首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mutagenicity of the commonly used glutathione S-transferase substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzene (DCNB) was investigated in the Salmonella mutagenicity assay. CDNB induced a concentration-dependent mutagenic response in Salmonella typhimurium strain TA98. Incorporation of an activation system derived from Aroclor 1254-induced rats did not influence mutagenic response. Under the same conditions DCNB failed to display mutagenic activity. The mutagenic activity of CDNB was attenuated in bacterial strains under-expressing nitroreductase or O-acetylase activity but, in contrast, it was exaggerated in an O-acetylase over-expressing strain. It is inferred that CDNB exhibits a mutagenic response following reduction of the nitro-group to the hydroxylamine, which is further acetylated to form the acetoxy derivative that presumably breaks down spontaneously to generate the nitrenium ion, the likely ultimate mutagen.  相似文献   

2.
When male rats were given a single dose of cadmium (Cd) (3.58 mg CdCl2·H2O/kg, ip) 72 hr prior to sacrifice, the testicular 7-ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) activities toward the substrates 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), ethacrynic acid (EAA), 1,2-epoxy-3-(p-nitrophenoxy)-propane (EPNP), and cumene hydroperoxide (CHPx) decreased significantly as compared to controls. Cd also inhibited reduced glutathione (GSH) level while increasing the lipid peroxidation (LP) level significantly. When the animals were given a single dose of nickel (Ni) (59.5 mg NiCl2·6H2O/kg, ip) 16 hr prior to sacrifice, significant decreases were observed in EROD and GST activities toward CDNB, EAA, EPNP, and CHPx, and GSH level. No significant alterations were noted in DCNB GST activity and LP level by Ni. For the combined treatment, rats received the single dose of Ni 56 hr after the single dose of Cd and were killed 16 hr later. In these animals, lesser depressions were observed on EROD activity and LP level than those of Cd alone. The combination of metals significantly inhibited GST activities and GSH level but not to a greater degree than noted by Cd or Ni alone. Plasma testosterone levels of Cd-, Ni-, and combination-treated rats decreased significantly compared to controls. The strongest depression was achieved by Cd alone. Cd, both alone and in combination with Ni, increased the tissue Ni uptake significantly. Ni, however, did not produce such an effect on the tissue uptake of Cd in either case. Cd treatment caused interstitial edema and coagulation necrosis in seminiferous tubules and also caused fibrinoidal necrosis in vascular endothelium. Ni treatment did not produce any pathological testicular alterations compared to controls. Combined treatment produced fewer pathological alterations (i.e., only interstitial edema) than that of Cd treatment. These results reveal that the combination of Cd and Ni does not have a synergistic effect on testicular xenobiotic metabolizing enzymes, and in contrast, Ni has an ameliorating effect on pathological disturbances caused by Cd alone in the rat testis.  相似文献   

3.
Hepatic glutathione S-transferases (GSTs: EC2.5.1.1.8) catalyze the detoxification of reactive electrophilic compounds, many of which are toxic and carcinogenic intermediates, via conjugation with the endogenous tripeptide glutathione (GSH). Glutathione S-transferase (GST)-mediated detoxification is a critical determinant of species susceptibility to the toxic and carcinogenic mycotoxin aflatoxin B1 (AFB1), which in resistant animals efficiently detoxifies the toxic intermediate produced by hepatic cytochrome P450 bioactivation, the exo-AFB1-8,9-epoxide (AFBO). Domestic turkeys (Meleagris gallopavo) are one of the most sensitive animals known to AFB1, a condition associated with a deficiency of hepatic GST-mediated detoxification of AFBO. We have recently shown that unlike their domestic counterparts, wild turkeys (Meleagris gallopavo silvestris), which are relatively resistant, express hepatic GST-mediated detoxification activity toward AFBO. Because of the importance of GSTs in species susceptibility, and to explore possible GST classes involved in AFB1 detoxification, we amplified, cloned, expressed and functionally characterized the hepatic mu-class GSTs tGSTM3 (GenBank accession no. JF340152), tGSTM4 (JF340153) from domestic turkeys, and a GSTM4 variant (ewGSTM4, JF340154) from Eastern wild turkeys. Predicted molecular masses of tGSTM3 and two tGSTM4 variants were 25.6 and 25.8 kDa, respectively. Multiple sequence comparisons revealed four GSTM motifs and the mu-loop in both proteins. tGSTM4 has 89% amino acid sequence identity to chicken GSTM2, while tGSTM3 has 73% sequence identity to human GSTM3 (hGSTM3). Specific activities of Escherichia coli-expressed tGSTM3 toward 1-chloro-2,4-dinitrobenzene (CDNB) and peroxidase activity toward cumene hydroperoxide were five-fold greater than tGSTM4 while tGSTM4 possessed more than three-fold greater activity toward 1,2-dichloro-4-nitrobenzene (DCNB). The two enzymes displayed equal activity toward ethacrynic acid (ECA). However, none of the GSTM proteins had AFBO detoxification capability, in contrast to recombinant alpha-class GSTs shown in our recent study to possess this important activity. In total, our data indicate that although turkey hepatic GSTMs may contribute to xenobiotic detoxification, they probably play no role in detoxification of AFBO in the liver.  相似文献   

4.
Atrazine (1,000 ppm), endosulfan (1 ppm) or butylated hydroxyanisole (BHA) (1,000 ppm) added to a semi-synthetic diet of Orthosia gothica for 2 days in the last instar did not change the soft tissue cytosolic glutathione-S-transferase (GST) activities towards 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB) and cumene hydroperoxide (CU). However, all three pesticides changed the GST subunit composition compared with the control as observed by reverse phase high performance liquid chromatography of the isozymes purified by glutathione-Sepharose affinity chromatography. The changes seem to have occurred mainly in the GST class 2 subunit. There is no obvious explanation for the changes, which may be a result of interactions between xenobiotic and GST in the cytosol as well as changes in the level of regulation of synthesis. However, the observation added to our knowledge of the processes involved when pesticides are degraded by GSTs in vivo.  相似文献   

5.
Glutathione transferases in aquatic and terrestrial animals from nine phyla   总被引:1,自引:0,他引:1  
Glutathione transferase (GST) was present in 71 of 72 animal species/stages representing nine phyla when measured with 1-chloro-2,4-dinitrobenzene (CDNB). Our hypothesis that all animals have GST was not falsified. Transferase activity towards ethacrynic acid (ETHA) was present in species from all phyla investigated, but some animals seem to be without this activity. Activity towards 1,2-dichloro-4-nitrobenzene (DCNB) was less developed in aquatic animals than in terrestrial ones. The amount of protein binding to GSH-affinity gel matrix was rather uniform, ranging between 0.3 and 0.7% of soluble protein in homogenates of widely diverse animal species, thus being less variable than the enzyme activity. Transferases active towards DCNB did not bind at all or were less firmly bound to the GSH-affinity gel than the activity towards CDNB or ETHA. Fractionation was obtained by using a gradient of GSH. With SDS-electrophoresis it was demonstrated that the proteins with affinity to GSH had monomers in the MW-range 21.500-29.000. Hydra attenuata had one band (MW = 25,000); all other sources gave a complex pattern with up to six bands. It is concluded that GSTs are characteristic major constituents of animal cells, probably with some common basic function. Mutant forms able to aid detoxication are retained in the phylogenesis when they increase the fitness of the animal.  相似文献   

6.
A glutathione (GSH) S-transferase (GST), catalyzing the inactivation of reactive sulfate esters as metabolites of carcinogenic arylmethanols, was isolated from the male Sprague-Dawley rat liver cytosol and purified to homogeneity in 12% yield with a purification factor of 901-fold. The purified GST was a homo-dimeric enzyme protein with subunit Mr 26,000 and pI 7.9 and designated as Yrs-Yrs because of its enzyme activity toward "reactive sulfate esters." GST Yrs-Yrs could neither be retained on the S-hexylglutathione gel column nor showed any activity toward 1,2-dichloro-4-nitrobenzene, 4-nitrobenzyl chloride, and 1,2-epoxy-3-(4'-nitrophenoxy)propane. 1-Chloro-2,4-dinitro-benzene was a very poor substrate for this GST. 1-Menaphthyl sulfate was the best substrate for GST Yrs-Yrs among the examined mutagenic arylmethyl sulfates. The enzyme had higher activities toward ethacrynic acid and cumene hydroperoxide. N-terminal amino acid sequence of subunit Yrs, analyzed up to the 25th amino acid, had no homology with any of the known class alpha, mu, and pi enzymes of the Sprague-Dawley rat. Anti-Yrs-IgG raised against GST Yrs-Yrs showed no cross-reactivity with any of subunits Ya, Yc, Yb1, Yb2, and Yp. Anti-IgGs raised against Ya, Yc, Yb1, Yb2, and Yp also showed no cross-reactivity with GST Yrs-Yrs. The purified enzyme proved to differ evidently from the 12 known cytosolic GSTs in various tissues of the rat in all respects. Immunoblot analysis of various tissue cytosols of the male rat indicated that apparent concentrations of the GST Yrs-Yrs protein were in order of liver greater than testis greater than adrenal greater than kidney greater than lung greater than brain greater than skeletal muscle congruent to heart congruent to small intestine congruent to spleen congruent to skin congruent to 0.  相似文献   

7.
Upon treatment with Cd and As cattail (Typha latifolia) showed induced catalase, monodehydroascorbate reductase and ascorbate peroxidase activities in leaves but strong inhibition in rhizomes. Peroxidase activity in leaves of the same plants was inhibited whereas linear increase was detected after Cd treatment in rhizomes.Glutathione S-transferase measurements resulted in identical effects of the trace elements on the substrates CDNB, DCNB, NBC, NBoC, fluorodifen. When GST was assayed with the model substrate DCNB, a different pattern of activity was observed, with strongly increasing activities at increasing HM concentrations. Consequently, to improve the success rates, future phytoremediation plans need to preselect plant species with high antioxidative enzyme activities and an alert GST pattern capable of detoxifying an array of organic xenobiotics.  相似文献   

8.
The effect of ATP on the fluorescence intensity of bovine heart F1-adenosinetriphosphatase labeled at its essential Lys with 7-chloro-4-nitro-2,1,3-benzoxadiazole (N-NBD-F1) has been examined in solutions containing different concentrations of ADP. The fluorescence of N-NBD-F1 is unaffected by ATP in the absence of ADP. But when increasing amounts of ATP are added to a solution of N-NBD-F1 containing 0.37 or 1.0 mM ADP, the fluorescence of N-NBD-F1 first decreases and then increases continually as the concentration of ATP is further raised. Parallel measurements of the suppression of the fluorescence of N-NBD-F1 and the inhibition of the ATPase activity of the unlabeled enzyme by ADP in the presence of ATP show a quantitative correlation between the changes in fluorescence and in ATPase activity. The data are consistent with the model for F1-ATPase with one principal catalytic subunit for ATP hydrolysis and synthesis, and two auxiliary subunits which control the conformation and hence the catalytic activity of through interaction between all the subunits.  相似文献   

9.
The acidic glutathione S-transferases from a CSMA (susceptible) strain and a Cornell-R (resistant) strain of houseflies were purified and separated utilizing affinity chromatography followed by chromatofocusing. Nine fractions were isolated from each house fly strain. Fraction 1 had the highest 1-chloro-2,4-dinitrobenzene vs. 1,2-dichloro-4-nitrobenzene ratio (CDNB/DCNB ratio) in both strains and the ratio of all the other fractions tended to decrease as the isoelectrical points decreased except for fractions 4 and 9. Most fractions from the CSMA strain had higher CDNB conjugation activities than the fractions from the Cornell-R strain, but all the fractions from the CSMA strain had lower DCNB conjugation activities than fractions from the Cornell-R strain. Steady-state kinetics of all the fractions were examined. The Km values obtained from both strains ranged from 0.36 to 1.12 mM, while the Vmax value ranged from 3.0 to 32.6 μmol/min/mg. In the 100,000 g supernatant, the CDNB specific activities in the CSMA strain was about 1/3 of the activity in the Cornell-R strain but it was about 1.5-fold following affinity chromatography. The specific activity for DCNB measured in the CSMA strain was only 1/5 of the activities of the Cornell-R strain in the 100,000 g supernatant, but was about the same after affinity chromatography. The difference was due to the selectivity of the affinity column used in the current study. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Liver and gills of roach (Rutilus rutilus) and silver carp (Hypophthalmichthys molitrix) were examined for glutathione S-transferases (GSTs) contents and their substrate specificity and capacity to biotransform microcystin-LR (MC-LR). GSTs and other glutathione (GSH) affine proteins were purified using a GSH-agarose matrix and separated by anionic chromatography (AEC). Substrate specificities were determined photometrical for 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), 4-nitrobenzyl chloride (pNBC) and ethacrynic acid (ETHA). Biotransformation rate of MC-LR was determined by high performance liquid chromatography (HPLC). Roach exhibited different hepatic and branchial GST activities for used substrates (DNB, pNBC and DCNB) compared to silver carp but not for ethacrynic acid. It suggests that, both fish species have similar amount of pi and/or alpha class, which were the dominant GST classes in liver and gills. Gills of both fish species contained a higher number of GST isoenzymes, but with lower activities and ability of MC-LR biotransformation than livers. GST isoenzymes from roach had higher activity to biotransform MC-LR (conversion rate ranging up to 268 ng MC-LR min? 1 mL? 1 hepatic enzyme) than that isolated from silver carp. Without any prior contact to MC-LR or another GST inducer, roach seems to be better equipped for microcystin biotransformation than silver carp.  相似文献   

11.
Members of the glutathione S-transferase superfamily can protect organisms against oxidative stress. In this study, we characterized an omega glutathione S-transferase from Spodoptera exigua (SeGSTo). The SeGSTo gene contains an open reading frame (ORF) of 744 nucleotides encoding a 248-amino acid polypeptide. The predicted molecular mass and isoelectric point of SeGSTo are 29007 Da and 7.74, respectively. Multiple amino acid sequence alignment analysis shows that the SeGSTo sequence is closely related to the class 4 GSTo of Bombyx mori BmGSTo4 (77 % protein sequence similarity). Homologous modeling and molecular docking reveal that Cys35 may play an essential role in the catalytic process. Additionally, the phylogenetic tree indicates that SeGSTo belongs to the omega group of the GST superfamily. During S. exigua development, SeGSTo is expressed in the midgut of the fifth instar larval stage, but not in the epidermis or fat body. Identification of recombinant SeGSTo via SDS-PAGE and Western blot shows that its molecular mass is 30 kDa. The recombinant SeGSTo was able to protect super-coiled DNA from damage in a metal-catalyzed oxidation (MCO) system and catalyze the 1-chloro-2,4-dinitrobenzene (CDNB), but not 1,2-dichloro-4-nitrobenzene (DCNB), 4-nitrophenethyl bromide (4-NPB), or 4-nitrobenzyl chloride (4-NBC). The optimal reaction pH and temperature were 8 and 50 °C, respectively, in the catalysis of CDNB by recombinant SeGSTo. The mRNA expression of SeGSTo was up-regulated by various oxidative stresses, such as CdCl2, CuSO4, and isoprocarb, and the catalytic activity of recombinant SeGSTo was noticeably inhibited by heavy metals (Cu2+ and Cd2+) and various pesticides. Taken together, these results indicate that SeGSTo plays an important role in the antioxidation and detoxification of pesticides.  相似文献   

12.
Glutathione S -transferases (GSTs) and general esterases play important roles in the detoxification of many substances including allelochemicals from plants and chemical pesticides. In this study, to determine the feeding status and effects of agronomical practices on GST and general esterase, two bug species, Eurygaster integriceps and Brachynema germari , were selected with differences in these cases. GST and general esterase responses varied when switching from 1-chloro-2,4-dinitrobenzene (CDNB) and α -naphtyl to 1,2-dichloro-4-nitro-benzene (DCNB) and β -naphtyl in E. integriceps and B. germari , respectively. The activities of GST and esterase by using CDNB and α -naphtyl were higher than that of DCNB and β -naphtyl for both insects. It was shown that the optimal pH for GST and general esterase activity varied between pH 5.5 and 6. While the Michaelis constant (Km) value related to E. integriceps toward CDNB and α -naphtyl was lower than Km for B. germari , Km values calculated for E. integriceps toward DCNB and β -naphtyl corresponding to those related to A. hejeri were similar to CDNB and α -naphtyl values. The maximal reaction velocity (Vmax) values related to E. integriceps for both substrates (CDNB and α -naphtyl) were always higher than those from B. germari and showed significant differences. At the basement of the native-PAGE electrophoresis, five bands were observed in for GST and three were visualized for B. germari , with a large, darker band for E. integriceps in the case of esterases. Studies on the detoxification enzymes of herbivores should be undertaken to determine accurately the effect of the host plants on the organisms eating them, particularly in terms of biochemical and ecological advantages.  相似文献   

13.
Acidification of weakly buffered suspensions of the cyanobacteria Anacystis nidulans, Nostoc sp. strain MAC, Dermocarpa sp. and Anabaena variabilis was observed after the application of oxygen pulses to anaerobic cells. The acidification was caused by proton extrusion from the oxygen pulsed cells since it was eliminated by the uncoupler (H+ ionophore) carbonyl cyanide m-chlorophenylhydrazone. Results with the inhibitors dicyclohexylcarbodiimide or 7-chloro-4-nitrobenz-2-oxa-1,3-diazole, orthovanadate and cyanide indicated the association of various fractions of the observed proton extrusion with different activities of the cell membrane, viz. a H+-translocating reversible F0F1-ATPase, a unidirectional H+-translocating ATP hydrolase, and a respiratory electron transport system, respectively. Further parameters investigated were the pH dependence and the H+/O stoichiometry of the H+ extrusion from oxygen pulsed cyanobacteria. H+/O ratios at neutral pH were between 4 (Anacystis nidulans) and 0.3 (Dermocarpa) with uninhibited, actively phosphorylating cells and between 2 (Anacystis nidulans) and 0.4 (Dermocarpa) with ATPase-inhibited (ATP-depleted) cells, respectively. It is significant that with all four cyanobacteria tested a major fraction of the observed H+ ejection remained unaffected by ATPase inhibitors even at concentration which completely abolished all oxidative phosphorylation. Vanadate had a major effect on the H+ extrusion from Anabaena only. From this it is concluded that in the cyanobacterial species investigated part of the H+ extrusion from oxygen pulsed cells is directly linked to some H+-translocating respiratory electron transport chain present in the cell membrane.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DCCD N, N-dicyclohexylcarbodiimide - DCMU N-(3,4-dichlorophenyl-)N,N-dimethylurea - NBD 7-chloro-4-nitrobenzoxa-1,3-diazole - TPP+ tetraphenylphosphonium - Mes 2-(N-morpholino)ethanesulfonic acid - Pipes piperazine-N,N-bis-(2-ethanesulfonic acid) - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - Taps tris (hydroxymethyl)-methyl-aminopropanesulfonic acid - Ches 2-(N-cyclohexylamino)-ethanesulfonic acid - Caps 3-cyclohexylamino)-1-propanesulfonic acid; according to most textbooks (e.g. Nicholls 1982) the terms proton electrochemical potential ( ) and protonmotive force (pmf, p), both of which equivalently describe the energetic state of energy-transducing membranes, were used synonymously and expressed in mV units throughout this article (however, cf. Lowe and Jones 1984) Dedicated to Prof. G. Drews on the occasion of his 60th birthday  相似文献   

14.
Two human Mu class glutathione transferases, hGST M1-1 and hGST M2-2, with high sequence identity (84%) exhibit a 100-fold difference in activities with the substrates aminochrome, 2-cyano-1,3-dimethyl-1-nitrosoguanidine (cyanoDMNG), and 1,2-dichloro-4-nitrobenzene (DCNB), hGST M2-2 being more efficient. A sequence alignment with the rat Mu class GST M3-3, an enzyme also showing high activities with aminochrome and DCNB, demonstrated an identical structural cluster of residues 164-168 in the alpha6-helices of rGST M3-3 and hGST M2-2, a motif unique among known sequences of human, rat, and mouse Mu class GSTs. A putative electrostatic network Arg107-Asp161-Arg165-Glu164(-Gln167) was identified based on the published three-dimensional structure of hGST M2-2. Corresponding variant residues of hGSTM1-1 (Leu165, Asp164, and Arg167) as well as the active site residue Ser209 were targeted for point mutations, introducing hGST M2-2 residues to the framework of hGST M1-1, to improve the activities with substrates characteristic of hGST M2-2. In addition, chimeric enzymes composed of hGST M1-1 and hGST M2-2 sequences were analyzed. The activity with 1-chloro-2,4-dinitrobenzene (CDNB) was retained in all mutant enzymes, proving that they were catalytically competent, but none of the point mutations improved the activities with hGST M2-2 characteristic substrates. The chimeric enzymes showed that the structural determinants of these activities reside in domain II and that residue Arg165 in hGST M2-2 appears to be important for the reactions with cyanoDMNG and DCNB. A mutant, which contained all the hGST M2-2 residues of the putative electrostatic network, was still lacking one order of magnitude of the activities with the characteristic substrates of wild-type hGST M2-2. It was concluded that a limited set of point mutations is not sufficient, but that indirect secondary structural affects also contribute to the hGST M2-2 characteristic activities with aminochrome, cyanoDMNG, and DCNB.  相似文献   

15.
The glutathione transferase (GST) activity of rat liver cytosolic preparations with ethacrynic acid (EA) and (±)-7β,8α-dihydroxy-9α, 10α-epoxy-7,8,9,10-tetrahydro-benzo(a)pyrene (BPDE) as substrates, increased by 125 and 350%, respectively, in animals that had been treated with a single intravenous dose of Pb(NO3)2 (100 μmol/kg body wt) 48 h prior to sacrifice, whereas activity with 1-chloro-2,4-dinitro-benzene (CDNB) increased only about 60%. No induction of these activities was observed in cytosolic preparations from regenerating rat liver, whereas cytosols prepared from hepatocyte nodules showed increased activity with all three substrates (EA: 400%; BPDE: 790%; CDNB: 205%). These results suggest that Pb(NO3)2 is an inducer of GST 7-7, an isoenzyme that has been associated with hepatocarcinogenesis. Elucidation of the mechanism of GST 7-7 induction by lead may contribute to our understanding of the process of chemical carcinogenesis.  相似文献   

16.
Carbon-isotope ratios were examined as 13C values in several C3, C4, and C3–C4 Flaveria species, and compared to predicted 13C, values generated from theoretical models. The measured 13C values were within 4 of those predicted from the models. The models were used to identify factors that contribute to C3-like 13C values in C3–C4 species that exhibit considerable C4-cycle activity. Two of the factors contributing to C3-like 13C values are high CO2 leakiness from the C4 pathway and pi/pa values that were higher than C4 congeners. A marked break occurred in the relationship between the percentage of atmospheric CO2 assimilated through the C4 cycle and the 13C value. Below 50% C4-cycle assimialtion there was no significant relationship between the variables, but above 50% the 13C values became less negative. These results demonstrate that the level of C4-cycle expression can increase from, 0 to 50% with little integration of carbon transfer from the C4 to the C3 cycle. As expression increaces above 50%, however, increased integration of C3- and C4-cycle co-function occurs.Abbreviations and symbols RuBP carboxylase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - PEP carboxylase phosphoenolpyruvate carboxylase (EC 4.1.1.31) - pa atmospheric CO2 partial pressure - pi intercellular CO2 partial pressure - isotope ratio - quantum yield for CO2 uptake  相似文献   

17.
Fermentation of yoghurt and acidified milks containing aflatoxin B1 (AB1) were studied. AB1 added to milk before fermentation at concentrations of 600, 1000 and 1400 g/kg was reduced in yoghurts (pH 4.0) by 97, 91 and 90%, respectively. Coagulation time was approximately the same as in the controls. Streptococci had longer chains than those in the controls. The main decrease of AB1 occurred during the milk fermentation. A decrease of AB1 (conc. 1000 g/kg) in milks acidified with citric, lactic and acetic acids (pH 4.0) was 90, 84 and 73%, respectively.  相似文献   

18.
Seven glutathione-S-transferase (GST) isozymes were purified from liver cytosol of intact male Wistar rats: 1-1(A), 1-1(B), 1-2, 2-2, 3-3, 3-4, 4-4. Treatment of rats with butylated hydroxytoluene (BHT) led to the induction of isozymes GST 1-1(A), 1-1(B) (2-fold), 3-3 (3.5-fold) as well as to the appearance of two new isozymes--1-3 and 4-4(A). Phenobarbital (PB) induced isozymes GST 1-1(A), 1-1(B) (2-fold) and 3-3 (1.5-fold). BHT and PB caused an increase in the specific activity of isozymes 1-1(A), 1-1(B), 3-3, 3-4 towards 1-chloro-2.4-dinitrobenzene and 1.2-dichloro-4-nitrobenzene. 3-Methylcholanthrene (MC) induced isozymes 1-2 (1.5-fold), 2-2 (2-fold) and 4-4 (3-fold). A conclusion was drawn that BHT and PB induced the GST subunits 1 and 3, whereas MC--subunits 2 and 4.  相似文献   

19.
The present study contributes to the problem of the dynamic structure of mitochondrial F1-ATPase and the functional interrelation of so-called tight nucleotide binding sites. Nucleotide analogs are used as a tool to differentiate two distinct functional states of the membrane-bound enzyme, proposed to reflect corresponding conformational states; they reveal F1-ATPase as a dual-state enzyme: ATP-synthetase, and ATP-hydrolase. The analogs used are 3-naphthoyl esters of AD(T)P, and 2(3)-O-trinitrophenyl ethers of AD(T)P. Both types of analogs act inversely to each other with respect to their relative effects on oxidative phosphorylation and on ATPase in submitochondrial vesicles. The respective ratios ofK i versus both processes are 250/1 compared to 1/170. It is also shown that in the presence of the inhibitory 3-esters oxidative phosphorylation deviates from linear kinetics and that these inhibitors induce a lag time of oxidative phosphorylation depending on the initial pattern of nucleotides available to energized submitochondrial vesicles. The duration of the lag time coincides with the time course of displacement of the analog from a tight binding site. The conclusions of the study are: (a) the catalytic sites of F1-ATP-synthetase are not operating independently from each other; they rather interact in a cooperative manner; (b) F1-ATPase as a dual-state enzyme exhibits highly selective responses to tight binding of nucleotides or analogs in its energized (membrane-bound) state versus its nonenergized state, respectively.Abbreviations used: N-AD(T)P, 3-O-naphthoyl(1)-AD(T)P; DMAN-AD(T)P, 3-O-(5-dimethylaminonaphthoyl(1))-AD(T)P, also termed F-AD(T)P in previous papers because of its fluorescence; TNP-AD(T)P, 2(3)-O-(2,4,6-trinitrophenyl)-AD(T)P; FCCP,p-trifluoromethoxycarbonylcyanide phenylhydrazone.  相似文献   

20.
Fumonisins B1 and B2 and AAL toxin are a series of structurally related mycotoxins. Fumonisins B1 and B2, produced by Fusarium moniliforme Sheldon induce toxic hepatitis and hepatomas in rats and leukoencephalomalacia in horses. The cancer-promotion assay which has been used to guide their purification is slow and consumes large amounts of sample. We have examined a series of cultured mammalian cell lines in order to develop a more rapid and sensitive bioassay system, which may be useful for examining structure-activity relationships and the mechanism(s) of action of these toxins. Of 9 rat hepatoma cell lines tested, all except the two most de-differentiated lines were sensitive to the three toxins, with a toxic response visible by 48 h. Approximate IC50 values for the most sensitive hepatoma line, H4TG, were 4, 2 and 10 g/ml for fumonisins B1, B2 and AAL toxin, respectively in 100 l cultures. Among 15 cell lines from other sources, only MDCK dog kidney epithelial cells were sensitive (IC50 = 2.5, 2 and 5 g/ml, respectively). Studies in co-cultures of sensitive and insensitive cell lines and in cultures of a sensitive cell line over a range of cell densities indicated that cytotoxicity of fumonisins B1 and B2 does not involve metabolite activation to a derivative stable enough to diffuse to adjacent cells.Abbreviations AAL toxin Alternaria alternata f. sp. lycopersici toxin - IC50 concentration giving 50% inhibition of cell proliferation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号