首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Genomewide linkage scans have traditionally employed panels of microsatellite markers spaced at intervals of approximately 10 cM across the genome. However, there is a growing realization that a map of closely spaced single-nucleotide polymorphisms (SNPs) may offer equal or superior power to detect linkage, compared with low-density microsatellite maps. We performed a series of simulations to calculate the information content associated with microsatellite and SNP maps across a range of different marker densities and heterozygosities for sib pairs (with and without parental genotypes), sib trios, and sib quads. In the case of microsatellite markers, we varied density across 11 levels (1 marker every 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 cM) and marker heterozygosity across 6 levels (2, 3, 4, 5, 10, or 20 equally frequent alleles), whereas, in the case of SNPs, we varied marker density across 4 levels (1 marker every 0.1, 0.2, 0.5, or 1 cM) and minor-allele frequency across 7 levels (0.5, 0.4, 0.3, 0.2, 0.1, 0.05, and 0.01). When parental genotypes were available, a map consisting of microsatellites spaced every 2 cM or a relatively sparse map of SNPs (i.e., at least 1 SNP/cM) was sufficient to extract most of the inheritance information from the map (>95% in most cases). However, when parental genotypes were unavailable, it was important to use as dense a map of markers as possible to extract the greatest amount of inheritance information. It is important to note that the information content associated with a traditional map of microsatellite markers (i.e., 1 marker every ~10 cM) was significantly lower than the information content associated with a dense map of SNPs or microsatellites. These results strongly suggest that previous linkage studies that employed sparse microsatellite maps could benefit substantially from reanalysis by use of a denser map of markers.  相似文献   

2.
A genetic linkage map is a powerful research tool for mapping traits of interest and is essential to understanding genome evolution. The aim of this study is to provide an expanded genetic linkage map of common carp to effectively carry out quantitative trait loci analysis and conduct comparative mapping analysis between lineages. Here, we constructed a genetic linkage map of common carp (Cyprinus carpio L.) using microsatellite and single-nucleotide polymorphism (SNP) markers in a 159 sibling family. A total of 246 microsatellites and 306 SNP polymorphic markers were genotyped in this family. Linkage analysis using JoinMap 4.0 organized 427 markers (186 microsatellites and 241 SNPs) to 50 linkage groups, ranging in size from 1.4 to 130.1 cM. Each group contained 2-30 markers. The linkage map covered a genetic distance of 2,039.2 cM and the average interval for markers within the linkage groups was approximately 6.4 cM. In addition, comparative genome analysis within five model teleost fish revealed a high percentage (74.7%) of conserved loci corresponding to zebrafish chromosomes. In most cases, each zebrafish chromosome comprised two common carp linkage groups. The comparative analysis also revealed independent chromosome rearrangements in common carp and zebrafish. The linkage map will be of great assistance in mapping genes of interest and serve as a reference to approach comparative mapping and enable further insights into the comprehensive investigations of genome evolution of common carp.  相似文献   

3.
The efficacy of linkage studies using microsatellites and single-nucleotide polymorphisms (SNPs) was evaluated. Analyzed data were supplied by the Collaborative Study on the Genetics of Alcoholism (COGA). Alcoholism was analyzed together with a simulated trait caused by a gene of known position, through a nonparametric linkage test (NPL). For the alcoholism trait, four densities of SNPs (1 SNP per 0.2 cM, 0.5 cM, 1 cM and 2 cM) showed higher peaks of NPL z scores and smaller significant p-values than the usual 10-cM density of microsatellites. However, the two highest densities of SNPs had unstable z score signals, and therefore were difficult to interpret. Analyzing a simulated trait with the same markers in the same pedigrees, we confirmed the higher power of all four densities of SNPs compared to the 10-cM microsatellites panel, although the existence of other confounding peaks was confirmed for maps that are denser than 1 SNP/cM. We further showed that estimating the gene position using SNPs is far less biased than using the usual panel of microsatellites (biases of 0-2 cM for SNPs vs. 8.9 cM for microsatellites). We conclude that using dense maps of SNPs in linkage analysis is more powerful and less biased than using the 10-cM maps of microsatellites. However, linkage signals can be unstable and difficult to interpret when several SNPs are genotyped per centimorgan. The power and accuracy of 1 SNP/cM or 1 SNP/2 cM may be sufficient in a genome-wide linkage scan while denser maps may be most useful in fine-gene mapping studies exploiting linkage disequilibrium.  相似文献   

4.
A genetic linkage map of the channel catfish genome (N = 29) was constructed using EST-based microsatellite and single nucleotide polymorphism (SNP) markers in an interspecific reference family. A total of 413 microsatellites and 125 SNP markers were polymorphic in the reference family. Linkage analysis using JoinMap 4.0 allowed mapping of 331 markers (259 microsatellites and 72 SNPs) to 29 linkage groups. Each linkage group contained 3–18 markers. The largest linkage group contained 18 markers and spanned 131.2 cM, while the smallest linkage group contained 14 markers and spanned only 7.9 cM. The linkage map covered a genetic distance of 1811 cM with an average marker interval of 6.0 cM. Sex-specific maps were also constructed; the recombination rate for females was 1.6 times higher than that for males. Putative conserved syntenies between catfish and zebrafish, medaka, and Tetraodon were established, but the overall levels of genome rearrangements were high among the teleost genomes. This study represents a first-generation linkage map constructed by using EST-derived microsatellites and SNPs, laying a framework for large-scale comparative genome analysis in catfish. The conserved syntenies identified here between the catfish and the three model fish species should facilitate structural genome analysis and evolutionary studies, but more importantly should facilitate functional inference of catfish genes. Given that determination of gene functions is difficult in nonmodel species such as catfish, functional genome analysis will have to rely heavily on the establishment of orthologies from model species.  相似文献   

5.
Despite the theoretical evidence of the utility of single-nucleotide polymorphisms (SNPs) for linkage analysis, no whole-genome scans of a complex disease have yet been published to directly compare SNPs with microsatellites. Here, we describe a whole-genome screen of 157 families with multiple cases of rheumatoid arthritis (RA), performed using 11,245 genomewide SNPs. The results were compared with those from a 10-cM microsatellite scan in the same cohort. The SNP analysis detected HLA*DRB1, the major RA susceptibility locus (P=.00004), with a linkage interval of 31 cM, compared with a 50-cM linkage interval detected by the microsatellite scan. In addition, four loci were detected at a nominal significance level (P<.05) in the SNP linkage analysis; these were not observed in the microsatellite scan. We demonstrate that variation in information content was the main factor contributing to observed differences in the two scans, with the SNPs providing significantly higher information content than the microsatellites. Reducing the number of SNPs in the marker set to 3,300 (1-cM spacing) caused several loci to drop below nominal significance levels, suggesting that decreases in information content can have significant effects on linkage results. In contrast, differences in maps employed in the analysis, the low detectable rate of genotyping error, and the presence of moderate linkage disequilibrium between markers did not significantly affect the results. We have demonstrated the utility of a dense SNP map for performing linkage analysis in a late-age-at-onset disease, where DNA from parents is not always available. The high SNP density allows loci to be defined more precisely and provides a partial scaffold for association studies, substantially reducing the resource requirement for gene-mapping studies.  相似文献   

6.
Ulgen A  Li W 《BMC genetics》2005,6(Z1):S13
We compared linkage analysis results for an alcoholism trait, ALDX1 (DSM-III-R and Feigner criteria) using a nonparametric linkage analysis method, which takes into account allele sharing among several affected persons, for both microsatellite and single-nucleotide polymorphism (SNP) markers (Affymetrix and Illumina) in the Collaborative Study on the Genetics of Alcoholism (COGA) dataset provided to participants at the Genetic Analysis Workshop 14 (GAW14). The two sets of linkage results from the dense Affymetrix SNP markers and less densely spaced Illumina SNP markers are very similar. The linkage analysis results from microsatellite and SNP markers are generally similar, but the match is not perfect. Strong linkage peaks were found on chromosome 7 in three sets of linkage analyses using both SNP and microsatellite marker data. We also observed that for SNP markers, using the given genetic map and using the map by converting 1 megabase pair (1 Mb) to 1 centimorgan (cM), did not change the linkage results. We recommend the use of the 1 Mb-to-1 cM converted map in a first round of linkage analysis with SNP markers in which map integration is an issue.  相似文献   

7.
8.
High density lipoprotein cholesterol (HDL-C) is inversely associated with coronary heart disease and has a genetic component; however, linkage to HDL-C is not conclusive. Subfractions of HDL, such as HDL(3)-C, may be better phenotypes for linkage studies. Using HDL(3)-C levels measured on 907 Framingham Heart Study subjects from 330 families around 1987, we conducted a genome-wide variance components linkage analysis with 401 microsatellite markers spaced approximately 10 centimorgan (cM) apart. Nine candidate genes were identified and annotated using a bioinformatics approach in the region of the highest linkage peak. Twenty-eight single nucleotide polymorphisms (SNPs) were selected from these candidate genes, and linkage and family-based association fine mapping were conducted using these SNPs. The highest multipoint log-of-the-odds (LOD) score from the initial linkage analysis was 3.7 at 133 cM on chromosome 6. Linkage analyses with additional SNPs yielded the highest LOD score of 4.0 at 129 cM on chromosome 6. Family-based association analysis revealed that SNP rs2257104 in PLAGL1 at approximately 143 cM was associated with multivariable adjusted HDL(3) (P = 0.03). Further study of the linkage region and exploration of other variants in PLAGL1 are warranted to define the potential functional variants of HDL-C metabolism.  相似文献   

9.
Single nucleotide polymorphisms (SNPs) were used to construct an integrated SNP linkage map of peach (Prunus persica (L.) Batsch). A set of 1,536 SNPs were evaluated with the GoldenGate® Genotyping assay in two mapping populations, Pop-DF, and Pop-DG. After genotyping and filtering, a final set of 1,400 high quality SNPs in Pop-DF and 962 in Pop-DG with full map coverage were selected and used to construct two linkage maps with JoinMap®4.0. The Pop-DF map covered 422 cM of the peach genome and included 1,037 SNP markers, and Pop-DG map covered 369 cM and included 738 SNPs. A consensus map was constructed with 588 SNP markers placed in eight linkage groups (n?=?8 for peach), with map coverage of 454 cM and an average distance of 0.81 cM/marker site. Placements of SNPs on the “peach v1.0” physical map were compared to placement on the linkage maps and several differences were observed. Using the SNP linkage map of Pop-DG and phenotypic data collected for three harvest seasons, a QTL analysis for fruit quality traits and chilling injury symptoms was carried out with the mapped SNPs. Significant QTL effects were detected for mealiness (M) and flesh bleeding (FBL) QTLs on linkage group 4 and flesh browning (FBr) on linkage group 5. This study represents one of the first examples of QTL detection for quality traits and chilling injury symptoms using a high-density SNP map in a single peach F1 family.  相似文献   

10.
Recent advances in technologies for high-throughout single-nucleotide polymorphism (SNP)-based genotyping have improved efficiency and cost so that it is now becoming reasonable to consider the use of SNPs for genomewide linkage analysis. However, a suitable screening set of SNPs and a corresponding linkage map have yet to be described. The SNP maps described here fill this void and provide a resource for fast genome scanning for disease genes. We have evaluated 6,297 SNPs in a diversity panel composed of European Americans, African Americans, and Asians. The markers were assessed for assay robustness, suitable allele frequencies, and informativeness of multi-SNP clusters. Individuals from 56 Centre d'Etude du Polymorphisme Humain pedigrees, with >770 potentially informative meioses altogether, were genotyped with a subset of 2,988 SNPs, for map construction. Extensive genotyping-error analysis was performed, and the resulting SNP linkage map has an average map resolution of 3.9 cM, with map positions containing either a single SNP or several tightly linked SNPs. The order of markers on this map compares favorably with several other linkage and physical maps. We compared map distances between the SNP linkage map and the interpolated SNP linkage map constructed by the deCode Genetics group. We also evaluated cM/Mb distance ratios in females and males, along each chromosome, showing broadly defined regions of increased and decreased rates of recombination. Evaluations indicate that this SNP screening set is more informative than the Marshfield Clinic's commonly used microsatellite-based screening set.  相似文献   

11.
Genetic maps serve as frameworks for determining the genetic architecture of quantitative traits, assessing structure of a genome, as well as aid in pursuing association mapping and comparative genetic studies. In this study, a dense genetic map was constructed using a high-throughput 1,536 EST-derived SNP GoldenGate genotyping platform and a global consensus map established by combining the new genetic map with four existing reliable genetic maps of apple. The consensus map identified markers with both major and minor conflicts in positioning across all five maps. These major inconsistencies among marker positions were attributed either to structural variations within the apple genome, or among mapping populations, or genotyping technical errors. These also highlighted problems in assembly and anchorage of the reference draft apple genome sequence in regions with known segmental duplications. Markers common across all five apple genetic maps resulted in successful positioning of 2875 markers, consisting of 2033 SNPs and 843 SSRs as well as other specific markers, on the global consensus map. These markers were distributed across all 17 linkage groups, with an average of 169±33 marker per linkage group and with an average distance of 0.70±0.14 cM between markers. The total length of the consensus map was 1991.38 cM with an average length of 117.14±24.43 cM per linkage group. A total of 569 SNPs were mapped onto the genetic map, consisting of 140 recombinant individuals, from our recently developed apple Oligonucleotide pool assays (OPA). The new functional SNPs, along with the dense consensus genetic map, will be useful for high resolution QTL mapping of important traits in apple and for pursuing comparative genetic studies in Rosaceae.  相似文献   

12.
A linkage map was constructed for bovine chromosome 6 (BTA6), using 399 single nucleotide polymorphisms (SNPs) detected primarily from PCR-resequencing. The efficiency of SNP detection was highly dependent on the source of sequence information chosen for primer design (BAC-end sequences, introns or promoters). The SNPs were used to build a linkage map comprising 104 cM on BTA6. The SNP order in the linkage map corresponded very well with radiation hybrid (RH) maps available for BTA6 as well as with expected positions in the human comparative map, but diverged significantly from the current assembly of the bovine genome (Btau_3.1). When performing linkage analysis with the marker order suggested from the Btau_3.1 we observed an expansion of the genetic map from 104 cM to 137 cM, strongly suggesting a reordering of scaffolds in the current version of the bovine genome assembly. The extent of LD on BTA6 was evaluated by calculating the average r 2 for SNP pairs separated by given distances. The decline of LD was rapid with distance, such that r 2 was 0.1 at 100 kb. Our results indicate that linkage mapping will be a valuable source of information for correcting errors in the current bovine assembly. These errors were sufficiently frequent to be of concern for the accuracy of mapping QTL with panels of SNPs whose positions are based on the current assembly.  相似文献   

13.
The Collaborative Study on the Genetics of Alcoholism (COGA) is a large-scale family study designed to identify genes that affect the risk for alcoholism and alcohol-related phenotypes. We performed genome-wide linkage analyses on the COGA data made available to participants in the Genetic Analysis Workshop 14 (GAW 14). The dataset comprised 1,350 participants from 143 families. The samples were analyzed on three technologies: microsatellites spaced at 10 cM, Affymetrix GeneChip Human Mapping 10 K Array (HMA10K) and Illumina SNP-based Linkage III Panel. We used ALDX1 and ALDX2, the COGA definitions of alcohol dependence, as well as electrophysiological measures TTTH1 and ECB21 to detect alcoholism susceptibility loci. Many chromosomal regions were found to be significant for each of the phenotypes at a p-value of 0.05. The most significant region for ALDX1 is on chromosome 7, with a maximum LOD score of 2.25 for Affymetrix SNPs, 1.97 for Illumina SNPs, and 1.72 for microsatellites. The same regions on chromosome 7 (96-106 cM) and 10 (149-176 cM) were found to be significant for both ALDX1 and ALDX2. A region on chromosome 7 (112-153 cM) and a region on chromosome 6 (169-185 cM) were identified as the most significant regions for TTTH1 and ECB21, respectively. We also performed linkage analysis on denser maps of markers by combining the SNPs datasets from Affymetrix and Illumina. Adding the microsatellite data to the combined SNP dataset improved the results only marginally. The results indicated that SNPs outperform microsatellites with the densest marker sets performing the best.  相似文献   

14.
Single nucleotide polymorphisms (SNPs), or biallelic markers, are popular in genetic linkage studies due to their abundance in the genome, stability, and ease of scoring. We determined the 'information ratio' (IR) of closely spaced SNPs in simulated nuclear families and affected sib pairs (ASPs). (The IR is the ratio of actual average maximum lod score to the maximum lod score attainable if the marker were fully informative.) The nuclear families included parental information, whereas the ASPs did not. We analyzed these SNPs in two ways: (1) using multipoint analysis, and (2) treating the SNPs as 'composite markers' (i.e., haplotypes, as assigned by GENEHUNTER). (3) We also calculated the IR of a single microsatellite marker with multiple alleles and compared with the IR from the SNPs. For each set of input conditions, we simulated 1000 nuclear families, of 2, 3, 4, or 5 children each, as well as 1000 ASPs. We generated SNP marker data for strings of k = 1, 2, 3, 5, 7, and 10 SNP loci, with no recombination (theta = 0) and no linkage disequilibrium among the SNPs. The MAF (minor allele frequency) was either 0.5 or 0.25, and allele frequencies were the same for all k loci in any analysis. We also generated marker data for one single-locus microsatellite marker, with m = 3, 4, 5, 6, 7, and 9 equally frequent alleles. In all simulations, the disease was fully penetrant dominant, and there was no recombination or linkage disequilibrium among markers or between marker and disease. When multipoint analysis was used, we found that 5-7 closely spaced SNPs were usually enough to yield an IR of approximately 100%, for nuclear families of any size. However, for the ASPs, even 7-10 SNPs yielded an IR of only 70-80%. A microsatellite with 9 equally frequent alleles yielded about the same IR (86-88%) as a string of 4-5 SNPs, in nuclear families. SNPs analyzed as 'composite markers' analyses performed worse, due to the inherent ambiguity of SNP haplotyping.  相似文献   

15.
We have constructed a genetic map for a tilapia, Oreochromis niloticus, using DNA markers. The segregation of 62 microsatellite and 112 anonymous fragment length polymorphisms (AFLPs) was studied in 41 haploid embryos derived from a single female. We have identified linkages among 162 (93.1%) of these markers. 95% of the microsatellites and 92% of the AFLPs were linked in the final map. The map spans 704 Kosambi cM in 30 linkage groups covering the 22 chromosomes of this species. Twenty-four of these linkage groups contain at least one microsatellite polymorphism. From the number of markers 15 or fewer cM apart, we estimate a total map length of approximately 1000-1200 cM. High levels of interference are observed, consistent with measurements in other fish species. This map is a starting point for the mapping of single loci and quantitative traits in cichlid fishes.  相似文献   

16.
We performed linkage and linkage disequilibrium (LD) mapping analyses to compare the power between microsatellite and single nucleotide polymorphism (SNP) markers. Chromosome-wide analyses were performed for a quantitative electrophysiological phenotype, ttth1, on chromosome 7. Multipoint analysis of microsatellite markers using the variance component (VC) method showed the highest LOD score of 4.20 at 162 cM, near D7S509 (163.7 cM). Two-point analysis of SNPs using the VC method yielded the highest LOD score of 3.98 in the Illumina SNP data and 3.45 in the Affymetrix SNP data around 152-153 cM. In family-based single SNP and SNP haplotype LD analysis, we identified seven SNPs associated with ttth1. We searched for any potential candidate genes in the location of the seven SNPs. The SNPs rs1476640 and rs768055 are located in the FLJ40852 gene (a hypothetical protein), and SNP rs1859646 is located in the TAS2R5 gene (a taste receptor). The other four SNPs are not located in any known or annotated genes. We found the high density SNP scan to be superior to microsatellites because it is effective in downstream fine mapping due to a better defined linkage region. Our study proves the utility of high density SNP in genome-wide mapping studies.  相似文献   

17.
Twenty-six (CA)n polymorphic microsatellites were isolated from a flow-sorted chromosome 20 library. To reduce the number of sequencing gels, these microsatellites were genotyped on 15 CEPH families using a procedure derived from the multiplex sequencing technique of G. M. Church and S. Kieffer-Higgins (1988, Science 240:185-188). A primary map with a strongly supported order was constructed with 15 (CA)n markers. Regional localizations for the 11 other microsatellites were obtained with regard to the primary map. The 26 loci span approximately 160 cM. Regional localizations for a set of index markers (D20S4, D20S6, D20S16, and D20S19) and for other markers from the CEPH Public Database (D20S5, D20S15, D20S17, and D20S18) have also been determined. The total map spans a genetic distance of approximately 195 cM extending from the (CA)n marker IP20M7 on 20p to D20S19 on 20q. The density of microsatellite markers is markedly higher in the pericentromeric region, with an average distance of 3 to 4 cM between adjacent markers over a distance of 43 cM. Two-thirds of these randomly isolated microsatellites are clustered in that region between D20S5 and D20S16 representing approximately one-fourth of the linkage map. This might suggest a nonrandom distribution of (CA)n simple sequence repeats on this chromosome.  相似文献   

18.
Linkage maps are valuable tools in genetic and genomic studies. For sweet cherry, linkage maps have been constructed using mainly microsatellite markers (SSRs) and, recently, using single nucleotide polymorphism markers (SNPs) from a cherry 6K SNP array. Genotyping-by-sequencing (GBS), a new methodology based on high-throughput sequencing, holds great promise for identification of high number of SNPs and construction of high density linkage maps. In this study, GBS was used to identify SNPs from an intra-specific sweet cherry cross. A total of 8,476 high quality SNPs were selected for mapping. The physical position for each SNP was determined using the peach genome, Peach v1.0, as reference, and a homogeneous distribution of markers along the eight peach scaffolds was obtained. On average, 65.6% of the SNPs were present in genic regions and 49.8% were located in exonic regions. In addition to the SNPs, a group of SSRs was also used for construction of linkage maps. Parental and consensus high density maps were constructed by genotyping 166 siblings from a ‘Rainier’ x ‘Rivedel’ (Ra x Ri) cross. Using Ra x Ri population, 462, 489 and 985 markers were mapped into eight linkage groups in ‘Rainier’, ‘Rivedel’ and the Ra x Ri map, respectively, with 80% of mapped SNPs located in genic regions. Obtained maps spanned 549.5, 582.6 and 731.3 cM for ‘Rainier’, ‘Rivedel’ and consensus maps, respectively, with an average distance of 1.2 cM between adjacent markers for both ‘Rainier’ and ‘Rivedel’ maps and of 0.7 cM for Ra x Ri map. High synteny and co-linearity was observed between obtained maps and with Peach v1.0. These new high density linkage maps provide valuable information on the sweet cherry genome, and serve as the basis for identification of QTLs and genes relevant for the breeding of the species.  相似文献   

19.
Catfish is the leading aquaculture species in the United States. The interspecific hybrid catfish produced by mating female channel catfish with male blue catfish outperform both of their parent species in a number of traits. However, mass production of the hybrids has been difficult because of reproductive isolation. Investigations of genome structure and organization of the hybrids provide insights into the genetic basis for maintenance of species divergence in the face of gene flow, thereby helping develop strategies for introgression and efficient production of the hybrids for aquaculture. In this study, we constructed a high‐density genetic linkage map using the hybrid catfish system with the catfish 250K SNP array. A total of 26 238 SNPs were mapped to 29 linkage groups, with 12 776 unique marker positions. The linkage map spans approximately 3240 cM with an average intermarker distance of 0.25 cM. A fraction of markers (986 of 12 776) exhibited significant deviation from the expected Mendelian ratio of segregation, and they were clustered in major genomic blocks across 15 LGs, most notably LG9 and LG15. The distorted markers exhibited significant bias for maternal alleles among the backcross progenies, suggesting strong selection against the blue catfish alleles. The clustering of distorted markers within genomic blocks should lend insights into speciation as marked by incompatibilities between the two species. Such findings should also have profound implications for understanding the genomic evolution of closely related species as well as the introgression of hybrid production programs in aquaculture.  相似文献   

20.
Linkage mapping of gene-associated SNPs to pig chromosome 11   总被引:3,自引:0,他引:3  
Single nucleotide polymorphisms (SNPs) were discovered in porcine expressed sequence tags (ESTs) orthologous to genes from human chromosome 13 (HSA13) and predicted to be located on pig chromosome 11 (SSC11). The SNPs were identified as sequence variants in clusters of EST sequences from pig cDNA libraries constructed in the Sino-Danish pig genome project. In total, 312 human gene sequences from HSA13 were used for similarity searches in our pig EST database. Pig ESTs showing significant similarity with HSA13 genes were clustered and candidate SNPs were identified. Allele frequencies for 26 SNPs were estimated in a group of 80 unrelated pigs from Danish commercial pig breeds: Duroc, Hampshire, Landrace and Large White. Eighteen of the 26 SNPs genotyped in the PiGMaP Reference Families were mapped by linkage analysis to SSC11. The EST-based SNPs published here are new genetic markers useful for linkage and association studies in commercial and experimental pig populations. This study represents the first gene-associated SNP linkage map of pig chromosome 11 and adds new comparative mapping information between SSC11 and HSA13. Furthermore, our data facilitate future studies aimed at the identification of interesting regions on pig chromosome 11, positional cloning and fine mapping of quantitative trait loci in pig.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号