首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wound healing is a highly orchestrated physiological process consisting of a complex events, and scarless wound healing is highly desired for the development and application in clinical medicine. Recently, we have demonstrated that human amniotic epithelial cells (hAECs) promoted wound healing and inhibited scar formation through a paracrine mechanism. However, exosomes (Exo) are one of the most important paracrine factors. Whether exosomes derived from human amniotic epithelial cells (hAECs-Exo) have positive effects on scarless wound healing have not been reported yet. In this study, we examined the role of hAECs-Exo on wound healing in a rat model. We found that hAECs, which exhibit characteristics of both embryonic and mesenchymal stem cells, have the potential to differentiate into all three germ layers. hAECs-Exo ranged from 50 to 150 nm in diameter, and positive for exosomal markers CD9, CD63, CD81, Alix, TSG101 and HLA-G. Internalization of hAECs-Exo promoted the migration and proliferation of fibroblasts. Moreover, the deposition of extracellular matrix (ECM) were partly abolished by the treatment of high concentration of hAECs-Exo (100 μg/mL), which may be through stimulating the expression of matrix metalloproteinase-1 (MMP-1). In vivo animal experiments showed that hAECs-Exo improved the skin wound healing with well-organized collagen fibers. Taken together, These findings represent that hAECs-Exo can be used as a novel hope in cell-free therapy for scarless wound healing.  相似文献   

2.
Wound healing is a multistep phenomenon that relies on complex interactions between various cell types. Calpains are ubiquitously expressed proteases regulating several processes including cellular adhesion and motility as well as inflammation and angiogenesis. Calpains can be targeted by inhibitors, and their inhibition was shown to reduce organ damage in various disease models. We aimed to assess the role of calpains in skin healing and the potential benefit of calpain inhibition on scar formation. We used a pertinent model where calpain activity is inhibited only in lesional organs, namely transgenic mice overexpressing calpastatin (CPST), a specific natural calpain inhibitor. CPST mice showed a striking delay in wound healing particularly in the initial steps compared to wild types (WT). CPST wounds displayed reduced proliferation in the epidermis and delayed re-epithelization. Granulation tissue formation was impaired in CPST mice, with a reduction in CD45+ leukocyte infiltrate and in CD31+ blood vessel density. Interestingly, wounds on WT skin grafted on CPST mice (WT/CPST) showed a similar delayed healing with reduced angiogenesis and inflammation compared to wounds on WT/WT mice demonstrating the implication of calpain activity in distant extra-cutaneous cells during wound healing. CPST wounds showed a reduction in alpha-smooth muscle actin (αSMA) expressing myofibroblasts as well as αSMA RNA expression suggesting a defect in granulation tissue contraction. At later stages of skin healing, calpain inhibition proved beneficial by reducing collagen production and wound fibrosis. In vitro, human fibroblasts exposed to calpeptin, a pan-calpain inhibitor, showed reduced collagen synthesis, impaired TGFβ-induced differentiation into αSMA-expressing myofibroblasts, and were less efficient in a collagen gel contraction assay. In conclusion, calpains are major players in granulation tissue formation. In view of their specific effects on fibroblasts a late inhibition of calpains should be considered for scar reduction.  相似文献   

3.
To understand the role of tendon fibroblast contraction in tendon healing, we investigated the contraction of human patellar tendon fibroblasts (HPTFs) and its regulation by transforming growth factor-beta1 (TGF-beta1), TGF-beta3, and prostaglandin E(2) (PGE(2)). HPTFs were found to wrinkle the underlying thin silicone membranes, demonstrating that these tendon fibroblasts are contractile. Using fibroblast populated collagen gels (FPCGs), exogenous addition of TGF-beta1 or TGF-beta3 was found to increase fibroblast contraction compared to non-treated fibroblasts in serum-free medium, whereas PGE(2) was found to decrease the tendon fibroblast contraction. Moreover, the tendon fibroblasts in collagen gels treated with TGF-beta1 contracted to a greater degree than those treated with TGF-beta3. Since the extent of fibroblast contraction is related to scar tissue formation, this differential effect of TGF-beta1 and TGF-beta3 on HPTF contraction supports the previous finding that TGF-beta1 induces scar tissue formation, whereas TGF-beta3 reduces its formation. Further, the reduced tendon fibroblast contraction by PGE(2) suggests that excessive presence of this inflammatory mediator in the wound site might retard tendon healing. Taken together, the results of this study suggest that regulation of human tendon fibroblast contraction may reduce scar tissue formation and therefore improve the mechanical properties of healing tendons.  相似文献   

4.
The effect of myofibroblast on contracture of hypertrophic scar   总被引:14,自引:0,他引:14  
Wound contraction in humans has both positive and negative effects. It is beneficial to wound healing by narrowing the wound margins, but the formation of undesirable scar contracture brings cosmetic and even functional problems. The entire mechanism of wound healing and scar contracture is not clear yet, but it is at least considered that both the fibroblasts and the myofibroblasts are responsible for contraction in healing wounds. The myofibroblast is a cell that possesses all the morphologic and biochemical characteristics of both a fibroblast and a smooth muscle cell. Normally, the myofibroblasts appear in the initial wound healing processes and generate contractile forces to pull both edges of an open wound until it disappears by apoptosis. But as an altered regulation of myofibroblast disappearance, they remain in the dermis and continuously contract the scar, eventually causing scar contracture. In this research, to compare and directly evaluate the influence on scar contracture of the myofibroblast versus the fibroblast, dermal tissues were taken from 10 patients who had highly contracted hypertrophic scars. The myofibroblasts were isolated and concentrated from the fibroblasts using the magnetic activating cell-sorting column to obtain the myofibroblast group, which contained about 28 to 41 percent of the myofibroblasts, and the fibroblast group, which contained less than 0.9 percent of the myofibroblasts. Each group was cultured in the fibroblast-populated collagen lattice for 13 days, and the contraction of the collagen gel was measured every other day. In addition, they were selectively treated with tranilast [N-(3',4'-dimethoxycinnamoyl) anthranilic acid] to evaluate the influence on the contraction of the collagen gel lattice. During the culture, the myofibroblast group, compared with the fibroblast group, showed statistically significant contraction of the collagen gel lattice day by day, except on the first day, and only the myofibroblast group was affected by tranilast treatment, showing significant inhibition of gel contraction. By utilizing an in vitro model, the authors have demonstrated that myofibroblasts play a more important role in the contracture of the hypertrophic scar.  相似文献   

5.
Migration stimulating factor (MSF) is a potent autocrine and paracrine factor expressed by fibroblasts and epithelial cells in foetal skin, tumours and healing wounds. In tissue culture, MSF bioactivity is present in the conditioned medium of foetal and tumour derived fibroblasts, but not in normal adult fibroblasts or keratinocytes. The conditioned medium of early passage keratinocytes or a keratinocyte line (HaCaT) effectively inhibited the motogenic activity of rhMSF. Fractionation of keratinocyte conditioned medium by size-exclusion chromatography revealed the presence of bioactive MSF as well as a functional inhibitor of MSF (MSFI) in fractions corresponding to approximately 70 kDa and 25 kDa, respectively. MSFI was purified and identified as neutrophil gelatinase-associated lipocalin (NGAL or lipocalin-2). Immunostaining confirmed that keratinocytes expressed both MSF and NGAL, whereas normal adult fibroblasts did not express either. Recombinant and cell-produced NGAL neutralised the motogenic activity of rhMSF. NGAL is known to bind MMP-9 and promote the activity of this protease. In contrast, there was no evidence of NGAL-MSF binding in keratinocyte conditioned medium. MSF displays a number of bioactivities of relevance to cancer progression and wound healing. Our findings indicate a novel function of NGAL and a possible mechanism for regulating MSF activity in tissues.  相似文献   

6.
7.
Background information. The activation of fibroblasts into myofibroblasts is a crucial event in healing that is linked to remodelling and scar formation, therefore we determined whether regulation of myofibroblast differentiation via integrins might affect wound healing responses in populations of patient‐matched HOFs (human oral fibroblasts) compared with HDFs (human dermal fibroblasts). Results. Both the HOF and HDF cell types underwent TGF‐β1 (transforming growth factor‐β1)‐induced myofibroblastic differentiation [upregulation of the expression of α‐sma (α‐smooth muscle actin)], although analysis of unstimulated cells indicated that HOFs contained higher basal levels of α‐sma than HDFs (P<0.05). Functional blocking antibodies against the integrin subunits α5 (fibronectin) or αv (vitronectin) were used to determine whether the effects of TGF‐β1 were regulated via integrin signalling pathways. α‐sma expression in both HOFs and HDFs was down‐regulated by antibodies against both α5 and αv. Functionally, TGF‐β1 inhibited cell migration in an in vitro wound model and increased the contraction of collagen gels. Greater contraction was evident for HOFs compared with HDFs, both with and without stimulation by TGF‐β1 (P<0.05). When TGF‐β1‐stimulated cells were incubated with blocking antibodies against α5 and αv, gel contraction was decreased to that of non‐stimulated cells; however, blocking αv or α5 could not restore cellular migration in both HOFs and HDFs. Conclusions. Despite intrinsic differences in their basal state, the cellular events associated with TGF‐β1‐induced myofibroblastic differentiation are common to both HOFs and HDFs, and appear to require differential integrin usage; up‐regulation of α‐sma expression and increases in collagen gel contraction are vitronectin‐ and fibronectin‐receptor‐dependent processes, whereas wound re‐population is not.  相似文献   

8.
Integumentary wounds in mammalian fetuses heal without scar; this scarless wound healing is intrinsic to fetal tissues and is notable for absence of the contraction seen in postnatal (adult) wounds. The precise molecular signals determining the scarless phenotype remain unclear. We have previously reported that the eta subunit of the chaperonin containing T-complex polypeptide (CCT-eta) is specifically reduced in healing fetal wounds in a rabbit model. In this study, we examine the role of CCT-eta in fibroblast motility and contractility, properties essential to wound healing and scar formation. We demonstrate that CCT-eta (but not CCT-beta) is underexpressed in fetal fibroblasts compared to adult fibroblasts. An in vitro wound healing assay demonstrated that adult fibroblasts showed increased cell migration in response to epidermal growth factor (EGF) and platelet derived growth factor (PDGF) stimulation, whereas fetal fibroblasts were unresponsive. Downregulation of CCT-eta in adult fibroblasts with short inhibitory RNA (siRNA) reduced cellular motility, both basal and growth factor-induced; in contrast, siRNA against CCT-beta had no such effect. Adult fibroblasts were more inherently contractile than fetal fibroblasts by cellular traction force microscopy; this contractility was increased by treatment with EGF and PDGF. CCT-eta siRNA inhibited the PDGF-induction of adult fibroblast contractility, whereas CCT-beta siRNA had no such effect. In each of these instances, the effect of downregulating CCT-eta was to modulate the behavior of adult fibroblasts so as to more closely approximate the characteristics of fetal fibroblasts. We next examined the effect of CCT-eta modulation on alpha-smooth muscle actin (α-SMA) expression, a gene product well known to play a critical role in adult wound healing. Fetal fibroblasts were found to constitutively express less α-SMA than adult cells. Reduction of CCT-eta with siRNA had minimal effect on cellular beta-actin but markedly decreased α-SMA; in contrast, reduction of CCT-beta had minimal effect on either actin isoform. Direct inhibition of α-SMA with siRNA reduced both basal and growth factor-induced fibroblast motility. These results indicate that CCT-eta is a specific regulator of fibroblast motility and contractility and may be a key determinant of the scarless wound healing phenotype by means of its specific regulation of α-SMA expression.  相似文献   

9.
Skin wound healing is a complex biological process that requires the regulation of different cell types, including immune cells, keratinocytes, fibroblasts, and endothelial cells. It consists of 5 stages: hemostasis, inflammation, granulation tissue formation, re-epithelialization, and wound remodeling. While inflammation is essential for successful wound healing, prolonged or excess inflammation can result in nonhealing chronic wounds. Lactoferrin, an iron-binding glycoprotein secreted from glandular epithelial cells into body fluids, promotes skin wound healing by enhancing the initial inflammatory phase. Lactoferrin also exhibits anti-inflammatory activity that neutralizes overabundant immune response. Accumulating evidence suggests that lactoferrin directly promotes both the formation of granulation tissue and re-epithelialization. Lactoferrin stimulates the proliferation and migration of fibroblasts and keratinocytes and enhances the synthesis of extracellular matrix components, such as collagen and hyaluronan. In an in vitro model of wound contraction, lactoferrin promoted fibroblast-mediated collagen gel contraction. These observations indicate that lactoferrin supports multiple biological processes involved in wound healing.  相似文献   

10.
Fibroblast-populated collagen lattices (FPCL), prepared in petri dishes with serum-containing culture medium and incubated at 37°C, undergo progressive and symmetric contraction (reduction in size) over a period of days. The in vitro contraction process requires viable cells with intact cytoskeletal elements, is associated with cell elongation, and is believed to represent a fibroblast function which also occurs in vivo during wound healing and tissue fibrosis. We report that soluble mediators elaborated by chronic inflammatory cells cultured in vitro, when added to FPCL, inhibit lattice contraction. Granulomas, isolated from the liver of Schistosoma mansoni-infected mice, secrete a factor(s) with an estimated molecular weight between 13,700 and 43,000 daltons (gel filtration: Sephadex G-200) and pl = 6 (preparative isoelectrofocusing in granular gel) which inhibits lattice contraction but is not toxic to fibroblasts. Supernatants (cell-free conditioned culture medium) of cultured macrophages isolated from these granulomas also contain this activity. The contraction inhibitory activity present in granuloma culture supernatants is abrogated by the addition of indomethacin to the lattices, while the addition of prostaglandin E2 (PGE2) alone to lattices inhibits contraction. Furthermore, culture supernatants interfere with fibroblast elongation in lattices. We propose that the ability of fibroblasts to contract collagen lattices in vitro and a fibrotic mass in vivo may be regulated by soluble products of chronic inflammatory cells, including macrophages. This process may be mediated by fibroblast-derived prostaglandins which alter cytoskeletal functions and has implications for understanding regulation of tissue fibrogenesis in a variety of diseases.  相似文献   

11.
The biochemical regulation of collagen deposition during adult cutaneous wound repair is poorly understood. Likewise, how collagen is perceived and modulated in fetal scarless healing remains unknown. Recently, discoidin domain receptors-1 and 2 (DDR1 and DDR2) with tyrosine kinase activity have been identified as novel receptors for collagen. In light of these findings, it was speculated that the production of collagen receptors DDR1 and DDR2 by fetal fibroblasts may be temporally regulated to correlate with the ontogeny of embryonic scar formation. More specifically, because DDRs directly bind collagen and transmit the signals intracellularly, it was hypothesized that they may play an important role in fetal scarless healing by ultimately regulating and modulating collagen production and organization. As part of a fundamental assessment to elucidate the role of DDRs in scarless fetal wound repair, the endogenous expression of DDR1, DDR2, collagen I, and total collagen, as a function of fetal Sprague-Dawley rat skin fibroblasts of different gestational ages, representing scar-free (E16.5) periods was determined. Using explanted dermal fibroblasts of gestational days E13.5, E16.5, E18.5, and E21.5 (term gestation = 21.5 days) fetuses (n = 92), [3H]proline incorporation assay and Northern and Western blotting analysis were performed to compare the expressions of these molecules with scar-free and scar-forming stages of embryonic development. These results revealed a pattern of increasing collagen production with increasing gestational ages, whereas DDR1 expression decreased with increasing gestational age. This observation suggests that elevated levels of DDR1 may play an important role in scarless tissue regeneration by early gestation fetal fibroblasts. In contrast, DDR2 was expressed by fetal rat fibroblasts at a similar level throughout gestation. These data demonstrate for the first time the temporal expression of collagen and DDR tyrosine kinases in fetal rat fibroblasts as a function of gestational ages. Overall, these data suggest that differential temporal expression of the above-mentioned molecules during fetal skin development may play an important role in the ontogeny of scar formation. Future studies will involve the characterization of the biomolecular functions of these receptor kinases during fetal wound repair.  相似文献   

12.
13.
Fetal wound healing is characterized by minimal inflammation and scarless repair. IL-6 stimulates inflammation in postnatal wound healing. We hypothesized that fetal skin has a diminished IL-6 response and that exogenous IL-6 will result in scar formation. Human adult or fetal skin was placed subcutaneously in SCID mice and incisionally wounded. Wounds were excised after 4, 12, 24 or 72 h for IL-6 mRNA quantification by RT-PCR. In other grafts, 5 microgram of IL-6 was injected at wounding and then harvested at 7 days for analysis of scar formation. IL-6 production was examined in primary cultures of human fetal or adult dermal fibroblasts incubated for 8 h with 0, 0.1, 1 or 10 ng/ml of PDGF-BB. IL-6 mRNA was detected 4 h after wounding in fetal and adult wounds, but by 12 h there was no IL-6 mRNA in the fetal wounds. Adult wounds had IL-6 mRNA persisting to 72 h. IL-6 administration to fetal wounds resulted in scar formation. Fetal fibroblasts produced less IL-6 protein and mRNA at all points examined (P<0.01 vs adult). Diminished production of inflammatory cytokines such as IL-6 may be responsible for the lack of inflammation seen during fetal wound healing. Diminished inflammation may provide a permissive environment for scarless wound healing.  相似文献   

14.
15.
Lactoferrin is an iron-binding glycoprotein that belongs to the transferrin family. Recent studies in vitro and in vivo suggest that lactoferrin is a potential therapeutic agent for wound healing. We have shown that both bovine and human lactoferrin enhance the collagen gel contractile activity of WI-38 human fibroblasts. The collagen gel contraction is considered as an in vitro model for reorganization of the collagen matrix during the wound healing process. The elevation of collagen gel contractile activity induced by lactoferrin was accompanied by activation of extracellular-regulated kinase (ERK) 1/2 and myosin light chain kinase (MLCK), and subsequent elevation of myosin light chain (MLC) phosphorylation. The effects of lactoferrin on collagen gel contraction and the activation of the signaling pathway were dependent on the expression of low-density lipoprotein receptor - related protein (LRP) - 1 in the fibroblasts. LRP-1 is known as an endocytosis receptor and is involved in the cellular uptake of diverse ligands, including lactoferrin. In addition, LRP-1 acts as a signaling lactoferrin receptor in mammalian cells by converting the lactoferrin-binding signal into the activation of the intracellular signaling pathway. This property was found to be independent of the endocytic function of LRP-1, as seen in osteoblast-like cells.  相似文献   

16.
Summary In the process of wound healing keratinocytes and fibroblasts play an important role, keratinocytes in the re-epithelization process and fibroblasts in the process of wound contraction. We have studied the role of human keratinocytes and fibroblasts in the rearrangement of collagen in a collagen lattice model system. Our results revealed that keratinocytes as well as fibroblasts rearrange the collagen lattice; this occurs in a cell number and collagen concentration dependent manner. The optimal gel contraction is obtained in the presence of keratinocytes on the top of and of fibroblasts in the collagen lattice, the situation most closely approaching the in vivo situation. Between the two types of cells, differences in morphologic behavior were observed: when incorporated into the gel the keratinocytes retained their spherical shape throughout the whole culture period, but fibroblasts became elongated and formed extensions. Our data suggest that not only fibroblasts but also keratinocytes may be involved in the process of wound contraction. This work was supported by the Koningin Wilhelmina Fonds (Netherlands Cancer Foundation, grant 84-10).  相似文献   

17.
Matrix remodeling, critical to embryonic morphogenesis and wound healing, is dependent on the expression of matrix components, their receptors, and matrix proteases. The collagen gel assay has provided an effective model for the examination of the functional role(s) of each of these groups of molecules in matrix remodeling. Previous investigations have indicated that collagen gel contraction involves the β1 integrin family of matrix receptors and is stimulated by several growth factors, including TGF-β, PDGF, and angiotensin II. In particular, collagen gel remodeling by human cells involves the α2β1 and, to a lesser extent the α1β1 integrin complexes. The present studies were undertaken to determine the role of the α1 integrin chain, a collagen/laminin receptor, in collagen gel contration by rodent and avian fibroblasts. A high degree of correlation was found between the expression of the α1β1 integrin complex and the relative ability of cells to contract collagen gels. Further studies using antibodies and antisense oligonucleotides against the α1 integrin indicated a significant role for this integrin chain in contraction of collagen gels by rat cardiac fibroblasts. In addition, antibodies to the α1 integrin chain inhibited migration of these fibroblasts on a collagen substratum, suggesting that at least one role of this integrin is in migration of cells in collagen gels. These results indicate that the α1β integrin complex plays a significant role in cellular interactions with interstital collagen that are involved in matrix remodeling such as is seen during morphogenesis and wound healing. © 1995 Wiley-Liss, Inc.  相似文献   

18.
The ability of a fetus to heal without scar formation depends on its gestational age at the time of injury and the size of the wound defect. In general, linear incisions heal without scar until late in gestation whereas excisional wounds heal with scar at an earlier gestational age. The profiles of fetal proteoglycans, collagens, and growth factors are different from those in adult wounds. The less-differentiated state of fetal skin is probably an important characteristic responsible for scarless repair. There is minimal inflammation in fetal wounds. Fetal wounds are characterized by high levels of hyaluronic acid and its stimulator(s) with more rapid, highly organized collagen deposition. The roles of peptide growth factors such as transforming growth factor-beta and basic fibroblast growth factor are less prominent in fetal than in adult wound healing. Platelet-derived growth factor has been detected in scarless fetal skin wounds, but its role is unknown. An understanding of scarless tissue repair has possible clinical application in the modulation of adult fibrotic diseases and abnormal scar-forming conditions.  相似文献   

19.
The effect of human fetal fibroblasts and adult keratinocytes on collagen contraction was studied. Keratinocytes embedded in collagen lattices did not spread and produced only a slight contraction. When keratinocytes were seeded on the surface of tht gel, the contraction began within 24 h and correlated with the formation of epithelial colonies. Transplantation of multilayered epithelial sheets on the gel significantly accelerated the onset of contraction. Keratinocytes seeded on and fibroblasts grown in collagen lattices cooperatively contracted the gel, and keratinocytes were able to stimulate gel contraction even when they had no contact with the collagen roughly populated with fibroblasts. Swiss 3T3 cells remained spherical in collagen lattices and did not contract the gel but when cultivated with keratinocytes they stimulated gel contraction. In their turn, keratinocytes influenced the behaviour of Swiss 3T3 cells which elongated and produced processes. We suggest that both keratinocytes and mesenchymal cells can affect gel contraction 1) by a direct contact with collagen lattices, and 2) through potentiation of the ability of another cell type to contract the gel.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号