首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Glycerol can be used as a primary carbon source by yeasts, little is known regarding glycerol metabolism in Candida tropicalis. In this study, glycerol kinase gene (gk) was disrupted from xylitol dehydrogenase gene (XYL2) knockout C. tropicalis strain BSXDH-3. The resultant gk knockout C. tropicalis strain was incapable to grow on glycerol. The cells growth on glycerol was resumed by co-expressing Scheffersomyces stipitis gcy1, 2 and 3 genes, which respectively encode NADP+-dependent glycerol dehydrogenase 1, 2 and 3, under the control of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter. NADPH-dependent xylitol production was higher in the engineered strain, termed “GK”, than in BSXDH-3. In fermentation experiments using glycerol as co-substrate with xylose, strain GK produced xylitol 0.85 and 1.28 g l?1 h?1 at the time periods of 16 and 24 h, respectively, which is 30 and 18 % higher at same time intervals in BSXDH-3. This is the first report of gk gene disruption and co-expression of gcy1, 2 and 3 genes for NADPH regeneration and enhanced xylitol production in C. tropicalis.  相似文献   

2.
Anaerobic homofermentative production of reduced products requires additional reducing power (NADH and/or NADPH) output from glucose catabolism. Previously, with an anaerobically expressed pyruvate dehydrogenase operon (aceEF-lpd), we doubled the reducing power output to four NADH per glucose (or 1.2 xylose) catabolized anaerobically, which satisfied the NADH requirement to establish a non-transgenic homoethanol pathway (1 glucose or 1.2 xylose ? 2 acetyl-CoA + 4 NADH ? 2 ethanol) in the engineered strain, Escherichia coli SZ420 (?frdBC ?ldhA ?ackA ?focA-pflB ?pdhR::pflBp6-pflBrbs-aceEF-lpd). In this study, E. coli SZ420 was further engineered for reduction of xylose to xylitol by (1) deleting the alcohol dehydrogenase gene (adhE) to divert NADH from the ethanol pathway; (2) deleting the glucose-specific PTS permease gene (ptsG) to eliminate catabolite repression and allow simultaneous uptake of glucose and xylose; (3) cloning the aldose reductase gene (xylI) of Candida boidinii to reduce xylose to xylitol. The resulting strain, E. coli AI05 (pAGI02), could in theory simultaneously uptake glucose and xylose, and utilize glucose as a source of reducing power for the reduction of xylose to xylitol, with an expected yield of four xylitol for each glucose consumed (YRPG = 4) under anaerobic conditions. In resting cell fermentation tests using glucose and xylose mixtures, E. coli AI05 (pAGI02) achieved an actual YRPG value of ~3.6, with xylitol as the major fermentation product and acetate as the by-product.  相似文献   

3.
The fermentation of both glucose and xylose is important to maximize ethanol yield from renewable biomass feedstocks. In this article, we analyze growth, sugar consumption, and ethanol formation by the yeast Kluyveromyces marxianus UFV-3 using various glucose and xylose concentrations and also under conditions of reduced respiratory activity. In almost all the conditions analyzed, glucose repressed xylose assimilation and xylose consumption began after glucose had been exhausted. A remarkable difference was observed when mixtures of 5 g L?1 glucose/20 g L?1 xylose and 20 g L?1 glucose/20 g L?1 xylose were used. In the former, the xylose consumption began immediately after the glucose depletion. Indeed, there was no striking diauxic phase, as observed in the latter condition, in which there was an interval of 30 h between glucose depletion and the beginning of xylose consumption. Ethanol production was always higher in a mixture of glucose and xylose than in glucose alone. The highest ethanol concentration (8.65 g L?1) and cell mass concentration (4.42 g L?1) were achieved after 8 and 74 h, respectively, in a mixture of 20 g L?1 glucose/20 g L?1 xylose. When inhibitors of respiration were added to the medium, glucose repression of xylose consumption was alleviated completely and K. marxianus was able to consume xylose and glucose simultaneously.  相似文献   

4.
5.
Zymomonas mobilis is a promising organism for biofuel production as it can produce ethanol from glucose at high rates. However, Z. mobilis does not natively ferment C5 sugars such as xylose. While it has been engineered to do so, the engineered strains do not metabolize these sugars at high rates. Previous research has identified some of the bottlenecks associated with xylose metabolism in Z. mobilis. In this work, we investigated transport as a possible bottleneck. In particular, we hypothesized that the slow uptake of xylose through the promiscuous Glf transporter may limit the efficiency of xylose metabolism in Z. mobilis. To test this hypothesis, we expressed XylE, the low-affinity xylose transporter from Escherichia coli, in a xylose-utilizing strain of Z. mobilis. Our results show that the expression of this pentose-specific transporter improves the rate of xylose utilization in Z. mobilis; however, this enhancement is seen only at high xylose concentrations. In addition, we also found that overexpression of the promiscuous Z. mobilis transporter Glf yielded similar results, suggesting that the transport bottleneck is not due to the specificity, but rather the capacity for sugar uptake.  相似文献   

6.
The goal of this investigation was to determine the effect of a xylose transport system on glucose and xylose co-consumption as well as total xylose consumption in Saccharomyces cerevisiae. We expressed two heterologous transporters from Arabidopsis thaliana in recombinant xylose-utilizing S. cerevisiae cells. Strains expressing the heterologous transporters were grown on glucose and xylose mixtures. Sugar consumption rates and ethanol concentrations were determined and compared to an isogenic control strain lacking the A. thaliana transporters. Expression of the transporters increased xylose uptake and xylose consumption up to 46% and 40%, respectively. Xylose co-consumption rates (prior to glucose depletion) were also increased by up to 2.5-fold compared to the control strain. Increased xylose consumption correlated with increased ethanol concentration and productivity. During the xylose/glucose co-consumption phase, strains expressing the transporters had up to a 70% increase in ethanol production rate. It was concluded that in these strains, xylose transport was a limiting factor for xylose utilization and that increasing xylose/glucose co-consumption is a viable strategy for improving xylose fermentation.  相似文献   

7.
Three hundred and thirty-seven xylose-utilizing yeast strains were isolated from various natural samples. Among these, 68 strains produced xylitol in the range of 0.1–0.69 g xylitol/g xylose. Thirty-nine xylitol-producing strains were identified to be Candida tropicalis. Ten strains were found belonging to 14 known species in the genus Candida, Cyberlindnera, Meyerozyma, Pichia, Wickerhamomyces, Yamadazyma and Cryptococcus. Two strains were identified to be two Candida species and two strains (DMKU-XE142T and DMKU-XE332) were found to be a novel species. Strain DMKU-XE142T was isolated from tree bark and DMKU-XE332 was obtained from decaying plant leaf collected in Thailand. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics and sequence analysis of the D1/D2 region of the large subunit rRNA gene (LSU) and the internal transcribed spacer (ITS) region, the two strains were determined to represent a novel Yamadazyma species although formation of ascospores was not observed. The sequences of the D1/D2 region of the LSU rRNA gene and the ITS region of the two strains were identical but differed from Yamadazyma phyllophila, the closest species in terms of pairwise sequence similarity of the D1/D2 region, by 1.7 % nucleotide substitutions and 3.5 % nucleotide substitutions in the ITS region. The name Yamadazyma ubonensis f.a., sp. nov. is proposed (type strain is DMKU-XE142T = BCC 61020T = CBS 12859T).  相似文献   

8.
Xylitol is a five-carbon sugar alcohol that has a variety of uses in the food and pharmaceutical industries. In xylose assimilating yeasts, NAD(P)H-dependent xylose reductase (XR) catalyzes the reduction of xylose to xylitol. In the present study, XR with varying cofactor specificities was overexpressed in Saccharomyces cerevisiae to screen for efficient xylitol production. Xylose consumption and xylitol yields were higher when NADPH-dependent enzymes (Candida tropicalis XR and S. cerevisiae Gre3p aldose reductase) were expressed, indicating that heterologous enzymes can utilize the intracellular NADPH pool more efficiently than the NADH pool, where they may face competition from native enzymes. This was confirmed by overexpression of a NADH-preferring C. tropicalis XR mutant, which led to decreased xylose consumption and lower xylitol yield. To increase intracellular NADPH availability for xylitol production, the promoter of the ZWF1 gene, coding for the first enzyme of the NADPH-generating pentose phosphate pathway, was replaced with the constitutive GPD promoter in a strain expressing C. tropicalis XR. This change led to a ~12% increase in xylitol yield. Deletion of XYL2 and SOR1, whose gene products can use xylitol as substrate, did not further increase xylitol yield. Using wheat stalk hydrolysate as source of xylose, the constructed strain efficiently produced xylitol, demonstrating practical relevance of this approach.  相似文献   

9.
Poly(lactate-co-3-hydroxybutyrate) (P(LA-co-3HB)) was previously produced from xylose in engineered Escherichia coli. The aim of this study was to increase the polymer productivity and LA fraction in P(LA-co-3HB) using two metabolic engineering approaches: (1) deletions of competing pathways to lactate production and (2) overexpression of a galactitol transporter (GatC), which contributes to the ATP-independent xylose uptake. Engineered E. coli mutants (ΔpflA, Δpta, ΔackA, ΔpoxB, Δdld, and a dual mutant; ΔpflA?+?Δdld) and their parent strain, BW25113, were grown on 20 g l?1 xylose for P(LA-co-3HB) production. The single deletions of ΔpflA, Δpta, and Δdld increased the LA fraction (58–66 mol%) compared to BW25113 (56 mol%). In particular, the ΔpflA?+?Δdld strain produced P(LA-co-3HB) containing 73 mol% LA. Furthermore, GatC overexpression increased both polymer yields and LA fractions in ΔpflA, Δpta, and Δdld mutants, and BW25113. The ΔpflA?+?gatC strain achieved a productivity of 8.3 g l?1, which was 72 % of the theoretical maximum yield. Thus, to eliminate limitation of the carbon source, higher concentration of xylose was fed. As a result, BW25113 harboring gatC grown on 40 g l?1 xylose reached the highest P(LA-co-3HB) productivity of 14.4 g l?1. On the other hand, the ΔpflA?+?Δdld strain grown on 30 g l?1 xylose synthesized 6.4 g l?1 P(LA-co-3HB) while maintaining the highest LA fraction (73 mol%). The results indicated the usefulness of GatC for enhanced production of P(LA-co-3HB) from xylose, and the gene deletions to upregulate the LA fraction in P(LA-co-3HB). The polymers obtained had weight-averaged molecular weights in the range of 34,000–114,000.  相似文献   

10.
Xylitol is commercially used in chewing gum and dental care products as a low calorie sweetener having medicinal properties. Industrial yeast strain of S. cerevisiae was genetically modified to overexpress an endogenous aldose reductase gene GRE3 and a xylose transporter gene SUT1 for the production of xylitol. The recombinant strain (XP-RTK) carried the expression cassettes of both the genes and the G418 resistance marker cassette KanMX integrated into the genome of S. cerevisiae. Short segments from the 5′ and 3′ delta regions of the Ty1 retrotransposons were used as homology regions for integration of the cassettes. Xylitol production by the industrial recombinant strain was evaluated using hemicellulosic hydrolysate of the corn cob with glucose as the cosubstrate. The recombinant strain XP-RTK showed significantly higher xylitol productivity (212 mg L?1 h?1) over the control strain XP (81 mg L?1 h?1). Glucose was successfully replaced by glycerol as a co-substrate for xylitol production by S. cerevisiae. Strain XP-RTK showed the highest xylitol productivity of 318.6 mg L?1 h?1 and titre of 47 g L?1 of xylitol at 12 g L?1 initial DCW using glycerol as cosubstrate. The amount of glycerol consumed per amount of xylitol produced (0.47 mol mol?1) was significantly lower than glucose (23.7 mol mol?1). Fermentation strategies such as cell recycle and use of the industrial nitrogen sources were demonstrated using hemicellulosic hydrolysate for xylitol production.  相似文献   

11.
In the present study, we modified xylose uptake properties of a recombinant xylose-utilizing yeast Saccharomyces cerevisiae by expression of heterologous and homologous permease-encoding genes. In a mutant yeast strain with the main seven hexose transporter genes deleted, and engineered for xylose utilization, we screened an expression cDNA library of the filamentous fungus Trichoderma reesei (Hypocrea jecorina) for enhanced growth on xylose plates. One cDNA clone with significant homology to fungal sugar transporters was obtained, but when the clone was retransformed into the host, it did not support significant growth on xylose. However, during a long liquid culture of the strain carrying the cDNA clone, adaptive mutations apparently occurred in the host, which led to growth on xylose but not on glucose. The new transporter homologue, Trxlt1 thus appears to code for a protein specific for xylose uptake. In addition, xylose-transporting properties of some homologous hexose transporters were studied. All of them, i.e., Hxt1, Hxt2, Hxt4, and Hxt7 were capable of xylose uptake. Their affinities for xylose varied, K m values between 130 and 900 mM were observed. The single-Hxt strains showed a biphasic growth mode on xylose, alike the Trxlt1 harboring strain. The initial, slow growth was followed by a long lag and finally by exponential growth.  相似文献   

12.
A new xylose fermenting yeast was isolated from over-ripe banana by enrichment in xylose-containing medium. The phylogenetic analysis of ITS1-5.8S-ITS2 region sequences of ribosomal RNA of isolate BY2 revealed that it shows affiliation to genus Pichia and clades with Pichia caribbica. In batch fermentation, Pichia strain BY2 fermented xylose, producing 15 g l?1 ethanol from 30 g l?1 xylose under shaking conditions at 28°C, with ethanol yield of 0.5 g g?1 and volumetric productivity of 0.31 g l?1 h?1. The optimum pH range for ethanol production from xylose by Pichia strain BY2 was 5–7. Pichia strain BY2 also produced 6.08 g l?1 ethanol from 30 g l?1 arabinose. Pichia strain BY2 can utilize sugarcane bagasse hemicellulose acid hydrolysate for alcohol production, efficiency of fermentation was improved by neutralization, and sequential use of activated charcoal adsorption method. Percent total sugar utilized and ethanol yield for the untreated hydrolysate was 17.14% w/v and 0.33 g g?1, respectively, compared with 66.79% w/v and 0.45 g g?1, respectively, for treated hemicellulose acid hydrolysate. This new yeast isolate showed ethanol yield of 0.45 g g?1 and volumetric productivity of 0.33 g l?1 h?1 from sugarcane bagasse hemicellulose hydrolysate detoxified by neutralization and activated charcoal treatment, and has potential application in practical process of ethanol production from lignocellulosic hydrolysate.  相似文献   

13.
For economical lignocellulose-to-ethanol production, a desirable biocatalyst should tolerate inhibitors derived from preteatment of lignocellulose and be able to utilize heterogeneous biomass sugars of hexoses and pentoses. Previously, we developed an inhibitor-tolerant Saccharomyces cerevisiae strain NRRL Y-50049 that is able to in situ detoxify common aldehyde inhibitors such as 2-furaldehyde (furfural) and 5-(hydroxymethyl)-2-furaldehyde (HMF). In this study, we genetically engineered Y-50049 to enable and enhance its xylose utilization capability. A codon-optimized xylose isomerase gene for yeast (YXI) was synthesized and introduced into a defined chromosomal locus of Y-50049. Two newly identified xylose transport related genes XUT4 and XUT6, and previously reported xylulokinase gene (XKS1), and xylitol dehydrogenase gene (XYL2) from Scheffersomyces stipitis were also engineered into the yeast resulting in strain NRRL Y-50463. The engineered strain was able to grow on xylose as sole carbon source and a minimum ethanol production of 38.6?g?l?1 was obtained in an anaerobic fermentation on mixed sugars of glucose and xylose in the presence of furfural and HMF.  相似文献   

14.
Corynebacterium glutamicum strains NC-2 were able to grow on xylose as sole carbon sources in our previous work. Nevertheless, it exhibited the major shortcoming that the xylose consumption was repressed in the presence of glucose. So far, regarding C. glutamicum, there are a number of reports on ptsG gene, the glucose-specific transporter, involved in glucose metabolism. Recently, we found ptsG had influence on xylose utilization and investigated the ptsG gene in response to xylose utilization in C. glutamicum with the aim to improve xylose consumption and simultaneously utilized glucose and xylose. The ptsG-deficient mutant could grow on xylose, while exhibiting noticeably reduced growth on xylose as sole carbon source. A mutant deficient in ptsH, a general PTS gene, exhibited a similar phenomenon. When complementing ptsG gene, the mutant ΔptsG-ptsG restored the ability to grow on xylose similarly to NC-2. These indicate that ptsG gene is not only essential for metabolism on glucose but also important in xylose utilization. A ptsG-overexpressing recombinant strain could not accelerate glucose or xylose metabolism. When strains were aerobically cultured in a sugar mixture of glucose and xylose, glucose and xylose could not be utilized simultaneously. Interestingly, the ΔptsG strain could co-utilize glucose and xylose under oxygen-deprived conditions, though the consumption rate of glucose and xylose dramatically declined. It was the first report of ptsG gene in response to xylose utilization in C. glutamicum.  相似文献   

15.
Corynebacterium glutamicum is particularly known for its potentiality in succinate production. We engineered C. glutamicum for the production of succinate. To enhance C3–C4 carboxylation efficiency, chromosomal integration of the pyruvate carboxylase gene pyc resulted in strain NC-4. To increase intracellular NADH pools, the pntAB gene from Escherichia coli, encoding for transhydrogenase, was chromosomally integrated into NC-4, leading to strain NC-5. Furthermore, we deleted pgi gene in strain NC-5 to redirect carbon flux to the pentose phosphate pathway (PPP). To solve the drastic reduction of PTS-mediated glucose uptake, the ptsG gene from C. glutamicum, encoding for the glucose-specific transporter, was chromosomally integrated into pgi-deficient strain resulted in strain NC-6. In anaerobic batch fermentation, the production of succinate in pntAB-overexpressing strain NC-5 increased by 14% and a product yield of 1.22 mol/mol was obtained. In anaerobic fed-batch process, succinic acid concentration reached 856 mM by NC-6. The yields of succinate from glucose were 1.37 mol/mol accompanied by a very low level of by-products. Activating PPP and transhydrogenase in combination led to a succinate yield of 1.37 mol/mol, suggesting that they exhibited a synergistic effect for improving succinate yield.  相似文献   

16.
The diploid yeast Candida tropicalis, which can utilize n-alkane as a carbon and energy source, is an attractive strain for both physiological studies and practical applications. However, it presents some characteristics, such as rare codon usage, difficulty in sequential gene disruption, and inefficiency in foreign gene expression, that hamper strain improvement through genetic engineering. In this work, we present a simple and effective method for sequential gene disruption in C. tropicalis based on the use of an auxotrophic mutant host defective in orotidine monophosphate decarboxylase (URA3). The disruption cassette, which consists of a functional yeast URA3 gene flanked by a 0.3 kb gene disruption auxiliary sequence (gda) direct repeat derived from downstream or upstream of the URA3 gene and of homologous arms of the target gene, was constructed and introduced into the yeast genome by integrative transformation. Stable integrants were isolated by selection for Ura+ and identified by PCR and sequencing. The important feature of this construct, which makes it very attractive, is that recombination between the flanking direct gda repeats occurs at a high frequency (10?8) during mitosis. After excision of the URA3 marker, only one copy of the gda sequence remains at the recombinant locus. Thus, the resulting ura3 strain can be used again to disrupt a second allelic gene in a similar manner. In addition to this effective sequential gene disruption method, a codon-optimized green fluorescent protein-encoding gene (GFP) was functionally expressed in C. tropicalis. Thus, we propose a simple and reliable method to improve C. tropicalis by genetic manipulation.  相似文献   

17.
We constructed recombinant Saccharomyces cerevisiae harboring the xylose isomerase (XI) gene isolated from Clostridium phytofermentans to metabolize xylose and use it as a carbon and energy source. In this study, the effect of supplementation using co-substrate such as glucose or galactose on xylose utilization was studied in recombinant S. cerevisiae. Glucose, which is transported with high affinity by the same transport system as is xylose, was not affected by the heterologous expression of XI, thus xylose utilization was not observed in recombinant S. cerevisiae. However, supplemental galactose added to the recombinant S. cerevisiae stimulated xylose utilization as well as the expression of XI protein. Recombinant S. cerevisiae consumed up to 23.48 g/L of xylose when grown in media containing 40 g/L of xylose and supplemented with 20 g/L of galactose. These cells also produced 15.89 g/L of ethanol. Therefore, expression of the bacterial XI in recombinant S. cerevisiae was highly induced by the addition of supplemental galactose as a co-substrate with xylose, and supplemented galactose enabled the yeast strain to grow on xylose and ferment xylose to ethanol.  相似文献   

18.
Sugarcane bagasse is one of the low-cost substrates used for bioethanol production. In order to solubilize sugars in hemicelluloses like xylan, a new thermotolerant isolate of Candida tropicalis HNMA-1 with xylan-hydrolyzing ability was identified and characterized. The strain showed relative tolerance to high temperature. Our results demonstrated 0.211 IU ml?1 xylanase activity at 40 °C compared to 0.236 IU ml?1 at 30 °C. The effect of high temperature on the growth and fermentation of xylose and sugarcane bagasse hydrolysate were also investigated. In both xylose or hydrolysate medium, increased growth was recorded at 40 °C. Meanwhile, the efficiency of ethanol fermentation was adversely affected by temperature since yields of 0.088 g g?1 and 0.076 g g?1 in the xylose medium, in addition to 0.090 g g?1 and 0.078 g g?1 in the hydrolysate medium were noticed at 30 °C and 40 °C, respectively. Inhibitory compounds in the hydrolysate medium demonstrated negative effects on fermentation and productivity, with maximum ethanol concentration attained after 48 h in the hydrolysate, as opposed to 24 h in the xylose medium. Our data show that the newly thermotolerant isolate, C. tropicalis HNMA-1, is able to efficiently ferment xylose and hydrolysate, and also has the capacity for application in ethanol production from hemicellulosic sources.  相似文献   

19.
Strains representing a novel ascomycetous yeast species, Candida sanyaensis, were isolated from soil samples collected on Hainan Island and Taiwan Island in China. Analysis of the D1/D2 domains of the large subunit (LUS) rRNA gene and internal transcribed spacer (ITS) regions of these strains showed that this species was related to Candida tropicalis and Candida sojae, their closest relatives. C. sanyaensis differed by three substitutions and one gap from C. tropicalis, and by four substitutions and one gap from C. sojae, in the D1/D2 domain sequences. However, the ITS sequences of C. sanyaensis were quite divergent from the latter two species, showing that it is a genetically separate species. The novel strains were also found to have very similar PCR-fingerprinting profiles which were quite distinct from those of C. tropicalis and C. sojae strains. The type strain of C. sanyaensis is HN-26T (= CICC 1979T = CBS 12637T).  相似文献   

20.
A strain designated M866, producing kojic acid with a high yield, was obtained by combining induced mutation using ion beam implantation and ethyl methane sulfonate treatment of a wild type strain of Aspergillus oryzae B008. The amount of kojic acid produced by the strain M866 in a shaking flask was 40.2 g/L from 100 g/L of glucose, which was 1.7 times higher than that produced by wild strain (23.58 g/L). When the mixture of glucose and xylose was used as carbon source, the resulting kojic acid production was raised with the increasing of glucose ratios in the mixture. With concentrations of glucose at 75 g/L and xylose at 25 g/L mixed in the medium, the production of kojic acid reached 90.8 %, which was slightly lower than with glucose as the sole source of carbon. In addition, the kojic acid fermentation of the concentrated hydrolysate from corn stalk was also investigated in this study, the maximum concentration of kojic acid accumulated at the end of the fermentation was 33.1 g/L and this represents the yield based on reducing sugar consumed and the overall productivity of 0.36 g/g and 0.17 g/L/h, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号