistently less for Ň than Ǐ. Estimates of Ň met our goals for precision (CV ≤ 15%) in 7 of 14 surveys for mallards, 5 surveys for other dabbling ducks, no surveys for diving ducks, and 10 surveys for total ducks. Generally, we estimated more mallards and other dabbling ducks in mid- and late winter (Jan-Feb) than early winter (Nov-Dec) and determined that population indices from the late 1980s were nearly 3 times greater than those from our study. We developed a method to display relative densities of ducks spatially as an additional application of survey data. Our study advanced methods of estimating abundance of wintering waterfowl, and we recommend this design for continued monitoring of wintering ducks in western Mississippi and similar physiographic regions.  相似文献   

5.
ABSTRACT Staging areas and migratory stopovers of wetland birds can function as geographic bottlenecks; common dependence among migratory wetland bird species on these sites has major implications for wetland conservation. Although 90% of playa wetlands in the Rainwater Basin (RWB) region of Nebraska, USA, have been destroyed, the area still provides essential stopover habitat for up to 10 million waterfowl each spring. Our objectives were to determine local (within wetland and immediate watershed) and landscape-scale factors influencing wetland bird abundance and species richness during spring migration at RWB playas. We surveyed 36–40 playas twice weekly in the RWB and observed approximately 1.6 million individual migratory wetland birds representing 72 species during spring migrations 2002–2004. We tested a priori hypotheses about whether local and landscape variables influenced overall species richness and abundance of geese, dabbling ducks, diving ducks, and shorebirds. Wetland area had a positive influence on goose abundance in all years, whereas percent emergent vegetation and hunting pressure had negative influences. Models predicting dabbling duck abundance differed among years; however, individual wetland area and area of semipermanent wetlands within 10 km of the study wetland consistently had a positive influence on dabbling duck abundance. Percent emergent vegetation also was a positive predictor of dabbling duck abundance in all years, indicating that wetlands with intermediate (50%) vegetation coverage have the greatest dabbling duck abundance. Shorebird abundance was positively influenced by wetland area and number of wetlands within 10 km and negatively influenced by water depth. Wetland area, water depth, and area of wetlands within 10 km were all equally important in models predicting overall species richness. Total species richness was positively influenced by wetland area and negatively influenced by water depth and area of semipermanent wetlands within 10 km. Avian species richness also was greatest in wetlands with intermediate vegetation coverage. Restoring playa hydrology should promote intermediate percent cover of emergent vegetation, which will increase use by dabbling ducks and shorebirds, and decrease snow goose (Chen caerulescens) use of these wetlands. We observed a reduction in dabbling duck abundance on wetlands open to spring snow goose hunting and recommend further investigation of the effects of this conservation order on nontarget species. Our results indicate that wildlife managers at migration stopover areas should conserve wetlands in complexes to meet the continuing and future habitat requirements of migratory birds, especially dabbling ducks, during spring migration.  相似文献   

6.
Abstract Aim An analysis is presented to examine whether variation in breeding waterfowl estimates can be explained by weather patterns prior to annual surveys. Location The location of the study is north‐western Ontario, Canada. Methods Annual, systematic survey data for breeding waterfowl are available from the 1950s to the present for north‐western Ontario. Regional monthly climate data for this area were compiled using weather data derived from interpolated annual climate surfaces. These data were analysed using stepwise multiple linear regression for each species and for waterfowl functional groups to assess whether monthly climate data accounted for some of the variation in waterfowl numbers. Results For all dabbling ducks pooled, 12% of the variation in annual abundance was explained by April temperatures, with more dabbling ducks observed in years when April was relatively cool. For diving ducks, 23% of the variation in pooled abundance was explained by April temperatures and February precipitation, where more diving ducks were observed in years when February had relatively less precipitation and April was cool. Patterns for individual species varied. Main conclusions Mean monthly weather data for months prior to surveys explained some of the variation in numbers of waterfowl observed in annual surveys. This suggests that future incorporation of weather data into waterfowl population models may help refine population estimates.  相似文献   

7.
Livestock grazing is a prevalent land use in western North American intermountain wetlands, and physical and biotic changes related to grazing-related disturbance can potentially limit wetland habitat value for waterfowl. We evaluated breeding waterfowl use in 34 wetlands in relation to water retention, amount of wetlands on the landscape, and livestock grazing intensity. The study was conducted over 2 years in the southern intermountain region of British Columbia, Canada. For a subset of 17 wetlands, we measured aquatic invertebrate abundance over 1 year. Waterfowl breeding pairs and broods were classified into three functional groups: dabbling ducks, and two types of diving ducks, overwater and cavity nesters. We evaluated candidate models with variables considered singly and in combination using the Akaike Information Criterion. When selected, bare ground (an indicator of grazing intensity) and wetland density were negatively associated with breeding use while wetland fullness and invertebrate density were positively associated. Each factor was a significant predictor in at least one of the models, but unexpectedly, grazing intensity was the most consistent predictor of waterfowl wetland use (e.g., it was present in more ‘best models’ than wetland fullness). Grazing was associated with declines in the number of waterfowl pairs and broods, likely mediated through effects on wetland vegetation and aquatic macroinvertebrates. Models with site- and landscape-scale variables generally performed better than simpler models. Waterfowl breeding use of wetlands can be improved by reduced livestock grazing intensity adjacent to wetlands and by grazing later in the season. Wetland water retention is also an important constraint on waterfowl use of wetlands and may become more limiting with a shifting climate.  相似文献   

8.
Mottled ducks (Anas fulvigula) are endemic to the Gulf Coast of North America, and their range stretches from Alabama to the Laguna Madre of Mexico, with a distinct population in peninsular Florida and an introduced population in South Carolina. As one of the few non-migratory ducks in North America, mottled ducks depend on a variety of locally available habitat throughout the annual cycle, and threats to these landscapes may affect mottled ducks more acutely than migratory species. Annual population monitoring has revealed declines in mottled duck populations in Texas and Louisiana since 2008, and the genetic integrity of the Florida population has been muddled by the presence of large numbers of feral mallards (Anas platyrhynchos) resulting in hybridization. Similar to other closely related dabbling ducks, mottled duck populations are influenced by recruitment and breeding season survival, so changes in these factors may contribute to population decline. Accordingly, researchers have attempted to address various aspects of mottled duck breeding season ecology and population dynamics since the 1950s. We conducted a literature review on this topic by searching a combination of key terms using Google Scholar, including mottled duck, nesting ecology, habitat use, breeding incidence, nest success, brood, and breeding season survival, and followed citation trees to eventually aggregate information from nearly 50 publications on mottled duck breeding ecology. Our review concluded that mottled ducks use brackish and intermediate coastal marsh, including managed impoundments, and agricultural land during the breeding season. Their nests can be found in pastures, levees, dry cordgrass marsh, cutgrass marsh, spoil banks, and small islands. Nesting propensity and nest success estimates are often lower than other waterfowl species that are characterized by stable or increasing populations. Broods use wetlands composed of a mix of open water with submerged and emergent vegetation. Breeding season survival is higher for the Florida population than the western Gulf Coast population, but adult survival in both geographies is comparable to (or higher than) that of other dabbling duck species. Breeding habitat use, breeding season survival, and nest-site selection and success have been studied extensively in mottled ducks, whereas information on nesting propensity, renesting intensity, and post-hatch ecology is lacking. © 2021 The Wildlife Society.  相似文献   

9.
The U.S. Environmental Protection Agency's (EPA's), Environmental Monitoring and Assessment Program (EMAP) is developing a landscape-level conceptual model to evaluate the condition of depressional (basin-type) wetlands in the prairie pothole region (PPR) of the United States. This effort is underway to determine the current condition of the Nation's wetlands and to track how it is improving or degrading over time, as well as to identify management priorities over major geographic areas. The depressional wetlands in the PPR were selected by EMAP both because of the importance of this region for waterfowl and because of the efforts currently being conducted by federal agencies and academic institutions in this region. The PPR provides nesting habitat for more than 15 species of ducks, and supports as much as half of the total production of dabbling and diving ducks in North America. Wetlands in this area became a vulnerable resource after extensive draineage in the 1800s. We propose a conceptual model that represents a framework for guiding the development of ecological indicators, research activities, and data collection for the evaluation of wetland conditions. In princple, this conceptual model is applicable to wetlands in any part of the world.  相似文献   

10.
Because management practices that promote the production of plant foods may differ from management practices that promote the production of aquatic invertebrates, a thorough understanding of the diet is needed to develop management strategies for various stages of the annual cycle for dabbling and diving ducks. Diet of dabbling (tribe Anatini) and diving (tribe Aythyini) ducks during breeding, autumn migration, and winter has been documented. Our goal was to estimate and compare the diet of blue-winged teal (Spatula discors), gadwall (Mareca strepera), mallard (Anas platyrhyncos), lesser scaup (Aythya affinis), and ring-necked duck (Aythya collaris) during spring migration in the Mississippi Flyway in the United States and evaluate variation among species. We collected 919 ducks for diet analysis from multiple wetlands at 6 sites across 4 states during the spring migration of 2006 and 2007. We collected ≥10 individuals of each species at each of the 6 study sites except we collected only 1 gadwall at the Scioto River site and 2 lesser scaup at the Cache River site. We detected that the proportion of plant and animal material in foods of each spring migrating duck species was in general intermediate of that found in wintering and breeding birds. Furthermore, the proportion of plant and animal material in the diet of species varied even among closely related species, indicating species are partitioning food sources along a protein-carbohydrate gradient during spring migration. We recommend that resources for ducks be managed to provide diverse wetlands to support the varied diets of even closely related species. © 2021 The Wildlife Society.  相似文献   

11.
We explored the relationships between aquatic bird abundance and various pond features (physical and chemical) using data from 112 ponds located in the Aspen Parkland of British Columbia. As expected, pond size was the most important factor influencing the number of aquatic birds present. Total dissolved nitrogen, conductivity and calcium were positively associated with the abundance of several species whereas chloride tended to be negatively associated. The abundance of dabbling ducks was positively associated with turbidity and total dissolved nitrogen and negatively with percent of forested shoreline, percent of marsh and chloride. The abundance of diving ducks was associated positively with pond depth, conductivity and total dissolved nitrogen and negatively with percent of marsh and phosphorus levels. Pond area influenced more the abundance of diving ducks than dabbling ducks. Relationships between bird density and pond features were affected significantly by the area unit used to calculate density. For example, the density of Bufehead (Bucephala albeola) was correlated positively with pH and conductivity when expressed per area of water 0–2 m deep but negatively when expressed per total area of pond. Results highlight the problems associated with interpreting correlative type studies especially the difficulties in assessing the biological significance of the observed correlations. It underscores the urgent need for experimental approaches to bird-habitat studies.  相似文献   

12.
ABSTRACT Dense nesting cover (DNC) has been a conspicuous component of habitat management for upland-nesting ducks for >30 years, but its benefits for nesting ducks have been contentious. During 1994–1999 we monitored 3,058 dabbling duck (Anas spp.) nests in 84 DNC fields located throughout the Canadian Parklands to examine sources of among-field variation in nest density and nesting success. Nest density averaged 1.51 (SE=0.15) nests/ha and overall nesting success was 20.4%, but there was pronounced annual variation in both estimates. Nesting success increased with increasing field size (range = 6–111 ha), but nest density remained constant. Nest density increased with percent wetland habitat within DNC fields and declined with percent perennial cover in the surrounding 2.4 × 2.4-km landscape, but these variables were not important for predicting nesting success. Nest abundance and nesting success roughly doubled in fields seeded with alfalfa (Medicago sativa) or sweet clovers (Melilotus spp.), but there was no benefit from using native as opposed to tame grasses. We recommend that waterfowl managers in the Canadian Parklands establish DNC with alfalfa in large fields in landscapes with abundant wetlands but minimal competing cover.  相似文献   

13.
Abstract: Few studies have estimated reproductive and survival parameters of breeding ducks simultaneously, although such efforts can reveal relationships among vital rates. We estimated survival of mallard (Anas platyrhynchos) nests and duckling on 8 study sites in south-central Saskatchewan during spring and summer 2000 and 2001. We observed a strong positive correlation between these parameters (r = 0.914) and through analysis of residual values found 14% of the relationship was explained by a predator-removal treatment, 26% by year effects, 44% by spatial variation, and 16% unexplained. Potential mechanisms include similar environmental factors influencing both parameters (e.g., predators) and positive density dependence. Information regarding covariation among vital rates is important in construction and interpretation of population growth models describing population dynamics of mallards and other upland-nesting ducks.  相似文献   

14.
Predator management regularly improves waterfowl nesting success, often beyond levels believed necessary for population maintenance. If recruitment, survival of breeding females, and/or breeding site fidelity is increased on predator-reduced sites, then local breeding populations may increase in subsequent years. During 2005–2008, we annually conducted breeding pair surveys on >600 wetlands at 6 township-sized (93.2 km2) trapped sites and 4 non-trapped sites for the 5 most common upland nesting ducks in eastern North Dakota, USA. For each species, we developed a series of competing regression models that related breeding pair abundance to wetland size, predator management, and upland habitats adjacent to sampled wetlands. In contrast to previous studies, we found limited and equivocal evidence that breeding populations increased following predator management. We discuss multiple potential explanations for this lack of effect and suggest that managers should not assume that increased production as a product of elevated nest success will be compounded over years. © The Wildlife Society, 2013  相似文献   

15.
Many different behavioural changes have been observed in wild waterfowl during the flightless stage of wing moult with birds frequently becoming inactive and reducing time spent foraging. Increased predation risk, elevated energetic demands of feather re-growth and restriction of foraging opportunities are thought to underlie these changes. By studying captive populations of both a dabbling and a diving duck species at the same site, we determined whether captive birds would reflect the behavioural responses of wild waterfowl to moult. The time-budgets of 42 Common Eiders, Somateria mollissima, (a diving duck) and 18 Garganeys, Anas querquedula, (a dabbling duck) were recorded during wing moult (July–August) and non-moult (January) with behaviour recorded under six categories. Despite captivity providing a low predation risk and constant access to food, birds altered their behaviour during the flightless period of wing moult. Time allocated to foraging and locomotion decreased significantly during moult compared to non-moult periods, while resting time increased significantly. Moulting Eiders underwent a greater reduction in time spent foraging and in locomotion compared with Garganeys, which is likely to be in response to a higher energetic cost of foraging in Eiders. It is possible that increased resting in both diving and dabbling ducks reduces their likelihood of detection by predators, while allowing them to remain vigilant. We demonstrate that there is much potential for using captive animals in studies that can augment our knowledge of behaviours of free-living conspecifics, the former being a hitherto under-exploited resource.  相似文献   

16.
1. Increases in average global temperature during the twentieth century have prompted calls for research on the effect of temperature variation on avian population dynamics. Particular attention has been paid to the hypothesis that increased temperatures may affect a species' ability to shift their breeding efforts to match the phenology of their prey, and thus result in reduced reproductive success (the 'mismatch hypothesis'). 2. We used data from a long-term study of breeding ducks to investigate how duck nest success varied with clutch initiation date, and to test whether spring temperature affected this relationship in a manner consistent with the mismatch hypothesis. We modelled five possible functional forms of how nest success might vary with clutch initiation date and spring temperature, and used an information-theoretic approach to determine which model best described the nesting outcomes of five dabbling duck species nesting in Saskatchewan, Canada. 3. Probability of nest success for the five species did not vary strongly with clutch initiation date, and we found evidence consistent with the mismatch hypothesis for one species, northern pintail Anas acuta, although weight of evidence was weak. 4. Overall nest success of all five species was positively associated with spring temperature. These results suggest that increasing spring temperature alone (within the range observed in this study) may not affect nest success in a manner that would result in lower populations of breeding ducks.  相似文献   

17.
Presence of fish affects lake use and breeding success in ducks   总被引:1,自引:0,他引:1  
Several previous studies indicate that presence of fish has negative effects on waterbirds breeding on lakes, owing either to competition for common invertebrate prey or fish predation on ducklings/chicks. However, others have reported results to the contrary and it remains unresolved what factors trigger, inhibit, and modulate fish–waterbird interactions. The present study was designed to test the effect of fish presence per se, with a minimum of variation in possibly confounding environmental variables. Thus, after stratifying for area, depth, altitude, pH, and total phosphorus we compared 13 lakes with and 12 without fish (mainly pike Esox lucius and perch Perca fluviatilis) with respect to (i) general species richness of waterbirds, (ii) species-specific utilization and breeding success of two dabbling ducks (mallard Anas platyrhynchos and teal Anas crecca) and a diving duck (goldeneye Bucephala clangula). General species richness of waterbirds was higher on fishless lakes. Overall use (bird days) and brood number of teal and goldeneye were higher on fishless lakes. The latter also had more benthic and free-swimming prey invertebrates compared to lakes with fish. Mallard use, mallard brood number, and abundance of emerging insects did not differ between lake groups. Generalized linear models including fish presence as factor and considering seven environmental variables as covariates, confirmed that all waterbird variables except mallard days and broods were negatively correlated to fish presence. There was also a residual positive relationship of lake area on general species richness, teal days, and teal broods. Our data demonstrate a stronger effect of fish presence on diving ducks and small surface feeding ducks than on large surface-feeding ducks. We argue that observed patterns were caused by fish predation on ducks rather than by fish–duck competition for common prey.  相似文献   

18.
Abstract: Grazing is thought to be incompatible with nesting by dabbling ducks (Anas spp.), but this belief is based on little data. We therefore conducted a 2-year, replicated field experiment to determine whether the habitat requirements of nesting ducks could be met on uplands managed by rotational grazing (1 Jul-1 Nov) in the northern San Joaquin Valley, California, USA. Grazed fields had shorter vegetation than ungrazed fields throughout the winter, but vegetation height did not differ by the beginning of the nesting season in late March, and by the end of the nesting season in late May, previously grazed fields had taller vegetation than did ungrazed fields. In 1996, densities of duck nests were >3 times higher in grazed than in ungrazed fields (least-squares means [± 1 SE]: grazed = 2.18 [0.34] nests/ha, ungrazed = 0.59 [0.34] nests/ha), but nest densities were substantially lower in 1997 and did not differ between treatment groups (grazed = 0.65 [0.32] nests/ha, ungrazed = 0.39 [0.32] nests/ha). Mayfield nest success did not differ between grazed fields (5.3%) and ungrazed fields (2.9%). We conclude that rotational grazing was successful in providing summer nesting habitat for dabbling ducks, and we recommend that it be considered for other managed habitats within the Central Valley, California, USA.  相似文献   

19.
Waterfowl migrating and overwintering in the Atlantic Flyway depend on adequate availability of wetland plant communities to survive winter and fuel reproduction in the subsequent breeding season. Energetics models are the primary tool employed by conservation planners to estimate energetic carrying capacity based on energy supply and demand in different wetlands to assist with effective habitat conservation. Coastal impoundments have been used to provide a consistent, annual source of energy for migrating and wintering waterfowl. But few studies have attempted to comprehensively assess the relative value of managed coastal impoundments compared with unmanaged tidal salt marshes to wintering waterfowl in the Mid-Atlantic region with further consideration to the effect of sea level rise changing availability. We estimated biomass and energy of preferred foods for 5 dabbling duck species in 7 impoundments and 3 tidal salt marshes over winter by collecting soil core (n = 1,364), nekton (n = 426), and salt marsh snail (Melampus spp.; n = 87) samples in October, January, and April 2011–2013. Food-energy density was greater in freshwater impoundments for nearly all dabbling ducks (range = 183,344–562,089 kcal/ha), and typically greater in brackish impoundments (range = 169,665–357,160 kcal/ha) than most tidal salt marsh communities (range = 55,693–361,429 kcal/ha), whereas mudflat (range = 96,223–137,473 kcal/ha) and subtidal (range = 55,693–136,326 kcal/ha) communities typically contained the least energy. Extrapolating to the state level, we estimated 7.60 × 109–1.14 × 1010 kcal available within a 16-km buffer from the Delaware Bayshore, depending on species. Combining estimates for daily energy expenditure and food energy, we estimated 2.86 × 107–7.06 × 107 duck energy days currently available to dabbling ducks over winter. We estimated that in the next century, dabbling duck carrying capacities are likely to decrease under all but the most conservative sea level rise scenarios because of the gradual replacement of land-cover types that provide high energy density (i.e., low marsh, high marsh communities) with those that provide low energy density (i.e., subtidal, mudflat communities). Coastal impoundments in Delaware, USA, will provide increasingly important habitat for wintering dabbling ducks in the coming decades provided they are properly maintained and retain their current energetic density because they will contain a growing proportion of the available duck energy days on the landscape. Our research will assist managers in meeting target population goals for dabbling ducks in Delaware and the Mid-Atlantic region by highlighting key differences in the function and value of various wetlands. © 2021 The Wildlife Society.  相似文献   

20.
Scientists, conservation planners, and resource managers who estimate energetic carrying capacity of foraging habitats for wintering waterfowl require accurate data on food availability and use. We estimated seed and tuber abundance in moist-soil wetlands commonly used and foraged in by dabbling ducks (Anas spp.) in and near the Mississippi Alluvial Valley (MAV). To identify foods potentially used by dabbling ducks, we surveyed food-use literature from studies conducted in or near the MAV and compared estimated seed decline rates from core samples to predicted decline rates using published and measured estimates of decomposition. We inferred seed use when observed declines in mass exceeded that predicted by decomposition. In our analyses, we identified 15 taxa of moist-soil seeds apparently used and 6 taxa apparently not used by dabbling ducks. From our analyses and literature review, we identified 25 taxa of moist-soil seeds and tubers commonly consumed and apparently used by dabbling ducks in or near the MAV. Removal of seeds apparently not used by dabbling ducks resulted in a 30.9% (SE = 1.3) reduction in estimates of seed and tuber mass in managed moist-soil wetlands in the MAV. When we retained 3 seed taxa reported by previous studies as consumed by dabbling ducks, but which did not decline faster than predicted in our experimental wetlands, seed and tuber estimates were reduced by 26.8% (SE = 1.3). Inclusion of seeds not consumed by dabbling ducks in models of carrying capacity would result in overestimation of existence energy days by the Lower Mississippi Valley Joint Venture and underestimation of moist-soil habitat requirements in the MAV. We suggest scientists conduct food-use and selection studies by collecting actively foraging ducks in the MAV to confirm our results and increase accuracy of carrying capacity estimates for dabbling ducks in autumn and winter. © 2011 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号