首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The decomposition of dissolved organic matter (DOM) in pelagic ecosystems is mediated primarily by heterotrophic bacteria, but transformation by short-wave solar radiation may play an important role in surface waters, in particular when humic substances constitute a substantial fraction of the DOM pool. Most of the studies examining bacterial decomposition and photochemical transformation of DOM stem from limnetic and coastal marine systems and much less information is available from oceanic environments. To examine the bacterial decomposition of humic and non-humic DOM in the Southern Ocean we carried out microcosm experiments in which we measured bacterial growth on isolated fractions of humic and non-humic DOM of the size classes <3 kDa and >3 kDa. Experiments carried out at the Polar Front showed a preferential bacterial growth on non-humic DOM and in particular on the size fraction <3 kDa. Bacterial growth, measured as bacterial biomass production, on non-humic DOM accounted for 74% to 88% of the total growth on all four DOM fractions. In experiments in the Antarctic circumpolar current and the coastal current under pack ice, bacterial growth was 6× lower than at the Polar Front, and humic and non-humic DOM was consumed to equal amounts. The size fraction <3 kDa was always preferred. Experiments examining the effect of solar radiation on the release of dissolved amino acids (DAA) and carbohydrates (DCHO) and their subsequent bacterial utilization showed a stimulating effect on glucose uptake and the release of DAA at the Polar Front but an inhibition in the eastern Weddell Sea. Ultraviolet-B was the most effective component of the solar radiation spectrum tested. Effects of UV-B on glucose uptake and release of DAA were positively correlated with concentrations of humic-bound DAA. The data imply that at low concentrations, e.g., <100 nM (amino acid equivalent), UV-irradiation reduces, whereas at concentrations >100 nM UV-irradiation stimulates glucose uptake and release of DAA as compared to dark conditions.  相似文献   

2.
We investigated the growth response of the heterotrophic prokaryotic community focusing on Vibrio- and Rhodobacter-related populations (SRF3) to variation in the availability of dissolved organic matter (DOM), population density-dependent effects, and prokaryotic virus (phage) infection in coastal and offshore waters of the NW Mediterranean Sea. We tested the response of the prokaryotic community to three different DOM fractions prepared by ultrafiltration. One of the DOM fractions contained phages (<0.2 m), a second was virus-free (<100 kDa), and a third contained only low molecular weight (<1 kDa). The proportion of Vibrio and SRF3 populations as determined by fluorescent in situ hybridization in the community ranged from <1 to 6.2% and from 3.2 to 6.3%, respectively. Based on changes in cell numbers, growth rates ranged from 2.1 to 3.1 day−1 for Vibrio and from 0.8 to 1.2 day−1 for SRF3. Growth rates of Vibrio were similar or higher than those of the total prokaryotic community, whereas the ability of Vibrio to use high molecular weight (HMW) DOM and the responses to additions of phage-rich material were lower. Growth rates of SRF3 were lower than that of the community. Susceptibility to infection of SRF3 was sometimes lower than in the community, whereas the growth stimulation of HMW DOM was similar or lower. Reducing the cell concentrations of the prokaryotic community by dilution stimulated the overall growth of the community, including that of its constituent Vibrio and SRF3 populations, but the effect was smaller on the SRF3 and greater on Vibrio populations than for the total community. Comparisons with the community also revealed that life strategy traits of bacterial populations differed between coastal and offshore waters. Overall, our data suggest that Vibrio is an r-strategist or opportunistic population in the NW Mediterranean Sea, whereas SRF3 is a K-strategist or equilibrium population.  相似文献   

3.
4.
The effect of irradiance in the range of 400 to 700 nm or photosynthetically active radiation (PAR) on bacterial heterotrophic production estimated by the incorporation of 3H-leucine (referred to herein as Leu) was investigated in the northwestern Mediterranean Sea and in a coastal North Atlantic site, with Leu uptake rates ranging over 3 orders of magnitude. We performed in situ incubations under natural irradiance levels of Mediterranean samples taken from five depths around solar noon and compared them to incubations in the dark. In two of the three stations large differences were found between light and dark uptake rates for the surface most samples, with dark values being on average 133 and 109% higher than in situ ones. Data obtained in coastal North Atlantic waters confirmed that dark enclosure may increase Leu uptake rates more than threefold. To explain these differences, on-board experiments of Leu uptake versus irradiance were performed with Mediterranean samples from depths of 5 and 40 m. Incubations under a gradient of 12 to 1,731 micromol of photons m(-2) x s(-1) evidenced a significant increase in incorporation rates with increasing PAR in most of the experiments, with dark-incubated samples departing from this pattern. These results were not attributed to inhibition of Leu uptake in the light but to enhanced bacterial response when transferred to dark conditions. The ratio of dark to light uptake rates increased as dissolved inorganic nitrogen concentrations decreased, suggesting that bacterial nutrient deficiency was overcome by some process occurring only in the dark bottles.  相似文献   

5.
High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h−1, five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½of maximum values averaged (±SEM) 12±5.6 h−1% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.  相似文献   

6.
The distribution of aerobic anoxygenic phototrophs (AAPs) was surveyed in various regions of the Mediterranean Sea in spring and summer. These phototrophic bacteria were present within the euphotic layer at all sampled stations. The AAP abundances increased with increasing trophic status ranging from 2.5 × 10(3) cells per ml in oligotrophic Eastern Mediterranean up to 90 × 10(3) cells per ml in the Bay of Villefranche. Aerobic anoxygenic phototrophs made up on average 1-4% of total prokaryotes in low nutrient areas, whereas in coastal and more productive stations these organisms represented 3-11% of total prokaryotes. Diel bacteriochlorophyll a decay measurements showed that AAP community in the Western Mediterranean grew rapidly, at rates from 1.13 to 1.42 day(-1). The lower AAP abundances registered in the most oligotrophic waters suggest that they are relatively poor competitors under nutrient limiting conditions. Instead, AAPs appear to be metabolically active organisms, which thrive better in more eutrophic environments providing the necessary substrates to maintain high growth rates.  相似文献   

7.
Marine heterotrophic prokaryotes (HP) play a key role in organic matter processing in the ocean; however, the view of HP as dissolved organic matter (DOM) sources remains underexplored. In this study, we quantified and optically characterized the DOM produced by two single marine bacterial strains. We then tested the availability of these DOM sources to in situ Mediterranean Sea HP communities. Two bacterial strains were used: Photobacterium angustum (a copiotrophic gammaproteobacterium) and Sphingopyxis alaskensis (an oligotrophic alphaproteobacterium). When cultivated on glucose as the sole carbon source, the two strains released from 7% to 23% of initial glucose as bacterial derived DOM (B-DOM), the quality of which (as enrichment in humic or protein-like substances) differed between strains. B-DOM induced significant growth and carbon consumption of natural HP communities, suggesting that it was partly labile. However, B-DOM consistently promoted lower prokaryotic growth efficiencies than in situ DOM. In addition, B-DOM changed HP exoenzymatic activities, enhancing aminopeptidase activity when degrading P. angustum DOM, and alkaline phosphatase activity when using S. alaskensis DOM, and promoted differences in HP diversity and composition. DOM produced by HP affects in situ prokaryotic metabolism and diversity, thus changing the pathways for DOM cycling (e.g. respiration over biomass production) in the ocean.  相似文献   

8.
Diatoms are important components of the marine food web and one of the most species-rich groups of phytoplankton. The diversity and composition of diatoms in eutrophic nearshore habitats have been well documented due to the outsized influence of diatoms on coastal ecosystem functioning. In contrast, patterns of both diatom diversity and community composition in offshore oligotrophic regions where diatom biomass is low have been poorly resolved. To compare the diatom diversity and community composition in oligotrophic and eutrophic waters, diatom communities were sampled along a 1,250 km transect from the oligotrophic Sargasso Sea to the coastal waters of the northeast US shelf. Diatom community composition was determined by amplifying and sequencing the 18S rDNA V4 region. Of the 301 amplicon sequence variants (ASVs) identified along the transect, the majority (70%) were sampled exclusively from oligotrophic waters of the Gulf Stream and Sargasso Sea and included the genera Bacteriastrum, Haslea, Hemiaulus, Pseudo-nitzschia, and Nitzschia. Diatom ASV richness did not vary along the transect, indicating that the oligotrophic Sargasso Sea and Gulf Stream are occupied by a diverse diatom community. Although ASV richness was similar between oligotrophic and coastal waters, diatom community composition in these regions differed significantly and was correlated with temperature and phosphate, two environmental variables known to influence diatom metabolism and geographic distribution. In sum, oligotrophic waters of the western North Atlantic harbor diverse diatom assemblages that are distinct from coastal regions, and these open ocean diatoms warrant additional study, as they may play critical roles in oligotrophic ecosystems.  相似文献   

9.
The effect of irradiance in the range of 400 to 700 nm or photosynthetically active radiation (PAR) on bacterial heterotrophic production estimated by the incorporation of 3H-leucine (referred to herein as Leu) was investigated in the northwestern Mediterranean Sea and in a coastal North Atlantic site, with Leu uptake rates ranging over 3 orders of magnitude. We performed in situ incubations under natural irradiance levels of Mediterranean samples taken from five depths around solar noon and compared them to incubations in the dark. In two of the three stations large differences were found between light and dark uptake rates for the surfacemost samples, with dark values being on average 133 and 109% higher than in situ ones. Data obtained in coastal North Atlantic waters confirmed that dark enclosure may increase Leu uptake rates more than threefold. To explain these differences, on-board experiments of Leu uptake versus irradiance were performed with Mediterranean samples from depths of 5 and 40 m. Incubations under a gradient of 12 to 1,731 μmol of photons m−2 s−1 evidenced a significant increase in incorporation rates with increasing PAR in most of the experiments, with dark-incubated samples departing from this pattern. These results were not attributed to inhibition of Leu uptake in the light but to enhanced bacterial response when transferred to dark conditions. The ratio of dark to light uptake rates increased as dissolved inorganic nitrogen concentrations decreased, suggesting that bacterial nutrient deficiency was overcome by some process occurring only in the dark bottles.  相似文献   

10.
We studied the interactive effects of dissolved organic matter (DOM) and solar radiation on the activity and community structure of bacteria from an alpine lake. Activity was assessed both at the community level as leucine incorporation rates and at the single-cell level by microautoradiography. Fluorescent in situ hybridization and signal amplification by catalysed reporter deposition (CARD-FISH) was used to track changes in the bacterial community composition. Bacteria-free filtrates of different DOM sources (lake, algae or soil) were incubated either in the dark or exposed to solar radiation. Afterwards, the natural bacterial assemblage was inoculated and the cultures incubated in the dark for 24-48 h. Bacterial activity was enhanced in the first 24 h in the soil and algal DOM amendments kept in the dark. After 48 h, the enhancement effect was greatly reduced. The initial bacterial community was dominated by Betaproteobacteria followed by Actinobacteria. The relative abundance (expressed as a percentage of DAPI-stained cells) of Betaproteobacteria increased first in dark incubated DOM amendments, but after 48 h no significant differences were detected among treatments. In contrast, the relative abundance of Actinobacteria increased in pre-irradiated DOM treatments. Although Betaproteobacteria dominated at the end of the experiment, the relative abundance of their R-BT subgroup differed among treatments. Changes in bacterial community activity were significantly correlated with those of the relative abundance and activity of Betaproteobacteria, whereas the contribution of Actinobacteria to the bulk activity was very modest. Our results indicate a negative effect of DOM photoalteration on the bulk bacterial activity. The magnitude of this effect was time-dependent and related to rapid changes in the bacterial assemblage composition.  相似文献   

11.
Dilution experiments are used commonly to provide estimates of grazing pressure exerted on phytoplankton and bacterioplankton as well as estimate their growth rates. However, very little attention has been given to the dynamics of grazers, especially heterotrophic nanoflagellates (HNF), in such experiments. We found temporal changes in concentrations of ciliates and HNF in a dilution experiment using water from the oligotrophic N.W. Mediterranean Sea. Ciliates decreased markedly over 24 h when held in seawater diluted with particle-free water (60% and 20% final conc whole seawater) while HNF increased in concentration in the same treatments. Using a time-course approach in a second experiment, we monitored changes in HNF and bacterioplankton concentrations in 20% whole seawater (80% particle-free seawater). Both HNF and heterotrophic bacteria displayed stable concentrations for the first 12 h and then grew rapidly, especially HNF, from 12 to 24 h. Examination of bacterial community composition using denaturing gel gradient electrophoresis (DGGE) showed a change in community composition over the 24 h incubation period. Dilution can have differential effects on the distinct components of the marine microbial food web.  相似文献   

12.
13.
Physiological characteristics of luminous bacteria isolated from the Mediterranean and Gulf of Elat were compared to determine their relationship to the specific seasonal and geographic distribution patterns of these bacteria. The effects of temperature on growth rate and yield, relative sensitivity to photooxidation, resistance to high salt concentration (8%), and ability to grow in nutrient-poor conditions appear to control these patterns. The winter appearance of Photobacterium fischeri and the succession of winter and summer types of Beneckea harveyi in the eastern Mediterranean are explained by different temperature requirements for growth. Sensitivity to photooxidation explains the disappearance of P. leiognathi, present in the main body of the Gulf of Elat throughout the year, from the shallow coastal strip. B. harveyi is present in this coastal strip which is higher in nutrients and in productivity than the open waters. Competition experiments between B. harveyi and P. leiognathi in batch and continuous culture indicate that the oligotrophic P. leiognathi is outcompeted by B. harveyi in rich and even in relatively poor media. The distribution pattern found in the Bardawil hypersaline lagoon is explained by selection of salinity-resistant mutants of B. harveyi from the Mediterranean Sea.  相似文献   

14.
Nitrogen frequently limits oceanic photosynthesis and the availability of inorganic nitrogen sources in the surface oceans is shifting with global change. We evaluated the potential for abrupt increases in inorganic N sources to induce cascading effects on dissolved organic matter (DOM) and microbial communities in the surface ocean. We collected water from 5 m depth in the central North Pacific and amended duplicate 20 liter polycarbonate carboys with nitrate or ammonium, tracking planktonic carbon fixation, DOM production, DOM composition and microbial community structure responses over 1 week relative to controls. Both nitrogen sources stimulated bulk phytoplankton, bacterial and DOM production and enriched Synechococcus and Flavobacteriaceae; ammonium enriched for oligotrophic Actinobacteria OM1 and Gammaproteobacteria KI89A clades while nitrate enriched Gammaproteobacteria SAR86, SAR92 and OM60 clades. DOM resulting from both N enrichments was more labile and stimulated growth of copiotrophic Gammaproteobacteria (Alteromonadaceae and Oceanospirillaceae) and Alphaproteobacteria (Rhodobacteraceae and Hyphomonadaceae) in weeklong dark incubations relative to controls. Our study illustrates how nitrogen pulses may have direct and cascading effects on DOM composition and microbial community dynamics in the open ocean.  相似文献   

15.
The complexity and variability of processes determining dissolved organic matter (DOM) quality is likely to increase in highly dynamic systems such as Mediterranean water bodies. We studied the dynamics of DOM in a Mediterranean lagoon dominated by seasonal submerged vegetation and receiving torrential freshwater inputs. In order to trace changes in DOM quality throughout the year in relation with potential DOM sources, we used spectroscopic techniques including UV–visible absorbance and fluorescence excitation–emission matrices. The quality of the lagoon DOM fluctuates on a seasonal basis between the characteristics of torrential inputs and macrophytes. Humification and aromaticity of DOM increased markedly after the torrential inputs of materials derived from terrestrial vegetation and soils in the catchment. The macrophytes in the lagoon contributed with less humified materials and protein-like compounds. Other minor processes such as seawater entrances, photodegradation or temporary bottom hypoxia translated into sporadic DOM quality changes. These results highlight the need of a whole ecosystem approach to understand changes in DOM quality due to ecosystem processes that might otherwise be exclusively attributed to DOM reactivity.  相似文献   

16.
Synergy of Fresh and Accumulated Organic Matter to Bacterial Growth   总被引:1,自引:0,他引:1  
The main goal of this research was to evaluate whether the mixture of fresh labile dissolved organic matter (DOM) and accumulated refractory DOM influences bacterial production, respiration, and growth efficiency (BGE) in aquatic ecosystems. Bacterial batch cultures were set up using DOM leached from aquatic macrophytes as the fresh DOM pool and DOM accumulated from a tropical humic lagoon. Two sets of experiments were performed and bacterial growth was followed in cultures composed of each carbon substrate (first experiment) and by carbon substrates combined (second experiment), with and without the addition of nitrogen and phosphorus. In both experiments, bacterial production, respiration, and BGE were always higher in cultures with N and P additions, indicating a consistent inorganic nutrient limitation. Bacterial production, respiration, and BGE were higher in cultures set up with leachate DOM than in cultures set up with humic DOM, indicating that the quality of the organic matter pool influenced the bacterial growth. Bacterial production and respiration were higher in the mixture of substrates (second experiment) than expected by bacterial production and respiration in single substrate cultures (first experiment). We suggest that the differences in the concentration of some compounds between DOM sources, the co-metabolism on carbon compound decomposition, and the higher diversity of molecules possibly support a greater bacterial diversity which might explain the higher bacterial growth observed. Finally, our results indicate that the mixture of fresh labile and accumulated refractory DOM that naturally occurs in aquatic ecosystems could accelerate the bacterial growth and bacterial DOM removal.  相似文献   

17.
The bacterial community composition of marine surface sediments originating from various regions of the Eastern Mediterranean Sea (12 sampling sites) was compared by parallel use of three fingerprinting methods: analysis of 16S rRNA gene fragment heterogeneity by denaturing gradient electrophoresis (DGGE), terminal restriction fragment length polymorphism (T-RFLP), and analysis of phospholipid-linked fatty acid composition (PLFA). Sampling sites were located at variable depths (30–2860 m; water column depth above the sediments) and the sediments differed greatly also in their degree of petroleum contamination (0.4–18 μg g−1), organic carbon (0.38–1.5%), and chlorophyll a content (0.01–7.7 μg g−1). Despite a high degree of correlation between the three different community fingerprint methods, some major differences were observed. DGGE banding patterns showed a significant separation of sediment communities from the northern, more productive waters of the Thermaikos Gulf and the oligotrophic waters of the Cretan, S. Ionian, and Levantine Sea. T-RFLP analysis clearly separated the communities of deep sediments (>1494 m depth) from their shallow (<617 m) counterparts. PLFA analysis grouped a shallow station from the productive waters of the north with the deep oligotrophic sediments from the Ionian and Levantine Sea, with low concentrations of PLFAs, and hence low microbial biomass, as the common denominator. The degree of petroleum contamination was not significantly correlated to the apparent composition of the microbial communities for any of the three methods, whereas organic carbon content and sediment chlorophyll a were important in this regard.  相似文献   

18.
Luminous bacteria in the Mediterranean Sea and the Gulf of Aqaba-Elat have different distribution patterns. In the Mediterranean Sea, Beneckea harveyi is present all year round, with different subtypes alternating in summer and winter; Photobacterium fischeri was only present during the winter. In the Gulf of Elat, P. leiognathi is present throughout the water column in similar densities during the entire year. This constancy in distribution is presumably due to the near-constancy in water temperature. In summer, Photobacterium leiognathi is replaced by B. harveyi in coastal surface waters. In the hypersaline Bardawil lagoon, only B. harveyi types are present. P. fischeri, a major component of the Mediterranean Sea winter communities, is absent from the lagoon. Luminous Beneckea strains show a great diversity in properties, e.g. temperature range for growth, sensitivity to infection by phages, sensitivity to attack by Bdellovibrio strains, and differences in tolerance to high-salinity shock. Therefore, subdivision of the taxonomic cluster of B. harveyi into subtypes is indicated. The composition of the luminous bacteria communities may serve as indicators of different marine water bodies. The symbiotic luminous bacteria of the light organ of the common Gulf of Elat fish, Photoblepharon palbebratus steinitzi, is different from any of the types described.  相似文献   

19.
The potential effect that induction of lysogenic bacteria has on bacteriophage production and bacterial mortality in coastal waters was investigated, and we present estimates for the percentage of lysogenic cells in a natural aquatic bacterial community. Various concentrations of mitomycin C and exposure times to UV C radiation (UV-C) (wavelength of 254 nm) were used to induce the lytic cycle in lysogenic cells of natural communities of marine bacteria. UV-C treatment occasionally resulted in phage production, but phage production induced by UV-C was always less than that caused by the addition of mitomycin C. There was no evidence that high growth rates of bacteria resulted in lysogenic phage production. The burst size of cells induced by mitomycin C was determined by transmission electron microscopy and ranged from 11 to 45. Dividing the induced phage production by the burst size provided an estimate of the number of lysogenic bacterial cells, which ranged from 0.07 to 4.4% (average, 1.5%) of the total bacterial population. The percentages of lysogenic bacteria that were induced by mitomycin C were similar for samples collected nearshore from the pier of the Marine Science Institute (chlorophyll a, 1.6 to 2.9 (mu)g liter(sup-1)) and in relatively oligotrophic water (chlorophyll a, 0.2 to 0.9 (mu)g liter(sup-1)) collected 25 to 100 km offshore. By using a steady-state model, if all lysogenic bacteria were induced simultaneously, 0.14 to 8.8% (average, 3.0%) of the total bacterial mortality would result from induction of lysogenic cells. If mitomycin C induces all or the majority of lysogenized cells, our results imply that lysogenic phage production is generally not an important source of phage production or bacterial mortality in the coastal waters of the western Gulf of Mexico.  相似文献   

20.
Carreira  Cátia  Talbot  Sam  Lønborg  Christian 《Biogeochemistry》2021,154(3):489-508

Heterotrophic bacteria typically take up directly dissolved organic matter due to the small molecular size, although both particulate and dissolved organic matter have labile (easily consumed) compounds. Tropical coastal waters are important ecosystems because of their high productivity. However, few studies have determined bacterial cycling (i.e. carbon uptake by bacteria and allocation for bacterial biomass and respiration) of dissolved organic carbon in coastal tropical waters, and none has determined bacterial cycling of total and dissolved organic carbon simultaneously. In this study we followed bacterial biomass and production, and organic carbon changes over short-term (12 days) dark incubations with (total organic carbon, TOC) and without particulate organic carbon additions (dissolved organic carbon, DOC). The study was performed at three sites along the middle stretch of the Great Barrier Reef (GBR) during the dry and wet seasons. Our results show that the bacterial growth efficiency is low (0.1–11.5%) compared to other coastal tropical systems, and there were no differences in the carbon cycling between organic matter sources, seasons or locations. Nonetheless, more carbon was consumed in the TOC compared to the DOC incubations, although the proportion allocated to biomass and respiration was similar. This suggests that having more bioavailable substrate in the particulate form did not benefit bacteria. Overall, our study indicates that when comparing the obtained respiration rates with previously measured primary production rates, the GBR is a heterotrophic system. More detailed studies are required to fully explore the mechanisms used by bacteria to cycle TOC and DOC in tropical coastal waters.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号