首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. The effect of fire intensity - both temperature and duration - on the resprouting pattern of the evergreen Mediterranean shrub Erica multiflora in relation to plant size, was experimentally investigated by subjecting plants to the flame of a propane torch, and observing mortality and resprouting after 5 and 20 months. Pre-treatment plant size was not important in determining post-fire plant survival, but it did influence the resprouting vigour, increasingly so with time. High temperatures induced higher mortality rates within populations, but duration of fire did not effect mortality. Biomass of resprouts was lower following more intense fire treatments, but this effect progressively disappeared over time, except in plants subjected to the most intense fire treatment. This is probably because of the increasing importance of the below-ground organs for the regeneration of the above-ground biomass. Some of the plants which were clipped but not exposed to fire also died 20 months after treatment. The effect of clipping onmortality andresprout-ing response, estimated as biomass of resprouts, was not significantly different from the effect induced by either low or medium temperature treatments, but was significantly different when compared with the effect of high-temperature treatments. Field observations show that the establishment of seedlings of E. multiflora is rare both after fire and between fires. Thus, our data support the idea that both a single fire or clipping can diminish the population size of a resprouting species. We conclude that fire may have a stochastic effect on E. multiflora populations, due to the variation in fire intensity existing within a single burning stand.  相似文献   

2.
Abstract. Resprouting from underground structures is one of the main regeneration strategies of Mediterranean shrubs after aerial biomass disturbance such as fire or clear-cutting to reduce fire risk. In order to study the effect of root competition and shading (simulated shoot competition) on Erica multiflora, growth, morphology, flowering performance and sprout size variability during resprouting, a factorial field experiment was conducted in which neighbours around target plants were eliminated and plants were shaded with mesh for two years. Root competition reduced sprout recruitment and sprout density (number of sprouts per unit stump area) more strongly than did shading. The negative effect of root competition on sprout biomass was constant with time, while the reduction due to shading increased with time. There was an interaction between root competition and shading on the biomass of sprouts 22 months after treatment: genets without root competition and shading were four times larger than in any other treatment. Both shading and root competition also decreased percentage branching but did not modify maximum sprout height. Only shading decreased the leaf/shoot biomass ratio and the percentage of flowering genets. One year after resprouting, root competition counteracted the effect of shading on inducing sprout biomass variability within the genet because it decreased sprout density. 22 months after treatment, sprout biomass variability was not affected by any main effect. The results suggest that competition among sprouts within the genet is asymmetric. However, shading by genet neighbours may not always increase sprout biomass variability if root competition is also severe.  相似文献   

3.
Abstract. To test if low soil fertility and competition limit the performance of Mediterranean shrubs, and if the effects of competition on plant performance were modified by soil fertility, we subjected shrubs of Erica multiflora to a factorial field experiment of fertilization and removal of neighbours around target plants. After 18 months of treatment, fertilization had stimulated the growth of pre-existent sprouts and biomass allocation to stems into new sprouts, but decreased the frequency of sprout flowering. Removal of neighbours increased the number and biomass of new sprouts, the probability of sprout flowering and the biomass of flowers. Fertilization slightly enhanced sprout recruitment and the probability of sprout flowering when neighbours were removed, but did not modify the other parameters of plant performance. According to our results, both low soil fertility and competition limited plant performance. Competition was slightly more intense in fertilized plants, but only in determining sprout and flowering bud stimulation.  相似文献   

4.
Vilà  Montserrat  Stoll  Peter  Weiner  Jacob 《Plant Ecology》1998,136(2):167-173
To study the effects of competition in Mediterranean shrubland regeneration following disturbance, we used a neighborhood approach to assess the influence of mature Rosmarinus officinalis neighbors on the resprouting of Erica multiflora individuals after clipping. Sprout biomass of target plants 2 years after clipping was regressed against various measures of neighbor abundance within a 2 m radius around target E. multiflora individuals in which all vegetation except R. officinalis had been removed. The largest single influence on the biomass of sprouts produced was the previous biomass of the resprouting plant. The abundance of R. officinalis neighbors had a weak but detectable effect on resprouting of E. multiflora. Abundance of neighbors within 60 cm from target plants was the best predictor of regrowth. At this distance, two simple measures of neighbor abundance within the neighborhood, the number of neighbors and the sum of their heights, were significant in accounting for variation in resprouted biomass. None of the combinations of neighbor variables performed significantly better than single variables. The best models accounted for around 24 percent of the variation in resprout biomass. As in other studies, angular dispersion of neighbors never had a significant effect on performance of target plants. The weak but significant response of resprouting to variation in R. officinalis abundance suggests that the intensity of competition in the experiment was low because of the removal of other species.  相似文献   

5.
M. Vil  F. Lloret 《植被学杂志》2000,11(4):597-606
Abstract. In Mediterranean shrublands, post‐fire accumulation of above‐ground biomass of resprouters is faster than that of seeders. This suggests that resprouters may have a competitive advantage. To test this hypothesis, we used a removal experiment to study the effect of the presence of the dominant tussock‐grass Ampelodesmos mauritanica on the resprouting shrubs Erica multiflora and Globularia alypum and on the seeders Rosmarinus officinalis and Pinus halepensis three and four years after a wildfire. Water potential of target plants was also measured to see if Ampelodesmos removal increased water availability. Ampelodesmos marginally reduced growth of all target species but did not influence survival or water potential of any target species. Our results suggest that the effect of climatically influenced water stress was stronger than the effect of Ampelodesmos neighbours. Plant‐plant interactions in this Mediterranean community are weak after fire and the magnitude of the Ampelodesmos effect does not differ between seeders and resprouters.  相似文献   

6.
《Acta Oecologica》2006,29(2):221-232
Nutrient availability is increasing in the Mediterranean Basin due to the great number and intensity of fires and higher levels of anthropomorphic pollution. In the experiment described in this paper, we aimed to determine the effects of N and P availability and of the removal of competing vegetation on resprouter capacity, biomass, and nutrient accumulation in Erica multiflora. Plants of the resprouter species E. multiflora were clipped to 0% of aerial biomass in a post-fire Mediterranean shrubland and fertilisation experiments and removal of competing vegetation were established in a factorial design. The resprouting of clipped plants was monitored during the first year after clipping and at the end of the year, all plant resprout populations were harvested and their resprout structure, biomass and N and P content measured. N fertilisation had no significant effect on leaf biomass either at plant level or on the total aerial biomass per stump unit area; however N concentration in resprout biomass did increased. P fertilisation slightly increased resprouting vigour and had a significant effect on P content of the leaf biomass. The removal of competing vegetation increased the ratio between leaf biomass and stem biomass, the lateral expansion of resprout, the hierarchy of resprouts branching, and the P content of stems, above all when P fertilisation was applied. These results show that as a response to decreased competition E. multiflora has the capacity to modify the relative proportions of the nutrients in the aerial biomass. All these characteristics allow E. multiflora to persist in increasingly disturbed Mediterranean ecosystems and contribute to the retention of nutrients in the ecosystem during early resprouting phases.  相似文献   

7.
The upland shrub community of the New Jersey Pine Barrens maintains strong compositional and structural stability despite frequent low-intensity fires. To determine the mechanisms by which individual species respond to fire, regrowth of vegetation was monitored for 3 years after fire at a burned site, and at a nearby site that had not been burned. At both sites, experimental treatments simulated various physical aspects of fire, including clipping of stems, removal of leaf litter, and application of fertilizer. Both fire and clipping were followed by multiple resprouting and enhanced growth of the dominant shrub, Gaylussacia baccata, suggesting that sprout growth is controlled by correlative inhibition of adventitious buds. By contrast, neither fertilizer nor litter removal had a significant impact on G. baccata. Other species were only observed at very low numbers, and appeared to act independently of either fire or experimental treatments. Recruitment from seed was not observed in any treatment at either site, despite reports of a large soil seed bank. Thus, compositional stability is maintained through a large reserve of dormant buds on the dominant species, and through a lack of opportunities for associate species. This stability is precarious, however, depending strongly on fire frequency and intensity.  相似文献   

8.
Regrowth after clipping and the effect of local competition were studied in a natural population of Erica multiflora in a Mediterranean shrubland, by removing neighbours at 1 and 2 m around the target plants during four growing seasons. Removal of surrounding natural vegetation increased the number, the density (number of sprouts per stump area) and the biomass of the sprouts growing from clipped plants. Target plants ònly interacted with their near neighbours. Target plants had a negative relative increment in the number of sprouts per stump during the 18 months immediately following treatment, but a positive increment thereafter, which suggests that there was a constant or episodic recruitment of sprouts within the stump after clipping. Competition treatment had a non-significant effect on the negative increment of sprouts per stump. The self-thinning trajectory was different for the different competition treatments: there was an allometric negative relationship between density of sprouts and mean biomass of survivors during all sampling periods in genets without neighbours in a 1-m radius; the self-thinning trajectory of sprouts in genets without neighbours in a 2-m radius was short, a net increase in sprouts per stump area was accompanied by an increase in mean sprout biomass 30 months after clipping. During the same period, however, plants with neighbours showed a decline in both the sprout biomass and density.  相似文献   

9.
Abstract. The contribution of resprouts and seedling recruitment to post-fire regeneration of the South African fynbos conifer Widdringtonia nodiflora was compared eight months after wildfires in 1990. Stems on all trees were killed by fire but resprouting success was > 90 % at all but one site. A demographic study of burned skeletons revealed that prior to these fires, nearly all plants were multi-stemmed (4–9 stems/plant) and multi-aged, indicating continuous sprout production between fires. All stems were killed by these 1990 fires and at most sites > 90 % of the stems were burned to ground level. All diameter stems were susceptible to such incineration as, at most sites, there was no difference in average diameter of stems burned to ground level and those left standing. Individual genets usually had all ramets incinerated to ground level or all ramets charred, but intact, suggesting certain micro-sites burned hotter, whereas other sites were somewhat protected. Although not true of the 1990 fires, there was evidence that occasionally Widdring-tonia stems may survive fire. At one site, four of the 16 plants sampled had a burned stem twice as old as the oldest burned stem on the other 12 plants at the site, suggesting some stems had survived the previous fire (ca. 1970) and this conclusion was supported by fire-scars on these four stems that dated to ca. 1970. Based on the highly significant correlation between stem diameter and cone density left standing after the 1990 fires, we calculated that for most sites > 80 % of the initial cone crop was incinerated by fire. This is important because we observed a strong relationship between size of the canopy cone crop surviving fire and post-fire seedling recruitment. Under these conditions we hypothesize that sprouting confers a selective advantage to genets when fires cause heavy losses of seed. The infrequent occurrence of sprouting in the Cupressaceae suggests the hypothesis that resprouting is an apomorphic or derived trait in Widdringtonia. Data from this study suggests resprouting provides a selective advantage under severe fynbos fires, which are not only 'stand-replacing fires,’but also are intense enough to incinerate cone-bearing stems.  相似文献   

10.
The resprouting response of different sized Banksia oblongifolia lignotubers (genets) was followed in two field experiments. In the first, the density and speed of resprouting, and the growth in length of the leading shoot from each lignotuber in response to fire and to the time elapsed since the last fire was monitored for 18 months after fire and clipping treatments. In the second, sizes of bud banks were estimated by repeatedly clipping new shoots from individual lignotubers. Density of resprouting (shoots dm?2 lignotuber) decreased with increasing lignotuber size, and the length of the leading shoot increased. The direct effect of fire was to reduce shoot density by about 75%. The speed of resprouting (time taken by a cohort of shoots to reach 50% of their peak density) was similar after fire and clipping, but leading shoots grew significantly longer after fire. The elapsed time since lignotubers were last burnt did not influence their density of resprouting, but it did influence the speed of resprouting. Shoots from clipped lignotubers that had burnt 3 years earlier took about 90 days to each 50% of their peak density while shoots on lignotubers last burnt 5 and 17 years earlier took about 40 days. Death of shoots was unrelated to crowding in any stand. More lignotubers from the oldest unburnt stand were grazed by herbivores. The number of buds converted into shoots after successive clippings was surprisingly small; for most lignotubers this reserve was less than three times the size of their standing crop of shoots. In general, the smaller lignotubers carried a higher proportion of dormant buds in relation to their standing crop of shoots. About 30% of buds remained dormant after the first clipping and about 10% after the second and third clippings. Evidence suggests that buds are replaced within 6 months of fire. No lignotubers survived four clippings over 15 months.  相似文献   

11.
Earlier studies indicate that some plant species allocate more mass to produce longer spines in shoots resprouting after browsing. Here we present, for the first time, evidence that fire induces a similar response. Many terrestrial herbivores may benefit from fire through the enhanced availability of fast growing species colonizing or re-sprouting in burned areas. It is less clear whether post-fire plant growth responds to the enhanced risk of herbivory by an increased investment in defensive traits. In this study, we tested whether the production of spines is influenced by the set of environmental conditions that result from fire events. We compared the resource allocation pattern of resprouting shoots from three Berberis species growing in two areas that burned 1999 with samples collected from unburned areas within the same plant communities. We divided the shoot into three main components: supporting tissue (twigs), assimilating tissue (leaves) and defensive structures (spines). We found that plants resprouting after fire allocated more mass to spines and leaves but not twigs. This resulted in a higher density of both spines and leaves. Spines were significantly longer in plants resprouting after fire. Leaves were shorter at the apical end of the shoot, but did not show any significant change in size following fire. We suggest that this type of post-fire response may be a general adaptation to pruning and leaf picking by browsing herbivores in arid and semi-arid regions. Changes in the browsing pressure following fire will determine the fitness value of this response.  相似文献   

12.
Populus deltoides is considered to be a weak resprouter and highly susceptible to wildfire, but few post‐wildfire studies have tracked P. deltoides response and resprouting within the Great Plains of North America. Following a wildfire in southwestern Kansas, U.S.A., we surveyed burned and unburned areas of a cottonwood riparian forest along the Cimarron River that included a major understory invader, tamarisk (Tamarix ramosissima Ledeb.). We tested the following hypotheses, which are consistent with the current understanding of P. deltoides response to wildfire in the Great Plains: (1) regeneration of P. deltoides will be low in areas burned by the wildfire; (2) the number of dead P. deltoides individuals will be greater in the wildfire than unburned areas; and (3) tamarisk regeneration will be higher than P. deltoides regeneration in the wildfire areas because tamarisk is considered a stronger resprouter. We found evidence contrary to two of our hypotheses 3 years following the wildfire. (1) P. deltoides regeneration was high following the wildfire, averaging 692 individuals/ha. (2) The number of dead mature cottonwood trees was greater in wildfire plots than in unburned plots. (3) There was more P. deltoides regeneration than tamarisk regeneration following wildfire. These findings, which diverge from the majority of studies examining P. deltoides regeneration in the Great Plains, suggest that differing local environmental and forest stand conditions, coupled with the timing and intensity of the fire, could be important determinants of riparian forest species' responses to wildfire.  相似文献   

13.
Climate change is altering disturbance regimes outside historical norms, which can impact biodiversity by selecting for plants with particular traits. The relative impact of disturbance characteristics on plant traits and community structure may be mediated by environmental gradients. We aimed to understand how wildfire impacted understory plant communities and plant regeneration strategies along gradients of environmental conditions and wildfire characteristics in boreal forests. We established 207 plots (60 m2) in recently burned stands and 133 plots in mature stands with no recent fire history in comparable gradients of stand type, site moisture (drainage) and soil organic layer (SOL) depth in two ecozones in Canada's Northwest Territories. At each plot, we recorded all vascular plant taxa in the understory and measured the regeneration strategy (seeder, resprouter, survivor) in burned plots, along with seedbed conditions (mineral soil and bryophyte cover). Dispersal, longevity and growth form traits were determined for each taxon. Fire characteristics measured included proportion of pre-fire SOL combusted (fire severity), date of burn (fire seasonality) and pre-fire stand age (time following fire). Results showed understory community composition was altered by fire. However, burned and mature stands had similar plant communities in wet sites with deep SOL. In the burned plots, regeneration strategies were determined by fire severity, drainage and pre- and post-fire SOL depth. Resprouters were more common in wet sites with deeper SOL and lower fire severity, while seeders were associated with drier sites with thinner SOL and greater fire severity. This led to drier burned stands being compositionally different from their mature counterparts and seedbed conditions were important. Our study highlights the importance of environment–wildfire interactions in shaping plant regeneration strategies and patterns of understory plant community structure across landscapes, and the overriding importance of SOL depth and site drainage in mediating fire severity, plant regeneration and community structure.  相似文献   

14.
We studied the effects of experimental warming and drought on the plant biomass of a Mediterranean shrubland. We monitored growth at plant level and biomass accumulation at stand level. The experimentation period stretched over 7 years (1999–2005) and we focused on the two dominant shrub species, Erica multiflora L. and Globularia alypum L. and the tree species Pinus halepensis L. The warming treatment increased shoot elongation in E. multiflora, and the drought treatment reduced shoot elongation in G. alypum. The elongation of P. halepensis remained unaffected under both treatments. The balance between the patterns observed in biomass accumulation for the three studied species in the drought plots (reduction in E. multiflora and P. halepensis and increase in G. alypum) resulted in a trend to reduce 33% the biomass of the drought treatment plots with respect to the untreated plots, which almost doubled their biomass from 1998 to 2005. The results also suggest that under drier conditions larger accumulation of dead biomass may occur at stand level, which combined with higher temperatures, may thus increase fire risk in the Mediterranean area.  相似文献   

15.
Effects of fire on growth and reproduction of the perennial forb Ratibida columnifera were studied on the Konza Prairie Research Natural Area in northeastern Kansas, USA. Populations were sampled in seven different tallgrass prairie watersheds that varied in fire frequency and in the number of years elapsed since the last fire. Plants from sites not burned for many years were 2.6 times larger and produced 50% more stems than plants from recently burned sites. Number of seeds per plant was also higher in long-unburned sites due to greater numbers of flower heads per plant and greater numbers of achenes produced per head. Reproductive effort (ratio of inflorescence biomass to total vegetative biomass) was 33% lower in annually burned prairie than in any of the other sites. Significant differences in the relationships of inflorescence biomass to vegetative plant biomass in burned vs. unburned sites indicated that burning causes direct changes in plant reproductive effort independent from its effects on plant size. There was no clear relationship between patterns of seed production among sites and patterns of R. columnifera abundance. Ratibida columnifera responses to fire are most likely a result of changes in the relative competitive abilities of forbs and the dominant perennial grasses due to post-fire changes in abiotic conditions rather than a result of direct effects of fire on the fate of buds and subsequent vegetative and floral development.  相似文献   

16.
Aims Fires play a crucial role mediating species interactions in the Mediterranean Basin, with one prominent example being the nursing effect of post-fire resprouting shrubs on tree recruits, which then outcompete their benefactors throughout succession. Yet, the community structuring role of resprouting shrubs as potential facilitators of post-fire recruiting subshrub species, which are commonly outcompeted in late post-fire stages, has been overlooked. The aims of this work were to investigate (i) whether proximity to resprouting shrubs increased the demographic performance of a fire-adapted carnivorous subshrub and (ii) whether mature shrubs negatively affected the performance of established plants through interference with prey capture.Methods To evaluate the facilitative effects of resprouting shrubs, we sowed seeds of Drosophyllum lusitanicum, a carnivorous, seeder pyrophyte, into two microhabitats in recently burned heathland patches defined by proximity to resprouting shrubs. We monitored key demographic rates of emerged seedlings for 2 years. To test for competitive effects of shrubs on plant performance at a later habitat regeneration stage, we placed greenhouse-reared, potted plants into distinct microhabitats in neighboring burned and unburned heathland patches and monitored prey capture. Both experiments were performed in the Aljibe Mountains at the Northern Strait of Gibraltar and were replicated in 2 years.Important findings Resprouting shrubs significantly improved survival, juvenile size and flowering probability compared with open microhabitats, and had no significantly negative effects on the growth of recruits. Prey capture was significantly lower in unburned heathland patches compared with burned ones, thus partly explaining the decrease in survival of Drosophyllum individuals in mature heathlands. However, microhabitat did not affect prey capture. Our findings suggest that not only periodic fires, removing biomass in mature stands, but also resprouting neighbors, increasing establishment success after fire, may be important for the viability of early successional pyrophytes.  相似文献   

17.
Woody plant encroachment into open grasslands occurs worldwide and causes multiple ecological and management impacts. Prescribed fire could be used to conserve grassland habitat but often has limited efficacy because many woody plants resprout after fire and rapidly reestablish abundance. If fire‐induced mortality could be increased, prescribed fire would be a more effective management tool. In California's central coast, shrub encroachment, especially of Baccharis pilularis (coyote brush), is converting coastal prairie into shrub‐dominated communities, with a consequent loss of native herbaceous species and open grassland habitat. B. pilularis has not been successfully controlled with single prescribed fire events because the shrub resprouts and reestablishes cover within a few years. We investigated whether two consecutive annual burns would control B. pilularis by killing resprouting shrubs, without reducing native herbaceous species or encouraging invasive plants. As expected, resprouting did occur; however, 2 years after the second burn, B. pilularis cover on burned plots was only 41% of the cover on unburned plots. Mortality of B. pilularis more than doubled following the second burn, likely maintaining a reduction in B. pilularis cover for longer than a single burn would have. Three native coastal prairie perennial grasses did not appear to be adversely affected by the two burns, nor did the burns result in increased cover of invasive species. Managers wanting to restore coastal prairie following B. pilularis encroachment should consider two consecutive annual burns, especially if moderate fire intensity is achievable.  相似文献   

18.
Fire is central to the ecology of Mediterranean‐type climate ecosystems, but little is known about the fire ecology of succulent plants therein. This study investigated the fire ecology of an arborescent succulent monocot, Kumara plicatilis (L.) G. D. Rowley (Asphodelaceae), a Cape fynbos endemic. Habitat suitability was assessed to determine whether the species tolerates or ‘avoids’ fire, and fire survival traits (bark thickness and tissue water content) were measured. The population size structure and density of three K. plicatilis populations were assessed after natural fires, and resprouting potential was investigated. Kumara plicatilis adopts a dual fire survival strategy, occupying rocky sites to ‘avoid’ fire and possessing morphological features that afford fire tolerance, e.g. well‐protected apical meristems and thick corky bark. Bark thickness of burned individuals in situ was similar to unburned plants, suggesting that K. plicatilis bark provides effective insulation against fire. Mortality rates were 64%, 40% and 11%, and decreased as rock cover at the population level increased. All three populations showed reduced plant density post‐fire, with greater density reductions associated with lower rock cover. Small plants appear most vulnerable to fire damage due to lower absolute bark thickness and plant heights within the flame zone. Kumara plicatilis is an apical sprouter, recovering after fire or mechanical stem damage by onward growth from surviving stem apices, rather than resprouting. Post‐fire population recovery therefore likely depends on inter‐fire recruitment.  相似文献   

19.
The rhizomatous perennial Pityopsis graminifolia was studied in a Florida sandhill community in an annually burned site, a periodically burned site, and a site that has been protected from fire since 1965. These different fire regimes significantly affected the demography and life histories of both plants and plant parts in this clonal species. Fires resulted in reductions in ramet biomass and height, and an increase in the (root + rhizome)/shoot biomass ratio. Burning also decreased the total number of flower heads and new rhizomes produced per ramet. However, the survivorship of initiated rhizomes was greater in burned sites and resulted in a larger number of established daughter ramets per clone. As a result, in burned sites there was a shift in clone structure toward larger numbers of smaller ramets, but there were no significant reductions in seed or rhizome production on a per genet basis. The results showed that the responses to fire in P. graminifolia are different when measured at the genet vs. ramet level and that the effects of fire on clones can be explained by demographic responses of plant parts. Population regeneration in the study sites was dependent on successful clonal ramet production because no seedling recruitment was observed. This suggests that disturbances other than fire are important for new genet recruitment in these clonal populations.  相似文献   

20.
Abstract Spring burning of sedge‐grass meadows in the Slave River Lowlands (SRL), Northwest Territories, Canada was applied between 1992 and 1998 to reduce shrub encroachment and enhance Bison bison (bison) habitat, although the impact of fire on preferred bison forage was unknown before management. In the summer of 1998 we conducted a study in the Hook Lake area of the SRL to test the effect of burn frequency (unburned, burned once, or burned three times since 1992) on herbaceous plant community composition and Salix spp. L. (willow) shrub vigor. Plant species abundance, litter biomass, soil pH, and depth of the organic soil horizon were measured in 300 1‐m2 quadrats nested within 30 1,000‐m2 plots in both burned and unburned dry meadows. To test the relationship between frequency and willow vigor, all willow shrubs within the plots were assigned a vigor score from I (dead) to IV (flourishing). The spring burns appear to have reduced willow vigor; however, shrub survival remained high (76%) on the most frequently burned meadows. Ordination plots resulting from canonical correspondence analysis suggest that multiple spring burns influenced plant community composition in dry meadow areas and that less palatable bison forage species (e.g., Carex aenea Fern. and Juncus balticus L.) were correlated with a regime of three spring burns. Our results suggest that frequent spring fires in the Hook Lake area have only a small negative effect on willow cover but may reduce the abundance of primary bison forage plants compared with less frequently burned meadows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号