首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 518 毫秒
1.
Glucocorticoids are thought to inhibit growth hormone (GH) secretion through an enhancement of endogenous somatostatin tone. The aim of our study was to evaluate the effects of GH-releasing hormone (GHRH) and clonidine, an alpha-2-adrenergic agonist which increases GH secretion acting at the hypothalamic level with an unknown mechanism, on GH secretion in seven adult patients (3M, 4F) with non endocrine diseases and on daily immunosuppressive glucocorticoid therapy. Eleven normal subjects (7M, 4F) served as controls. Steroid-treated patients showed a blunted GH response to GHRH (GH peak 8.3 +/- 3 micrograms/L) with respect to normal subjects (GH peak 19.3 +/- 2.4 micrograms/L). The GH responses to clonidine were also blunted (p less than 0.05) in steroid-treated patients (GH peak 5.8 +/- 2.8 micrograms/L) with respect to normal subjects (GH peak 17.6 +/- 2.3 micrograms/L). No significant differences between the GH responses to GHRH and clonidine were observed either in steroid-treated or in normal subjects. Clonidine is not able to enhance GH secretion similar to GHRH in patients chronically treated with steroids. It can be hypothesized that clonidine does not elicit GH secretion decreasing hypothalamic somatostatin tone.  相似文献   

2.
Patients with hyperthyroidism have reduced GH responses to pharmacological stimuli and reduced spontaneous nocturnal GH secretion. The stimulatory effect of arginine on GH secretion has been suggested to depend on a decrease in hypothalamic somatostatin tone. The aim of our study was to evaluate the effects of arginine on the GH-releasing hormone (GHRH)-stimulated GH secretion in patients with hyperthyroidism. Six hyperthyroid patients with recent diagnosis of Graves' disease [mean age +/- SEM, 39.2 +/- 1.4 years; body mass index (BMI) 22 +/- 0.4 kg/m2] and 6 healthy nonobese volunteers (4 males, 2 females; mean age +/- SEM, 35 +/- 3.5 years) underwent two experimental trials at no less than 7-day intervals: GHRH (100 micrograms, i.v.)-induced GH secretion was evaluated after 30 min i.v. infusion of saline (100 ml) or arginine (30 g) in 100 ml of saline. Hyperthyroid patients showed blunted GH peaks after GHRH (13.2 +/- 2.9 micrograms/l) as compared with normal subjects (23.8 +/- 3.9 micrograms/l, p < 0.05). GH peaks after GHRH were only slightly enhanced by arginine in hyperthyroid subjects (17.6 +/- 2.9 micrograms/l), whereas, in normal subjects, the enhancement was clear cut (36.6 +/- 4.4 micrograms/l; p < 0.05). GH values after arginine + GHRH were still lower in hyperthyroid patients with respect to normal subjects. Our data demonstrate that arginine enhances but does not normalize the GH response to GHRH in patients with hyperthyroidism when compared with normal subjects. We hypothesize that hyperthyroxinemia may decrease GH secretion, both increasing somatostatin tone and acting directly at the pituitary level.  相似文献   

3.
Patients with hyperthyroidism have reduced growth hormone (GH) responses to pharmacological stimuli and reduced spontaneous nocturnal GH secretion. The stimulatory effect of clonidine on GH secretion has been suggested to depend on an enhancement of hypothalamic GH-releasing hormone (GHRH) release. The aim of our study was to evaluate the effects of clonidine and GHRH on GH secretion in patients with hyperthyroidism. Eight hyperthyroid females with recent diagnosis of Graves' disease (age range 20-55 years, body mass index range 19.2-26.2 kg/m2) and 6 healthy female volunteers (age range 22-35 years, body mass index range 19-25 kg/m2) underwent two experimental trials at no less than 7-day intervals: (a) an intravenous infusion of clonidine 150 micrograms in 10 ml of saline, or (b) a bolus intravenous injection of human GHRH (1-29)NH2, 100 micrograms in 1 ml of saline. Hyperthyroid patients showed blunted GH peaks after clonidine (7.1 +/- 1.7 micrograms/l) as compared to normal subjects receiving clonidine (28.5 +/- 4.9 micrograms/l, p less than 0.05). GH peaks after GHRH were also significantly lower in hyperthyroid subjects (8.0 +/- 1.7 micrograms/l) as compared to normal subjects receiving GHRH (27.5 +/- 4.4 micrograms/l, p less than 0.05). No significant differences in the GH values either after clonidine or GHRH were observed in the two groups of subjects examined. Our data demonstrate that the GH responses to clonidine as well as to GHRH in patients with hyperthyroidism are inhibited in a similar fashion with respect to normal subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Cyproheptadine (CPH)--a putative serotonin antagonist--is known to inhibit growth hormone (GH) response to various pharmacological stimuli, as well as during sleep. To elucidate the possible site at which this drug takes effect, we examined plasma GH and somatostatin response to i.v. GHRH1-44 (1 microgram/kg body wt.) before and after CPH treatment in 10 healthy volunteers. The oral administration of CPH (8-12 mg daily for 5 days; total dose 56 mg) significantly curbed GH response to GHRH as expressed in peak plasma GH values (32.0 +/- 6.1 micrograms/l vs. 12.6 +/- 3.2 micrograms/l; P less than 0.01) and in integrated GH response area (2368 +/- 517 micrograms x l-1 x 2 h vs. 744 +/- 172 micrograms x l-1 x 2 h; P less than 0.01). Plasma somatostatin levels did not change in response to GHRH.  相似文献   

5.
The aim of our study was to investigate the effects of aging on the growth hormone (GH) response to growth hormone-releasing hormone (GHRH) alone and in combination with either the neuropeptide galanin or the acetylcholinesterase inhibitor pyridostigmine (PD) in normal subjects. In protocol 1 (GHRH/galanin), 9 old healthy volunteers, ranging in age from 68 to 97 years, and 6 young subjects, ranging in age from 25 to 31 years, received: (a) human GHRH (1-29)NH2, 100 micrograms in 1 ml saline, as an intravenous bolus, and (b) porcine galanin, 500 micrograms in 100 ml saline, as an intravenous infusion from -10 to 30 min combined with GHRH, 100 micrograms i.v. at time 0. In protocol 2 (GHRH/PD), 14 old healthy volunteers, ranging in age from 65 to 91 years, and 11 young subjects, ranging in age from 19 to 34 years, received: (a) GHRH (1-29)NH2, 100 micrograms in 1 ml saline, as an intravenous bolus, and (b) PD, 120 mg administered per os 60 min before GHRH, 100 micrograms as an intravenous bolus. Blood samples for GH were drawn at -75, -60 (time of PD administration), -45, -30, -15, -10 (time of beginning of galanin infusion), 0 (time of GHRH injection), 15, 30, 45, 60, 90, and 120 min. The GH response to GHRH was significantly (< 0.05) enhanced either by galanin or PD pretreatment both in young and old subjects. However, the GH response to GHRH alone or combined with either galanin or PD was significantly greater in the young subjects as compared to the old subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Short children who respond normally to growth hormone (GH) stimulation, but have a subnormal spontaneous secretion of GH (neurosecretory GH dysfunction, NSD) are treated with exogenous GH which might suppress their endogenous GH secretion. The effect of chronic administration of GH (8-24 months) on plasma GH responses to GHRH, clonidine and spontaneous GH secretion were studied in 17 NSD patients. The diagnosis of NSD was based on a normal GH response to clonidine (greater than 10 micrograms/l) and an integrated concentration of (IC-GH) GH less than 3.2 micrograms/l. The GH dose used in this study was 0.25 IU/kg three times a week in 10 patients and 0.05 IU/kg daily in 7 patients. Insulin-like growth factor I levels (nmol) increased significantly on therapy from 9.3 +/- 3.8 to 24.4 +/- 22.4 (p less than 0.001). The GH response (microgram/l) to GHRH was 20.4 +/- 5.5 before treatment and 22.4 +/- 6.2 on GH. Peak GH after clonidine was 22.4 +/- 8.9 and 22.8 +/- 8.1, respectively. There was no significant decrease in the number of GH spontaneous peaks (1.8 +/- 0.7 vs. 2.0 +/- 0.7, respectively) or in the area under the curve. A subcutaneous GH bolus of 0.25 IU/kg in 4 patients resulted in a GH peak of 55-82 micrograms/l at 3-5 h and a gradual return to basal levels at 15-20 h after GH administration. The first spontaneous GH peak appeared 26-28 h after GH injection, peak amplitude was 10-15 micrograms/l.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Human immunodeficiency virus (HIV)-lipodystrophy is a syndrome characterized by changes in fat distribution and insulin resistance. Prior studies suggest markedly reduced growth hormone (GH) levels in association with excess visceral adiposity among patients with HIV-lipodystrophy. We investigated mechanisms of altered GH secretion in a population of 13 male HIV-infected patients with evidence of fat redistribution, compared with 10 HIV-nonlipodystrophic patients and 11 male healthy controls similar in age and body mass index (BMI). Although similar in BMI, the lipodystrophic group was characterized by increased visceral adiposity, free fatty acids (FFA), and insulin and reduced extremity fat. We investigated ghrelin and the effects of acute lowering of FFA by acipimox on GH responses to growth hormone-releasing hormone (GHRH). We also investigated somatostatin tone, comparing GH response to combined GHRH and arginine vs. GHRH alone with a subtraction algorithm. Our data demonstrate an equivalent number of GH pulses (4.1 +/- 0.6, 4.7 +/- 0.8, and 4.5 +/- 0.3 pulses/12 h in the HIV-lipodystrophic, HIV-nonlipodystrophic, and healthy control groups, respectively, P > 0.05) but markedly reduced GH secretion pulse area (1.14 +/- 0.27 vs. 4.67 +/- 1.24 ng.ml(-1).min, P < 0.05, HIV-lipodystrophic vs. HIV-nonlipodystrophic; 1.14 +/- 0.27 vs. 3.18 +/- 0.92 ng.ml(-1).min, P < 0.05 HIV-lipodystrophic vs. control), GH pulse area, and GH pulse width in the HIV-lipodystrophy patients compared with the control groups. Reduced ghrelin (418 +/- 46 vs. 514 +/- 37 pg/ml, P < 0.05, HIV-lipodystrophic vs. HIV-nonlipodystrophic; 418 +/- 46 vs. 546 +/- 45 pg/ml, P < 0.05, HIV-lipodystrophic vs. control), impaired GH response to GHRH by excess FFA, and increased somatostatin tone contribute to reduced GH secretion in patients with HIV-lipodystrophy. These data provide novel insight into the metabolic regulation of GH secretion in subjects with HIV-lipodystrophy.  相似文献   

8.
Growth hormone-releasing hormone, GHRH(1-44), was administered intranasally to 16 healthy young adult male volunteers in a placebo-controlled study using a dose of 1,000 micrograms dissolved in two different solvent vehicles: water alone and water with the surface tension-lowering agent Tween 80 (0.12%). The growth hormone (GH)-releasing effects of intranasal GHRH as well as that of the vehicle were established and compared to the effects of 80 micrograms intravenous GHRH. Plasma GH response was assessed by frequent blood sampling over an 180-min period, using both peak response and area under the curve (AUC). The results show that the GH-release effects of intranasal GHRH are comparable whichever vehicle is used, and are similar, with the dose of 1,000 micrograms, to the response obtained following the administration of 80 micrograms intravenous GHRH. Peak GH responses to GHRH (means +/- SEM) were 25.6 +/- 4.2 ng/ml (1,000 micrograms GHRH with water), 32.9 +/- 9.1 ng/ml (1,000 micrograms with water plus Tween 80) and 36.3 +/- 7.8 ng/ml (80 micrograms i.v. administration) (not significant). There was no significant GH response to placebo. Mean peak GH responses occurred after approximately 30 min in all three active treatments (29.2 +/- 2.7, 33.9 +/- 3.2 and 30.9 +/- 3.9 min, respectively). The AUC values (ng.min.ml-1) were not statistically different: 1,914.4 +/- 386.7 (water), 2,176.2 +/- 599.9 (water plus Tween 80) and 2,419.2 +/- 506.9 (i.v.) (not significant). Intranasal GHRH administration was well tolerated in all subjects. Occasional local reactions consisted of a prickly sensation in the nostrils or sneezing irrespective of the vehicle used.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
R F Walker  S W Yang  B B Bercu 《Life sciences》1991,49(20):1499-1504
Aging is associated with a blunted growth hormone (GH) secretory response to GH-releasing hormone (GHRH), in vivo. The objective of the present study was to assess the effects of aging on the GH secretory response to GH-releasing hexapeptide (GHRP-6), a synthetic GH secretagogue. GHRP-6 (30 micrograms/kg) was administered alone or in combination with GHRH (2 micrograms/kg) to anesthetized female Fischer 344 rats, 3 or 19 months of age. The peptides were co-administered to determine the effect of aging upon the potentiating effect of GHRP-6 on GHRH activity. The increase in plasma GH as a function of time following administration of GHRP-6 was lower (p less than 0.001) in old rats than in young rats; whereas the increase in plasma GH secretion as a function of time following co-administration of GHRP-6 and GHRH was higher (p less than 0.001) in old rats than in young rats (mean Cmax = 8539 +/- 790.6 micrograms/l vs. 2970 +/- 866 micrograms/l, respectively; p less than 0.01). Since pituitary GH concentrations in old rats were lower than in young rats (257.0 +/- 59.8 micrograms/mg wet wt. vs. 639.7 +/- 149.2 micrograms/mg wet wt., respectively; p less than 0.03), the results suggested that GH functional reserve in old female rats was not linked to pituitary GH concentration. The differential responses of old rats to individually administered and co-administered GHRP-6 are important because they demonstrate that robust and immediate GH secretion can occur in old rats that are appropriately stimulated. The data further suggest that the cellular processes subserving GH secretion are intact in old rats, and that age-related decrements in GH secretion result from inadequate stimulation, rather than to maladaptive changes in the mechanism of GH release.  相似文献   

10.
To establish a single and reliable test for evaluating growth hormone (GH) secretion, we examined successive GH provocation by two agents with different modes of action, GH releasing-hormone (GHRH) and arginine (Arg) in 60 children of short stature, 6 patients with pituitary dwarfism and 9 normal young adults. Their GH profiles were qualitatively classified into 4 types: 25 children and 7 adults responded to both stimuli with 2 GH peaks (48.7 +/- 4.3 [SEM] micrograms/L for GHRH and 32.2 +/- 2.6 micrograms/L for Arg in children; 25.8 +/- 7.6 micrograms/L and 30.1 +/- 9.2 micrograms/L respectively in adults) (type A). A single peak for GHRH (57.7 +/- 4.6 micrograms/L) without an Arg-induced peak was obtained in 29 younger children (type B), which is considered to be a GHRH-dominant pattern. Two of them were diagnosed as hypothalamic GHRH deficiency based on a low nocturnal plasma GH and good response to GH treatment. Six adolescents and 2 adults showed a blunted response to GHRH (9.0 +/- 1.1 micrograms/L) but a normal response to Arg (40.6 +/- 9.5 micrograms/L) (type C), which appears to be caused by somatostatin (SRIH) hypertonicity. None with pituitary dwarfism responded to both stimuli (4.5 +/- 1.3 and 2.3 +/- 0.5 micrograms/L). Thus, the GHRH-Arg test makes it possible to evaluate the counterbalance between GHRH and SRIH as well as to differentiate pituitary GH deficiency from hypothalamic GHRH dysfunction.  相似文献   

11.
We administered two different growth hormone-releasing hormones (GHRH) to 20 short, prepubertal children who had spontaneous secretion of growth hormone (GH), assessed from 24-hour GH secretion profiles (72 sampling periods of 20 min). We compared one i.v. injection of 1 microgram/kg of GHRH 1-40 with that of GHRH 1-29 regarding serum concentrations of GH, prolactin, luteinizing hormone, follicle-stimulating hormone and IGF-I. The children were allocated to two groups without statistical randomization. Both groups were given both peptides, with at least 1 week in between. The first group started with GHRH 1-40, the other with GHRH 1-29. The peptides both induced an increased serum concentration of GH of the same magnitude: mean maximal peak of 89 +/- 12 mU/l after GHRH 1-40 and 94 +/- 10 mU/l after GHRH 1-29 (n.s.). The mean difference in maximum serum GH concentration in each child after injection was 52 +/- 9 mU/l, range 1-153 mU/l. GHRH 1-29 also induced a short-term, small increase in the concentrations of prolactin (p less than 0.05), luteinizing hormone (p less than 0.01) and follicle-stimulating hormone (p less than 0.05). We conclude that the shorter sequence GHRH 1-29, when given in a dose of 1 microgram/kg, gives a rise in serum concentration of GH similar to that after the native form GHRH 1-40.  相似文献   

12.
The physiological importance of endogenous ghrelin in the regulation of growth hormone (GH) secretion is still unknown. To investigate the regulation of ghrelin secretion and pulsatility, we performed overnight ghrelin and GH sampling every 20 min for 12 h in eight healthy male subjects [age 37 +/- 5 (SD) years old, body mass index 27.2 +/- 2.9 kg/m2]. Simultaneous GH and ghrelin levels were assessed to determine the relatedness and synchronicity between these two hormones in the fasted state during the overnight period of maximal endogenous GH secretion. Pulsatility analyses were performed to determine simultaneous hormonal dynamics and investigate the relationship between GH and ghrelin by use of cross-approximate entropy (X-ApEn) analyses. Subjects demonstrated 3.0 +/- 2.1 ghrelin pulses/12 h and 3.3 +/- 0.9 GH pulses/12 h. The mean normalized ghrelin entropy (ApEn) was 0.93 +/- 0.09, indicating regularity in ghrelin hormone secretion. The mean normalized X-ApEn was significant between ghrelin and GH (0.89 +/- 0.12), demonstrating regularity in cosecretion. In addition, we investigated the ghrelin response to standard GH secretagogues [GH-releasing hormone (GHRH) alone and combined GHRH-arginine] in separate testing sequences separated by 1 wk. Our data demonstrate that, in contrast to GHRH alone, which had little effect on ghrelin, combined GHRH and arginine significantly stimulated ghrelin with a maximal peak at 120 min, representing a change of 66 +/- 14 pg/ml (P = 0.001 by repeated-measures ANOVA and P = 0.02 for GHRH vs. combined GHRH-arginine by MANOVA). We demonstrate relatedness between ghrelin and GH pulsatility, suggesting either that ghrelin participates in the pulsatile regulation of GH or that the two hormones are simultaneously coregulated, e.g., by somatostatin or other stimuli. Furthermore, the differential effects of GHRH alone vs. GHRH-arginine suggest that inhibition of somatostatin tone may increase ghrelin. These data provide further evidence of the physiological regulation of ghrelin in relationship to GH.  相似文献   

13.
OBJECTIVE: To evaluate the factors influencing the growth hormone (GH) response to GH-releasing hormone (GHRH) test in idiopathic GH deficiency. METHODS: 28 patients aged 4.9 +/- 0.7 years with certain GH deficiency were given GHRH (2 microg/kg). RESULTS: The GH peak after GHRH was correlated negatively with age at evaluation (r = -0.37, p < 0.05) and body mass index (r = -0.44, p = 0.02), and positively with anterior pituitary height (r = 0.47, p = 0.02), GH peak after non-GHRH stimulation (r = 0.78, p < 0.0001) and spontaneous GH peak (r = 0.82, p = 0.007). It was lower in the patients aged >5 years than in the youngest (p = 0.04), but it was similar in the patients with and without features suggesting a hypothalamic origin. CONCLUSION: The GH response to GHRH test cannot be used to differentiate between hypothalamic and pituitary forms of idiopathic GH deficiency, probably because the GH response decreases after the first 5 years of life, whatever the origin of the deficiency.  相似文献   

14.
This study was designed to investigate the central neuroendocrine mechanisms by which exercise (EX) stimulates growth hormone (GH) release as a function of age. Twelve male subjects, six in their early-to-mid twenties and six in their late sixties or seventies, received a strong GH stimulus either as incremental EX until volitional exhaustion or by administration of GHRH alone or Hex alone two hours after a presumed maximal GH response to combined administration of GHRH plus hexarelin (Hex). Total GH availability was calculated as area under the curve (AUC) over time periods 0 - 120 and 120 - 240 min. The mean AUC in micro g/l x 120 min to GHRH+Hex in the younger group was approximately twice that in the older group (11,260, range 3,947 - 19,007 vs. 5,366, range 2,262 - 8,654). In younger males, the mean AUC to EX (509, range 0 - 1,151) was larger than to GHRH (119, range 0 - 543), but less than that to Hex (919, range 0 - 1,892). In the older group, GH responses to EX and GHRH were abolished (mean AUC: 112, range 0 - 285, and 156, range 30 - 493), respectively) in contrast to the response to Hex (1,077, range 189 - 1,780). These data indicate that maximal GH stimulation by GHRH+Hex results in greater desensitization of GHRH compared to Hex, irrespective of age. We postulate that the abolished responsiveness of GH to EX in older group is due to insufficient disinhibition of hypothalamic somatostatin activity and desensitization of GHRH, while the preserved activity of a central Hex-related pathway is not involved. The GH response to EX in younger males is due to complete inhibition of somatostatin activity and stimulation of a central Hex-related pathway in spite of GHRH desensitization. We conclude that a central Hex-related pathway is the primary factor for EX-induced GH release only in younger males.  相似文献   

15.
Growth hormone (GH) and prolactin (PRL) secretion after GH-releasing hormone (GHRH) and domperidone (DOM), an antidopaminergic drug which does not cross the blood-brain barrier (BBB), was evaluated in 8 healthy elderly men (65-91 years) and in 7 young adults (23-40 years). All received in random order at 2-day intervals: GHRH(1-40) (50 micrograms i.v.) bolus, DOM (5 mg/h) infusion, GHRH(1-40) (50 micrograms i.v.) plus DOM (5 mg/h i.v.), saline solution. In elderly men GH increase after GHRH was significantly lower than in young men. DOM alone did not change GH secretion in either of these groups, whereas it increased the GH response to GHRH only in young adults. PRL levels increased in both young and elderly men during both DOM and GHRH plus DOM, but the PRL release was more marked in young than in elderly men. Both integrated secretion of GH after GHRH and of PRL after DOM were inversely correlated to chronological age. Our data show an impairment of GH rise after GHRH and of PRL after DOM in elderly adults. It is also stressed that peripheral blockade of dopamine receptors by DOM is unable to amplify the GH response to GHRH only in elderly men. A reduction in GH release after GHRH might be related to aging, perhaps through a reduction of dopaminergic tonus.  相似文献   

16.
Thyrotropin-releasing hormone (TRH) blunts growth hormone (GH) response to various stimuli in normal subjects. We were interested if similar inhibitory effect of TRH could be demonstrated in diabetes mellitus where GH is abnormally regulated. In this study we compared the effect of TRH on GH response to L-dopa in normal and diabetic subjects. TRH 0.2 mg iv blunted GH response to L-dopa 0.5 g p.o. in normal subjects with peak GH values 13.1 and 7.3 micrograms/l, p < 0.05. In the diabetics no inhibitory effect of TRH was demonstrated and GH was even paradoxically increased after TRH: 14.9 and 21.9 micrograms/l, p = NS. Lack of inhibitory effect of TRH was more pronounced in patients with proliferative retinopathy. It is concluded that TRH has no inhibitory effect on L-dopa-induced GH response in diabetic subjects. This finding provides further evidence for disturbed GH regulation in diabetes mellitus.  相似文献   

17.
The aim of the study was the evaluation of growth hormone secretion under physiologic conditions in two groups of type I diabetics: responding and nonresponding to TRH stimulation. Both groups matched for age and metabolic control of diabetes were studied during 24-hours and after GHRH stimulation. The whole diabetic group (n = 18) showed circadian rhythm of GH secretion with mesor value of 4.03 micrograms/l. TRH-responders had lower mesor GH value than TRH-nonresponders: 3.53 vs. 5.32, p < 0.05. GH response to GHRH was almost identical in both groups. C-peptide level was lower in TRH-responders: 0.16 vs. 0.56 microgram/l, p < 0.05. No correlation was found between growth hormone response and HbA1 and C-peptide levels. It is concluded that type I diabetics responding to TRH stimulation are characterized by lower mean 24-hour GH levels and lower C-peptide values.  相似文献   

18.
To test whether endogenous hypothalamic somatostatin (SRIH) fluctuations are playing a role in the generation of growth hormone (GH) pulses, continuous subcutaneous octreotide infusion (16 microg/h) was used to create constant supraphysiological somatostatinergic tone. Six healthy postmenopausal women (age 67 +/- 3 yr, body mass index 24.7 +/- 1.2 kg/m(2)) were studied during normal saline and octreotide infusion providing stable plasma octreotide levels of 2,567 +/- 37 pg/ml. Blood samples were obtained every 10 min for 24 h, and plasma GH was measured with a sensitive chemiluminometric assay. Octreotide infusion suppressed 24-h mean GH by 84 +/- 3% (P = 0.00026), GH pulse amplitude by 90 +/- 3% (P = 0.00031), and trough GH by 54 +/- 5% (P = 0.0012), whereas GH pulse frequency remained unchanged. The response of GH to GH-releasing hormone (GHRH) was not suppressed, and the GH response to GH-releasing peptide-6 (GHRP-6) was unaffected. We conclude that, in women, periodic declines in hypothalamic SRIH secretion are not the driving force of endogenous GH pulses, which are most likely due to episodic release of GHRH and/or the endogenous GHRP-like ligand.  相似文献   

19.
Growth hormone (GH) secretion is regulated by GH-releasing hormone (GHRH), somatostatin, and possibly ghrelin, but uncertainty remains about the relative contributions of these hypophysiotropic factors to GH pulsatility. Patients with genetic GHRH receptor (GHRH-R) deficiency present an opportunity to examine GH secretory dynamics in the selective absence of GHRH input. We studied circadian GH profiles in four young men homozygous for a null mutation in the GHRH-R gene by use of an ultrasensitive GH assay. Residual GH secretion was pulsatile, with normal pulse frequency, but severely reduced amplitude (<1% normal) and greater than normal process disorder (as assessed by approximate entropy). Nocturnal GH secretion, both basal and pulsatile, was enhanced compared with daytime. We conclude that rhythmic GH secretion persists in an amplitude-miniaturized version in the absence of a GHRH-R signal. The nocturnal enhancement of GH secretion is likely mediated by decreased somatostatin tone. Pulsatility of residual GH secretion may be caused by oscillations in somatostatin and/or ghrelin; it may also reflect intrinsic oscillations in somatotropes.  相似文献   

20.
Using a continuous subcutaneous octreotide infusion to create constant supraphysiological somatostatinergic tone, we have previously shown that growth hormone (GH) pulse generation in women is independent of endogenous somatostatin (SRIH) declines. Generalization of these results to men is problematic, because GH regulation is sexually dimorphic. We have therefore studied nine healthy young men (age 26 +/- 6 yr, body mass index 23.3 +/- 1.2 kg/m2) during normal saline and octreotide infusion (8.4 microg/h) that provided stable plasma octreotide levels (764.5 +/- 11.6 pg/ml). GH was measured in blood samples obtained every 10 min for 24 h. Octreotide suppressed 24-h mean GH by 52 +/- 13% (P = 0.016), GH pulse amplitude by 47 +/- 12% (P = 0.012), and trough GH by 39 +/- 12% (P = 0.030), whereas GH pulse frequency and the diurnal rhythm of GH secretion remained essentially unchanged. The response of GH to GH-releasing hormone (GHRH) was suppressed by 38 +/- 15% (P = 0.012), but the GH response to GH-releasing peptide-2 was unaffected. We conclude that, in men as in women, declines in hypothalamic SRIH secretion are not required for pulse generation and are not the cause of the nocturnal augmentation of GH secretion. We propose that GH pulses are driven primarily by GHRH, whereas ghrelin might be responsible for the diurnal rhythm of GH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号