首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Endemic and emerging diseases are rarely uniform in their spatial distribution or prevalence among cohorts of wildlife. Spatial models that quantify risk‐driven differences in resource selection and hunter mortality of animals at fine spatial scales can assist disease management by identifying high‐risk areas and individuals. We used resource selection functions (RSFs) and selection ratios (SRs) to quantify sex‐ and age‐specific resource selection patterns of collared (n = 67) and hunter‐killed (n = 796) nonmigratory elk (Cervus canadensis manitobensis) during the hunting season between 2002 and 2012, in southwestern Manitoba, Canada. Distance to protected area was the most important covariate influencing resource selection and hunter‐kill sites of elk (AICw = 1.00). Collared adult males (which are most likely to be infected with bovine tuberculosis (Mycobacterium bovis) and chronic wasting disease) rarely selected for sites outside of parks during the hunting season in contrast to adult females and juvenile males. The RSFs showed selection by adult females and juvenile males to be negatively associated with landscape‐level forest cover, high road density, and water cover, whereas hunter‐kill sites of these cohorts were positively associated with landscape‐level forest cover and increasing distance to streams and negatively associated with high road density. Local‐level forest was positively associated with collared animal locations and hunter‐kill sites; however, selection was stronger for collared juvenile males and hunter‐killed adult females. In instances where disease infects a metapopulation and eradication is infeasible, a principle goal of management is to limit the spread of disease among infected animals. We map high‐risk areas that are regularly used by potentially infectious hosts but currently underrepresented in the distribution of kill sites. We present a novel application of widely available data to target hunter distribution based on host resource selection and kill sites as a promising tool for applying selective hunting to the management of transmissible diseases in a game species.  相似文献   

2.
Prey usually adjust anti-predator behavior to subtle variations in perceived risk. However, it is not clear whether adult large carnivores that are virtually free of natural predation adjust their behavior to subtle variations in human-derived risk, even when living in human-dominated landscapes. As a model, we studied resting-site selection by a large carnivore, the brown bear (Ursus arctos), under different spatial and temporal levels of human activity. We quantified horizontal and canopy cover at 440 bear beds and 439 random sites at different distances from human settlements, seasons, and times of the day. We hypothesized that beds would be more concealed than random sites and that beds would be more concealed in relation to human-derived risk. Although human densities in Scandinavia are the lowest within bear ranges in Western Europe, we found an effect of human activity; bears chose beds with higher horizontal and canopy cover during the day (0700?C1900?hours), especially when resting closer to human settlements, than at night (2200?C0600?hours). In summer/fall (the berry season), with more intensive and dispersed human activity, including hunting, bears rested further from human settlements during the day than in spring (pre-berry season). Additionally, day beds in the summer/fall were the most concealed. Large carnivores often avoid humans at a landscape scale, but total avoidance in human-dominated areas is not possible. Apparently, bears adjust their behavior to avoid human encounters, which resembles the way prey avoid their predators. Bears responded to fine-scale variations in human-derived risk, both on a seasonal and a daily basis.  相似文献   

3.
On human-used landscapes, animal behavior is a trade-off between maximizing fitness and minimizing human-derived risk. Understanding risk perception in wildlife can allow mitigation of anthropogenic risk, with benefits to long-term animal fitness. Areas where animals choose to rest should minimize risk from predators, which for large carnivores typically equate to humans. We hypothesize that high human activity leads to selection for habitat security, whereas low activity enables trading security for forage. We investigated selection of resting (bedding) sites by GPS radiocollared adult grizzly bears (n = 10) in a low density population on a multiple-use landscape in Canada. We compared security and foods at resting and random locations while accounting for land use, season, and time of day. On reclaimed mines with low human access, bears selected high horizontal cover far from trails, but did not avoid open (herbaceous) areas, resting primarily at night. In protected areas bears also bedded at night, in areas with berry shrubs and Hedysarum spp., with horizontal cover selected in the summer, during high human access. On public lands with substantial human recreation, bears bedded at day, selected resting sites with high horizontal cover in the summer and habitat edges, with bedding associated with herbaceous foods. These spatial and temporal patterns of selection suggest that bears perceive human-related risk differentially in relation to human activity level, season and time of day, and employ a security-food trade-off strategy. Although grizzly bears are presently not hunted in Alberta, their perceived risks associated with humans influence resting-site selection.  相似文献   

4.
Abstract: We used resource selection functions (RSF) to estimate the relative probability of use for grizzly bears (Ursus arctos) adjacent to the Parsnip River, British Columbia, Canada, 1998-2003. We collected data from 30 radiocollared bears on a rolling plateau where a large portion of the landscape had been modified by human activities, primarily forestry. We also monitored 24 radiocollared bears in mountain areas largely inaccessible to humans. Bears that lived on the plateau existed at less than one-quarter the density of bears in the mountains. Plateau bears ate more high-quality food items, such as meat and berries, leading us to conclude that food limitation was not responsible for the differences in densities. We hypothesized that plateau bears were limited by human-caused mortality associated with roads constructed for forestry activities. Independent estimates of bear population size from DNA-based mark-recapture techniques allowed us to link populations to habitats using RSF models to scale habitat use patterns to population density. To evaluate whether differences in land-cover type, roads, or mortality risk could account for the disparity in density we used the mountain RSF model to predict habitat use and number of bears on the plateau and vice versa. We predicted increases ranging from 34 bears to 96 bears on the plateau when switching model coefficients, excluding land-cover types; when exchanging land-cover coefficients, the model predicted that the plateau population would be 9 bears lower than was observed. Large reductions in the numbers of mountain bears were predicted by habitat-selection models of bears using the plateau landscape. Although RSF models estimated in mountain and plateau landscapes could not predict bear use and abundance in the other areas, contrasts in models between areas provided a useful tool for examining the effects of human activities on grizzly bears.  相似文献   

5.
When large carnivores occupy peripheral human lands conflict with humans becomes inevitable, and the reduction of human-carnivore interactions must be the first consideration for those concerned with conflict mitigation. Studies designed to identify areas of high human-bear interaction are crucial for prioritizing management actions. Due to a surge in conflicts, against a background of social intolerance to wildlife and the prevalent use of lethal control throughout Japan, Asiatic black bears (Ursus thibetanus) are now threatened by high rates of mortality. There is an urgent need to reduce the frequency of human-bear encounters if bear populations are to be conserved. To this end, we estimated the habitats that relate to human-bear interactions by sex and season using resource selection functions (RSF). Significant seasonal differences in selection for and avoidance of areas by bears were estimated by distance-effect models with interaction terms of land cover and sex. Human-bear boundaries were delineated on the basis of defined bear-habitat edges in order to identify areas that are in most need of proactive management strategies. Asiatic black bears selected habitats in close proximity to forest edges, forest roads, rivers, and red pine and riparian forests during the peak conflict season and this was correctly predicted in our human-bear boundary maps. Our findings demonstrated that bears selected abandoned forests and agricultural lands, indicating that it should be possible to reduce animal use near human lands by restoring season-specific habitat in relatively remote areas. Habitat-based conflict mitigation may therefore provide a practical means of creating adequate separation between humans and these large carnivores.  相似文献   

6.
Abstract: During the past 2 decades, the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem (GYE) has increased in numbers and expanded its range. Early efforts to model grizzly bear mortality were principally focused within the United States Fish and Wildlife Service Grizzly Bear Recovery Zone, which currently represents only about 61% of known bear distribution in the GYE. A more recent analysis that explored one spatial covariate that encompassed the entire GYE suggested that grizzly bear survival was highest in Yellowstone National Park, followed by areas in the grizzly bear Recovery Zone outside the park, and lowest outside the Recovery Zone. Although management differences within these areas partially explained differences in grizzly bear survival, these simple spatial covariates did not capture site-specific reasons why bears die at higher rates outside the Recovery Zone. Here, we model annual survival of grizzly bears in the GYE to 1) identify landscape features (i.e., foods, land management policies, or human disturbances factors) that best describe spatial heterogeneity among bear mortalities, 2) spatially depict the differences in grizzly bear survival across the GYE, and 3) demonstrate how our spatially explicit model of survival can be linked with demographic parameters to identify source and sink habitats. We used recent data from radiomarked bears to estimate survival (1983–2003) using the known-fate data type in Program MARK. Our top models suggested that survival of independent (age ≥ 2 yr) grizzly bears was best explained by the level of human development of the landscape within the home ranges of bears. Survival improved as secure habitat and elevation increased but declined as road density, number of homes, and site developments increased. Bears living in areas open to fall ungulate hunting suffered higher rates of mortality than bears living in areas closed to hunting. Our top model strongly supported previous research that identified roads and developed sites as hazards to grizzly bear survival. We also demonstrated that rural homes and ungulate hunting negatively affected survival, both new findings. We illustrate how our survival model, when linked with estimates of reproduction and survival of dependent young, can be used to identify demographically the source and sink habitats in the GYE. Finally, we discuss how this demographic model constitutes one component of a habitat-based framework for grizzly bear conservation. Such a framework can spatially depict the areas of risk in otherwise good habitat, providing a focus for resource management in the GYE.  相似文献   

7.
8.
When abundant, seeds of the high‐elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone‐producing WBP trees. We used fall (15 August–30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000–2011. We calculated Manly–Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One‐third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high‐elevation WBP habitat may be diminishing for bears residing in multiple‐use areas.  相似文献   

9.
Global biodiversity is decreasing rapidly. Parks and protected lands, while designed to conserve wildlife, often cannot provide the habitat protection needed for wide‐ranging animals such as the American black bear (Ursus americanus). Conversely, private lands are often working landscapes (e.g., farming) that have high human footprints relative to protected lands. In southwestern Alberta, road densities are highest on private lands and black bears can be hunted year‐round. On protected lands, road densities are lowest, and hunting is prohibited. On public lands under the jurisdiction of the provincial government (Crown lands), seasonal hunting is permitted. Population estimates are needed to calculate sustainable harvest levels and to monitor population trends. In our study area, there has never been a robust estimate of black bear density and spatial drivers of black bear density are poorly understood. We used non‐invasive genetic sampling and indices of habitat productivity and human disturbance to estimate density and abundance for male and female black bears in 2013 and 2014 using two methods: spatially explicit capture–recapture (SECR) and resource‐selection functions (RSF). Land tenure best explained spatial variation in black bear density. Black bear densities for females and males were highest on parkland and lowest on Crown lands. Sex ratios were female‐biased on private lands, likely a result of lower harvests and movement of females out of areas with high male density. Synthesis and application: Both SECR and RSF methods clearly indicate spatial structuring of black bear density, with a strong influence based on how lands are managed. Land tenure influences the distribution of available foods and risk from humans. We emphasize the need for improved harvest reporting, particularly for non‐licensed hunting on private land, to estimate the extent of black bear harvest mortality.  相似文献   

10.
Animals select resources to maximize fitness but associated costs and benefits are spatially and temporally variable. Differences in wetland management influence resource availability for ducks and mortality risk from duck hunting. The local distribution of the Mallard (Anas platyrhynchos) is affected by this resource heterogeneity and variable risk from hunting. Regional conservation strategies primarily focus on how waterfowl distributions are affected by food resources during the nonbreeding season. To test if Mallard resource selection was related to the abundance of resources, risks, or a combination, we studied resource selection of adult female Mallards during autumn and winter. We developed a digital spatial layer for Lake St. Clair, Ontario, Canada, that classified resources important to Mallards and assigned these resources a risk level based on ownership type and presumed disturbance from hunting. We monitored 59 individuals with GPS back‐pack transmitters prior to, during, and after the hunting season and used discrete choice modeling to generate diurnal and nocturnal resource selection estimates. The model that classified available resources and presumed risk best explained Mallard resource selection strategies. Resource selection varied within and among seasons. Ducks selected for federal, state and private managed wetland complexes that provided an intermediate or relatively greater amount of refuge and foraging options than public hunting areas. Across all diel periods and seasons, there was selection for federally managed marshes and private supplemental feeding refuges that prohibited hunting. Mallard resource selection demonstrated trade‐offs related to the management of mortality risk, anthropogenic disturbances, and foraging opportunities. Understanding how waterfowl respond to heterogeneous landscapes of resources and risks can inform regional conservation strategies related to waterfowl distribution during the nonbreeding season.  相似文献   

11.
Avoiding humans will be more difficult and energetically costly for animals as outdoor recreation increases and people venture farther into wildland areas that provide high-quality habitat for wildlife. Restricting human access can be an attractive management tool to mitigate effects of human recreation activities on wildlife; however, the efficacy of such measures is rarely assessed. In 1982, Yellowstone National Park identified areas important to grizzly bears (Ursus arctos) to help protect critical grizzly bear habitat and reduce the likelihood of human injuries by bears. Referred to as bear management areas (BMAs), human access is restricted in these areas for 2–8 months each year, with timing and type of restrictions varying by area. We examined 2 datasets to evaluate grizzly bear selection of BMAs and differences of bear density in BMAs and non-BMAs. First, we used 17 years of recent global positioning system telemetry data for grizzly bears to assess their selection of BMAs during periods when human access was allowed, and when access was restricted. We used step-selection functions to test the hypothesis that bears spend time in places that allow them to avoid people and select quality food sources. There was support that grizzly bears differentially select for BMAs regardless of whether human access was restricted at the time, compared with areas outside BMAs, and that selection changed with sex and season. Only males during the summer and hyperphagic seasons changed their selection of BMAs based on whether access restrictions were in place, and overall, male bears preferred unrestricted BMAs (BMAs without restrictions in place). Females preferentially selected BMAs regardless of whether the area had access restrictions in place only during the mating season. Individuals varied widely in their preference for BMAs and access restrictions. Bears likely choose to spend time in BMAs based on available food resources rather than restrictions to human access. Supporting this interpretation, our analyses indicated that a greater proportion of BMA in an area was associated with higher densities of grizzly bear. Thus, restrictions to human access likely help reduce the potential for human–bear interactions, accomplishing one of the original objectives for establishing the BMAs.  相似文献   

12.
Public lands managed for wildlife frequently provide various forms of sanctuary to increase residency times and allow access to energetic and other habitat resources for waterfowl. The influence of sanctuary type and disturbance regime on resource use and fine-scale movements of waterfowl has not been investigated extensively using currently available transmitter technologies. We examined mallard (Anas platyrhynchos) use of various types of waterfowl sanctuary and non-sanctuary areas in the Mississippi Alluvial Valley region of eastern Arkansas, USA, during winters of 2019–2021. We deployed 105 global positioning system transmitters on mallards at 4 closed-access spatial sanctuaries on or adjacent to Dale Bumpers White River National Wildlife Refuge. We used hourly transmitter locations to examine mallard use of public sanctuary areas, public hunt areas, and private lands using integrated step selection analysis. Public sanctuary areas provided varying levels of protected status, public hunt areas allowed for varying levels of hunting intensity by duck hunters, and private lands were open to waterfowl hunting and other forms of private uses but may or may not have been hunted at any specific frequency. Mallards selected spatial sanctuary and avoided public hunt areas, other sanctuary types, and private lands during the day. In contrast, mallards selected for private lands over spatial sanctuary at night. Mallards tended to avoid areas that allowed duck hunting or used them during the night when risk of harvest mortality was removed. After the hunting season closed, mallards began using areas that previously allowed duck hunting during the day, suggesting that risk was the primary factor influencing site use. Moreover, mallards were 1.6 times more likely to use public daily hunt areas and 2.1 times more likely to use private lands potentially open to hunting during the day than spatial sanctuary 2 weeks after the close of duck hunting season in February. Spatial sanctuaries appear more effective in influencing mallard use than temporal sanctuaries or inviolate sanctuaries, which are commonly used by state and federal agencies. Partial daily, daily, or activity-specific (e.g., no hunting past noon, no hunting 3 days/week, no waterfowl hunting) closures to encourage mallard use of temporal sanctuaries do not appear to reduce the perceived harvest-related risk to mallards enough for them to view these areas as accessible or significantly increase their use.  相似文献   

13.
The production of anthocyanins in fruit tissues is highly controlled at the developmental level. We have studied the expression of flavonoid biosynthesis genes during the development of bilberry (Vaccinium myrtillus) fruit in relation to the accumulation of anthocyanins, proanthocyanidins, and flavonols in wild berries and in color mutants of bilberry. The cDNA fragments of five genes from the flavonoid pathway, phenylalanine ammonia-lyase, chalcone synthase, flavanone 3-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase, were isolated from bilberry using the polymerase chain reaction technique, sequenced, and labeled with a digoxigenin-dUTP label. These homologous probes were used for determining the expression of the flavonoid pathway genes in bilberries. The contents of anthocyanins, proanthocyanidins, and flavonols in ripening bilberries were analyzed with high-performance liquid chromatography-diode array detector and were identified using a mass spectrometry interface. Our results demonstrate a correlation between anthocyanin accumulation and expression of the flavonoid pathway genes during the ripening of berries. At the early stages of berry development, procyanidins and quercetin were the major flavonoids, but the levels decreased dramatically during the progress of ripening. During the later stages of ripening, the content of anthocyanins increased strongly and they were the major flavonoids in the ripe berry. The expression of flavonoid pathway genes in the color mutants of bilberry was reduced. A connection between flavonol and anthocyanin synthesis in bilberry was detected in this study and also in previous data collected from flavonol and anthocyanin analyses from other fruits. In accordance with this, models for the connection between flavonol and anthocyanin syntheses in fruit tissues are presented.  相似文献   

14.
Abstract We analyzed harvest data to describe hunting patterns and harvest demography of brown bears (Ursus arctos) killed in 3 geographic regions in Sweden during 1981–2004. In addition, we investigated the effects of a ban on baiting, instituted in 2001, and 2 major changes in the quota system: a switch to sex-specific quotas in 1992 and a return to total quotas in 1999. Brown bears (n=887) were harvested specifically by bear hunters and incidentally by moose (Alces alces) hunters. Both hunter categories harvested bears 1) using dogs (37%), 2) by still hunting (30%), 3) with the use of bait (18%), and 4) by stalking (16%). The proportion of bears killed with different harvest methods varied among regions and between bear- and moose-oriented hunters. We found differences between male (52%) and female bears (48%) with respect to the variables that explained age. Moose-oriented hunters using still hunting harvested the youngest male bears. Bears harvested during the first management period (1981–1991) were older and had greater odds of being male than during the subsequent period. It appears that hunters harvesting bears in Sweden are less selective than their North American counterparts, possibly due to differences in the hunting system. When comparing the 4 years immediately prior to the ban on baiting with the 4 years following the ban, we found no differences in average age of harvested bears, sex ratio, or proportion of bears killed with stalking, still hunting, and hunting with dogs, suggesting that the ban on baiting in Sweden had no immediate effect on patterns of brown bear harvest demography and remaining hunting methods. As the demographic and evolutionary side effects of selective harvesting receive growing attention, wildlife managers should be aware that differences in harvest systems between jurisdictions may cause qualitative and quantitative differences in harvest biases. (JOURNAL OF WILDLIFE MANAGEMENT 72(1):79–88; 2008)  相似文献   

15.
Functional responses in polar bear habitat selection   总被引:4,自引:0,他引:4  
Habitat selection may occur in situations in which animals experience a trade-off, e.g. between the use of habitats with abundant forage and the use of safer retreat habitats with little forage. Such trade-offs may yield relative habitat use conditional on the relative availability of the different habitat types, as proportional use of foraging habitat may exceed proportional availability when foraging habitat is scarce, but be less than availability when foraging habitat is abundant. Hence, trade-offs in habitat use may result in functional responses in habitat use (i.e. change in relative use with changing availability). We used logistic and log-linear models to model functional responses in female polar bear habitat use based on satellite telemetry data from two contiguous populations; one near shore inhabiting sea ice within fjords, and one inhabiting pelagic drift ice. Open ice, near the ice edge, is a highly dynamic habitat hypothesised to be important polar bear habitat due to high prey availability. In open ice-polar bears may experience a high energetic cost of movements and risk drifting away from the main ice field (i.e. trade off between feeding and energy saving or safety). If polar bears were constrained by ice dynamics we therefore predicted use of retreat habitats with greater ice coverage relative to habitats used for hunting. The polar bears demonstrated season and population specific functional responses in habitat use, likely reflecting seasonal and regional variation in use of retreat and foraging habitats. We suggest that in seasons with functional responses in habitat use, polar bear space use and population distribution may not be a mere reflection of prey availability but rather reflect the alternate allocation of time in hunting and retreat habitats.  相似文献   

16.
The plant stress hypothesis states that plant stress factors other than herbivory improve herbivore performance due to changes in the content of nutritive or defensive compounds in the plants. In Norway, the bilberry (Vaccinium myrtillus) is important forage for the bank vole (Myodes glareolus) in winter and for the moose (Alces alces) in summer and autumn. The observed peaks in bank vole numbers after years with high production of bilberries are suggested to be caused by increased winter survival of bank voles due to improved forage quality. High production of bilberries should also lead to higher recruitment rates in moose in the following year. We predict, however, that there is an increasing tendency for a 1-year delay of moose indices relative to vole indices with decreasing summer temperatures, because low temperatures prolong the period needed by plants to recover in the vole peak year, and thus positively affect moose reproduction also in the succeeding year. In eight out of nine counties in south-eastern Norway, there was a positive relationship between the number of calves observed per female moose during hunting and a bilberry seed production index or an autumn bank vole population index. When dividing the study area into regions, there was a negative relationship between a moose-vole time-lag index and the mean summer temperature of the region. These patterns suggest that annual fluctuations in the production of bilberries affect forage quality, but that the effect on moose reproduction also depends on summer temperatures.  相似文献   

17.
Having reproducible and transparent science-based processes in wildlife management ensures the integrity of decision making. These processes are particularly important when establishing harvest frameworks, as guiding information in the peer-reviewed literature is limited. We provide an example using multiple data sets, whose products guided aspects of the development of a harvest framework for a population of recolonizing American black bears (Ursus americanus) in Missouri, USA. To characterize the spatial distribution of harvest, we used 10 years (2010–2019) of black bear global positioning system (GPS) location data and 30 years (1991–2020) of sightings data to assess spatial vulnerability to harvest as the intersection among information on bear occurrence, bear sightings, and hunter land-use tendencies (i.e., the avoidance of steep slopes, large distances from roads). We then used the spatial vulnerability assessment, information on the distribution of public and private lands, and easily discernable boundaries (i.e., major highways, rivers) to suggest boundaries for bear management zones. Additionally, to identify the timing of harvest that would limit female harvest bias, we assessed the temporal vulnerability of harvest using sex-based changes in average daily step lengths and monthly utilization distribution sizes during fall. Black bear occurrence and sighting propensity was greater in southwestern Missouri, and potential hunter land use appeared pervasive across the landscape given the lack of landscape features that would disincentivize use. Given the influence of black bear occurrence and sighting propensity, spatial harvest vulnerability diminished from southern and southeastern to central portions of Missouri, with areas north of the Missouri River not a part of the established black bear range. We consequently divided areas south of the Missouri River into 3 black bear management zones: a small southwestern zone with primarily private lands and high harvest vulnerability, a southeastern zone that encompassed considerable public lands and moderate amounts of vulnerability, and a central zone that was composed mainly of areas of low vulnerability. Temporally, males did not exhibit movement-based changes, but females became less active after the first week of October and used 63.9% less area through fall. Based on movements rates of males and females, a hunting season after the first week of October could reduce the likelihood of females being harvested. Harvests from the black bear harvest season in 2021 suggest that the proportion of bears harvested in each zone was similar in distribution to the proportion of permits allocated across zones with no harvest sex bias, which was aligned with agency goals. Animal movement and space use data products can guide harvest framework decision-making.  相似文献   

18.
American black bears (Ursus americanus) were extirpated from Oklahoma, USA, in the early twentieth century but have since recolonized eastern portions of the state after immigrating from Arkansas, where they were successfully translocated. Within the last 2 decades, a population of black bears was detected in the Oklahoma Ozark region, prompting studies to determine population size, growth rate, and genetic makeup. To understand how black bears were recolonizing the human-dominated landscape, we investigated resource selection at 2 scales. Between 2011 and 2016, we collected global positioning system collar spatial data for 10 males and 13 females. We calculated average kernel density home ranges on a seasonal scale for all collared bears. We used generalized linear mixed models to calculate resource selection functions at the study area, defined by locations of all radio-collared black bears (second order) and the scale of individual black bear home ranges (third order). Resource selection did not differ significantly by sex. Black bears across seasons and scales selected riparian forest and moist oak (Quercus spp.) forest land cover types and mostly selected against indicators of human activity (e.g., pasture-prairie, anthropogenic land cover types, roads, and areas of high human population density). Black bears also selected areas with rugged terrain at high elevations, although not consistently across seasons and scales. Black bear recolonization appeared to be negatively affected by areas and features characterized as human-altered. Further expansion of the range of black bears may be limited by anthropogenic disturbance in the region. © 2021 The Wildlife Society.  相似文献   

19.
Omnivores feed on animals with dynamic distributions and on plants with static distributions. The search tactics they adopt will not only define the risk for the targeted prey, but also for other prey that may be consumed when encountered. The potential impact of omnivores on the dynamics of multi‐prey systems thus depends on resource selection and on the tactics used to find their prey. We present an approach that can clarify the foraging decisions of omnivores by combining analyses of habitat selection, local residency time, and interpatch movements. We use this framework to evaluate whether predation by omnivorous black bears on ungulate neonates resulted from an active search or from incidental encounters. We monitored 12 bears, 22 forest‐dwelling caribou, and 36 moose during calving seasons. We estimated the spatial patterns in relative occurrence probability of ungulate neonates using Resource Selection Functions (RSFs). We also mapped plant abundance from vegetation surveys. RSF were then built to assess the link between bear distribution and the distribution of these three food types (vegetation, moose calves, caribou fawns). We further evaluated the search tactic used by bears that led to this spatial dependency by exploring patterns of residency times and interpatch movements. Bears did not select areas with a high probability of encounter with neonates, but selected areas with abundant vegetation. Surprisingly, bears displayed shorter residency times in vegetation‐rich areas. The selection for vegetation‐rich areas was therefore achieved by moving preferentially, but frequently, between areas offering abundant vegetation. Such frequent interpatch movements could result in high rates of fortuitous encounters with neonates, even if bears are not actively searching for them. To mitigate the impacts of forest harvesting on threatened caribou populations, vegetation‐rich areas selected by bears (e.g. roadsides) should be segregated from large patches of mature conifer forest suitable for caribou.  相似文献   

20.
Understanding how environmental factors interact to determine the abundance and distribution of animals is a primary goal of ecology, and fundamental to the conservation of wildlife populations. Studies of these relationships, however, often assume static environmental conditions, and rarely consider effects of competition with ecologically similar species. In many parts of their shared ranges, grizzly bears Ursus arctos and American black bears U. americanus have nearly complete dietary overlap and share similar life history traits. We therefore tested the hypothesis that density patterns of both bear species would reflect seasonal variation in available resources, with areas of higher primary productivity supporting higher densities of both species. We also hypothesized that interspecific competition would influence seasonal density patterns. Specifically, we predicted that grizzly bear density would be locally reduced due to the ability of black bears to more efficiently exploit patchy food resources such as seasonally abundant fruits. To test our hypotheses, we used detections of 309 grizzly and 597 black bears from two independent genetic sampling methods in spatially‐explicit capture–recapture (SECR) models. Our results suggest grizzly bear density was lower in areas of high black bear density during spring and summer, although intraspecific densities were also important, particularly during the breeding season. Black bears had lower densities in areas of high grizzly bear density in spring; however, density of black bears in early and late summer was best explained by primary productivity. Our results are consistent with the hypothesis that smaller‐bodied, more abundant black bears may influence the density patterns of behaviorally‐dominant grizzly bears through exploitative competition. We also suggest that seasonal variation in resource availability be considered in efforts to relate environmental conditions to animal density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号