首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cities are growing rapidly, thereby expected to cause a large‐scale global biotic homogenization. Evidence for the homogenization hypothesis is mostly derived from plants and birds, whereas arthropods have so far been neglected. Here, I tested the homogenization hypothesis with three insect indicator groups, namely true bugs, leafhoppers, and beetles. In particular, I was interested whether insect species community composition differs between urban and rural areas, whether they are more similar between cities than between rural areas, and whether the found pattern is explained by true species turnover, species diversity gradients and geographic distance, by non‐native or specialist species, respectively. I analyzed insect species communities sampled on birch trees in a total of six Swiss cities and six rural areas nearby. In all indicator groups, urban and rural community composition was significantly dissimilar due to native species turnover. Further, for bug and leafhopper communities, I found evidence for large‐scale homogenization due to urbanization, which was driven by reduced species turnover of specialist species in cities. Species turnover of beetle communities was similar between cities and rural areas. Interestingly, when specialist species of beetles were excluded from the analyses, cities were more dissimilar than rural areas, suggesting biotic differentiation of beetle communities in cities. Non‐native species did not affect species turnover of the insect groups. However, given non‐native arthropod species are increasing rapidly, their homogenizing effect might be detected more often in future. Overall, the results show that urbanization has a negative large‐scale impact on the diversity specialist species of the investigated insect groups. Specific measures in cities targeted at increasing the persistence of specialist species typical for the respective biogeographic region could help to stop the loss of biodiversity.  相似文献   

2.
The first extensive and stratigraphically detailed taxonomic study of the Middle to Late Eocene Bryozoa of the St Vincent Basin has identified more than 200 species of Cheilostomata and 50 species of Cyclostomata. There are three biogeographic groups: basin endemic, Australian and global. Two-thirds (116) of the cheilostome species and seven genera are currently considered endemic to this basin. Most species are endemic to Australia and similar to those found in the Oligo-Miocene of Victoria. The Cellariidae are a common component of most Australian Cainozoic deposits, but the species are highly dissimilar, with 13 of the 17 species here being new. The global component indicates that biogeographic links with regions outside Australia still existed in the Eocene. The cyclostome genus Reticrescis is only known from the Australian and Antarctic Eocene. Ten genera have their first occurrence in the Eocene St Vincent Basin. The Phidoloporidae and Smittinidae represent the most diverse and ubiquitous groups at a geological time close to their time of origination. Contemporaneous sediments in Antarctica, eastern Europe and North America also have a diverse fauna of this family, pointing to a strong Tethyan link. Rhamphosmittina lateralis (MacGillivray) is still extant in New Zealand, having an exceptionally long time range of 40 million years. Overall, the fauna has a distinct Late Cretaceous character. A new genus of Onychocellidae appears similar to genera that were common in Cretaceous Tethyan faunas but rare during the Cainozoic. This similarity ends in the Oligocene, after which the Australian bryozoan became endemic  相似文献   

3.
The landscape of the Australian Wet Tropics can be described as "islands" of montane rainforest surrounded by warmer or more xeric habitats. Historical glaciation cycles have caused expansion and contraction of these rainforest "islands" leading to consistent patterns of genetic divergence within species of vertebrates. To explore whether this dynamic history has promoted speciation in endemic and diverse groups of insects, we used a combination of mtDNA sequencing and morphological characters to estimate relationships and the tempo of divergence among Australian representatives of the dung beetle genus Temnoplectron. This phylogenetic hypothesis shares a number of well-supported clades with a previously published phylogenetic hypothesis based on morphological data, though statistical support for several nodes is weak. Sister species relationships well-supported in both tree topologies, and a tree obtained by combining the two data sets, suggest that speciation has mostly been allopatric. We identify a number of speciation barriers, which coincide with phylogeographic breaks found in vertebrate species. Large sequence divergences between species emphasize that speciation events are ancient (pre-Pleistocene). The flightless, rainforest species appear to have speciated rapidly, but also in the distant past.  相似文献   

4.
Estimates suggest that perhaps 40% of all invertebrate species are found in tropical rainforest canopies. Extrapolations of total diversity and food web analyses have been based almost exclusively on species inhabiting the foliage, under the assumption that foliage samples are representative of the entire canopy. We examined the validity of this assumption by comparing the density of invertebrates and the species richness of beetles across three canopy microhabitats (mature leaves, new leaves and flowers) on a one hectare plot in an Australian tropical rainforest. Specifically, we tested two hypotheses: 1) canopy invertebrate density and species richness are directly proportional to the amount of resource available; and 2) canopy microhabitats represent discrete resources that are utilised by their own specialised invertebrate communities. We show that flowers in the canopy support invertebrate densities that are ten to ten thousand times greater than on the nearby foliage when expressed on a per-unit resource biomass basis. Furthermore, species-level analyses of the beetle fauna revealed that flowers support a unique and remarkably rich fauna compared to foliage, with very little species overlap between microhabitats. We reject the hypothesis that the insect fauna on mature foliage is representative of the greater canopy community even though mature foliage comprises a very large proportion of canopy plant biomass. Although the significance of the evolutionary relationship between flowers and insects is well known with respect to plant reproduction, less is known about the importance of flowers as resources for tropical insects. Consequently, we suggest that this constitutes a more important piece of the ‘diversity jigsaw puzzle’ than has been previously recognised and could alter our understanding of the evolution of plant-herbivore interactions and food web dynamics, and provide a better foundation for accurately estimating global species richness.  相似文献   

5.
Six new species of the Australian myrmecophilous ptinid genus Polyplocotes are described from South Australia. Three are from the deserts of central Australia, one from the Franklin Islands in the Great Australian Bight, one from Eyre Peninsula and one from the Riverland region. Morphologically, the majority of these new species are conventional Polyplocotes , but two are less typical. The characters uniting the genus are explored in the discussion, and comparisons are made to related genera. Although the six new species described here have not been observed in the field, the species of this genus are known to be myrmecophilous, and ant – beetle interactions similar to those seen in other spider beetles might occur between these new species and their host ants.  相似文献   

6.
The research field of animal and plant symbioses is advancing from studying interactions between two species to whole communities of associates. High-throughput sequencing of microbial communities supports multiplexed sampling for statistically robust tests of hypotheses about symbiotic associations. We focus on ambrosia beetles, the increasingly damaging insects primarily associated with fungal symbionts, which have also been reported to support bacteria. To analyze the diversity, composition, and specificity of the beetles' prokaryotic associates, we combine global sampling, insect anatomy, 454 sequencing of bacterial rDNA, and multivariate statistics to analyze prokaryotic communities in ambrosia beetle mycangia, organs mostly known for transporting symbiotic fungi. We analyze six beetle species that represent three types of mycangia and include several globally distributed species, some with major economic importance (Dendroctonus frontalis, Xyleborus affinis, Xyleborus bispinatus-ferrugineus, Xyleborus glabratus, Xylosandrus crassiusculus, and Xylosandrus germanus). Ninety-six beetle mycangia yielded 1,546 bacterial phylotypes. Several phylotypes appear to form the core microbiome of the mycangium. Three Mycoplasma (originally thought restricted to vertebrates), two Burkholderiales, and two Pseudomonadales are repeatedly present worldwide in multiple beetle species. However, no bacterial phylotypes were universally present, suggesting that ambrosia beetles are not obligately dependent on bacterial symbionts. The composition of bacterial communities is structured by the host beetle species more than by the locality of origin, which suggests that more bacteria are vertically transmitted than acquired from the environment. The invasive X. glabratus and the globally distributed X. crassiusculus have unique sets of bacteria, different from species native to North America. We conclude that the mycangium hosts in multiple vertically transmitted bacteria such as Mycoplasma, most of which are likely facultative commensals or parasites.  相似文献   

7.
Human activities are causing a rapid loss of biodiversity, which impairs ecosystem functions and services. Therefore, understanding which processes shape how biodiversity is distributed along spatial and environmental gradients is a first step to guide conservation and management efforts. We aimed to determine the relative explanatory importance of biogeographic, environmental, landscape and spatial variables on assemblage dissimilarities and functional diversity of dung beetles along the Atlantic Forest–Pampa (i.e. forest–grassland) transition zone located in Southeast South America. We described each site according to their biogeographic position, environmental conditions, landscape features and spatial patterns. The compositional dissimilarity was partitioned into turnover and nestedness components of β‐diversity. Mantel tests and generalised dissimilarity models were used to relate β‐diversity and its components to biogeographic, environmental, landscape and spatial variables. Variation partitioning analysis was used to estimate the pure and shared variation in species composition and functional diversity explained by the four categories of predictors. Biome domain was the main factor causing dung beetle compositional dissimilarity, with a high species replacement between Atlantic Forest and Pampa. Biogeographic, environmental, landscape and spatial distances also affected the patterns of dung beetle dissimilarity and β‐diversity components. The shared effects of the four sets of predictors explained most of the variation in dung beetle composition. A similar response pattern was found for dung beetle functional diversity, which excluded biogeographic effects. Only the pure effects of environmental and spatial predictors were significant for species composition and functional diversity. Our results indicate that dung beetle species composition and functional diversity are jointly driven by environmental, landscape and spatial predictors with higher pure environmental and spatial effects. The forest–grassland transition zone promotes a strong species and trait replacement highly influenced both by environmental filtering and dispersal limitation.  相似文献   

8.
Herbivorous beetles comprise a significant fraction of eukaryotic biodiversity and their plant-feeding adaptations make them notorious agricultural pests. Despite more than a century of research on their ecology and evolution, we know little about the diversity and function of their symbiotic microbial communities. Recent culture-independent molecular studies have shown that insects possess diverse gut microbial communities that appear critical for their survival. In this study, we combined culture-independent methods and high-throughput sequencing strategies to perform a comparative analysis of Longitarsus flea-beetles microbial community diversity (MCD). This genus of beetle herbivores contains host plant specialists and generalists that feed on a diverse array of toxic plants. Using a deep-sequencing approach, we characterized the MCD of eleven Longitarsus species across the genus, several of which represented independent shifts to the same host plant families. Database comparisons found that Longitarsus-associated microbes came from two habitat types: insect guts and the soil rhizosphere. Statistical clustering of the Longitarsus microbial communities found little correlation with the beetle phylogeny, and uncovered discrepancies between bacterial communities extracted directly from beetles and those from frass. A Principal Coordinates Analysis also found some correspondence between beetle MCD and host plant family. Collectively, our data suggest that environmental factors play a dominant role in shaping Longitarsus MCD and that the root-feeding beetle larvae of these insects are inoculated by soil rhizosphere microbes. Future studies will investigate MCD of select Longitarsus species across their geographic ranges and explore the connection between the soil rhizosphere and the beetle MCD.  相似文献   

9.
Small beetles, usually species of Nitidulidae, are the natural pollinators of atemoya (Annona squamosa L. x A. cherimola Mill. hybrids; custard apple) flowers but commercial atemoya growers often need to carry out labor-intensive hand pollination to produce enough high-quality fruit. Because Australian rain forest has plant species in the same family as atemoya (Annonaceae) and because many rain forest plants are beetle pollinated, we set out to discover whether tropical rain forest in far north Queensland harbors beetles that could provide this ecosystem service for atemoya crops. Orchards were chosen along a gradient of increasing distance from tropical rain forest (0.1-24 km). We sampled 100 flowers from each of nine atemoya orchards and determined the identity and abundance of insects within each flower. To assess the amount of pollination due to insects, we bagged six flowers per tree and left another six flowers per tree accessible to insects on 10 trees at an orchard near rain forest. Results indicated that atemoya orchards < or = 0.5 km from rain forest were predominantly visited by five previously unrecognized native beetle pollinators that are likely to originate in tropical rain forest. These native beetles occurred reliably enough in crops near rain forest to have a positive effect on the quantity of fruit produced but their contribution was not great enough to satisfy commercial production needs. Management changes, aimed at increasing native beetle abundance in crops, are required before these beetles could eliminate the need for growers to hand pollinate atemoya flowers. Appreciation of the value of this resource is necessary if we are to develop landscapes that both conserve native biodiversity and support agricultural production.  相似文献   

10.
BACKGROUND AND AIMS: A deviation from the classical beetle pollination syndrome of dull-coloured flowers with an unpleasant scent is found in the Greater Cape Floral Region of South Africa. Here, monkey beetles (Scarabaeidae) visit brightly coloured, odourless flowers with conspicuous dark spots and centres (beetle marks). The role of flower colour and markings in attracting monkey beetles is still poorly understood. METHODS: Artificial model flowers with different marking patterns were used to test the effect of beetle marks on visitation by monkey beetles. To test whether monkey beetles are conditioned to the colour of the local matrix species, model flowers of different colours were placed in populations of three differently coloured species of Iridaceae. KEY RESULTS: Among all three matrix species the presence of dark markings of some kind (either centres or spots) increased visitation rates but the different matrix species differed in whether the effect was due to a dark centre or to dark spots. Monkey beetles were not conditioned for the colour of the matrix species: model colour was not significant in the Hesperantha vaginata and in the Romulea monadelpha matrices, whereas yellow model flowers were preferred over orange ones in the orange-flowered Sparaxis elegans matrix. CONCLUSIONS: This study is the first to demonstrate that beetle marks attract pollinating monkey beetles in the Greater Cape Floral Region. In contrast to plants with the classical beetle pollination syndrome that use floral scent as the most important attractant of pollinating beetles, plants with the monkey beetle pollination syndrome rely on visual signals, and, in some areas at least, monkey beetles favour flowers with dark beetle markings over unmarked flowers.  相似文献   

11.
It has been suggested that flowers of some plants are specialized for pollination by two unrelated species (or functional groups) of pollinators. However, evidence for 'bimodal pollination systems' has been extremely limited. Studies of the milkweed Xysmalobium undulatum in South Africa showed that its flowers are visited by a range of different insects (representing 18 families), but only two groups, represented by the chafer beetle Atrichelaphinis tigrina and pompilid wasps in the genus Hemipepsis , effect pollination. Experiments showed that both these pollinator groups are effective in removing and inserting pollinia. Pollinia are attached to clypeal hairs and mouthparts on the wasps and tarsal hairs and spines on the beetles. Although considerably less abundant than the beetles, Hemipepsis spp. wasps move more quickly among flowers and appeared to be more effective pollinators overall. Experimental hand-pollinations conducted in the field showed that X. undulatum is genetically self-incompatible and thus completely reliant on pollinators for reproduction. We conclude that X. undulatum has a bimodal pollination system, specialized for pollination by Hemipepsis pompilid wasps and the chafer beetle A. tigrina .  相似文献   

12.
Monomorium is a large and diverse ant genus with speciose radiations in both the Afrotropical and Australian regions. According to the most recent taxonomic revision, many Australian species are characterised by very broad distributions and variable morphology, which suggests that some species may be unrecognised species complexes. With a continent‐wide distribution and diverse yet overlapping morphology, M. rothsteini (Forel) is representative of the greater challenge that exists in Australian Monomorium systematics. Here we investigate species boundaries in M. rothsteini using a molecular phylogenetic framework to interpret the complex overlap of nine morphological characters (with 31 states) and examine biogeographic relationships among the lineages. Bayesian inference resolved 38 mtDNA lineages that were morphologically separable, at least from their sister lineage. Although the morphological characters were intermixed across the phylogeny, instances of inseparable morphology among sister clades was rare. Seventeen lineages exhibited complete morphological overlap with one or more other lineages and could not be separated by Principal Component Analysis based on 12 morphometric variables. Two‐thirds of all lineages occurred sympatrically with one or more both genetically and morphologically divergent lineages. The two nuclear markers EF1αF2 and wingless were used to generate haplotype networks which were characterised by a star‐like pattern indicative of a rapid and recent radiation. Several haplotypes for both nuclear gene regions were shared among individuals occurring in separate mtDNA clades which we were also unable to distinguish morphologically or that were occurring in sympatry, indicating possible introgression in both the mtDNA and nuclear genomes. Clear biogeographic affinities among samples within a lineage were detected but there was no overall pattern in the biogeographic relationships among the lineages. We conclude that M. rothsteini is a large species complex that has undergone a complex evolutionary history following aridification of the Australian continent, and discuss the implications of this conclusion for the systematics of Australian Monomorium more generally.  相似文献   

13.
Biogeography and history of the Mediterranean bird fauna   总被引:5,自引:0,他引:5  
RITA COVAS  JACQUES BLONDEL 《Ibis》1998,140(3):395-407
With 366 species of breeding birds, the Mediterranean region is a "hot spot" of species diversity. Many biogeographic realms contributed to the establishment of the extant fauna, which makes this region a crossroads for birds, but the two most important realms are the large forest blocks that extend today over Eurasia and the semi-arid belts of the southern and southwestern Palaearctic. The few groups that presumably differentiated within the Mediterranean basin are mostly birds of open habitats and shrublands (e.g. Sylvia spp.), whereas few species evolved in Mediterranean forests dominated by sclerophyllous evergreen tree species. We suggest this results from the history of vegetation belts and their associated faunas during the Pleistocene. On the whole, in contrast to other groups of vertebrates, the bird fauna is fairly homogeneously distributed all over the basin although there are some regional-specific trends in species assemblages, mostly on the basis of habitat selection and biogeographic origin. Many species of eastern and southeastern origin invaded the Mediterranean basin on the northern side of the sea up to the Balkan peninsula and the southern side to the Atlantic coast. The extant biogeographic patterns of the Mediterranean bird fauna are interpreted in the light of the Quaternary history shared by the biotas of the western Palaearctic in relation to the cycle of climatic changes which produced periodic huge spatiotemporal migrations of communities and populations. The severe human impact that started c. 8000-10,000 years ago resulted not so much in species extinctions as in dramatic changes in distributional patterns, complicating the reconstruction of biogeographic scenarios.  相似文献   

14.
Abstract

We investigated the effects of invasion by introduced grey willow (Salix cinerea) on beetle communities within four wetland vegetation types: native vegetation, native vegetation following grey willow removal, native vegetation undergoing grey willow invasion and dense grey willow-dominated vegetation. In total, 1505 beetles from 90 species were collected using modified Malaise traps. Native wetland vegetation had significantly lower beetle species richness than willow-dominated vegetation and was dominated by herbivores, whereas detritivores characterised willow-dominated vegetation. Beetle abundance was highest in the willow-dominated vegetation and mostly comprised detritivores. In contrast, beetle abundance was lowest in native wetland vegetation, but had even proportions of herbivores and detritivores. Native wetland vegetation had a high proportion of native beetles present. As grey willows invaded, introduced beetles became more common. The beetle community composition differed significantly between grey willow-dominated vegetation and native wetland vegetation. These compositional differences were mainly due to the increasing complexity of vegetation structure following grey willow invasion. The beetle communities within restored native wetland vegetation were most similar to those within the native wetland vegetation. From a conservation perspective, these results are encouraging and suggest that, although grey willows dramatically alter the composition of beetle communities present, these communities can be restored to a beetle fauna that is similar to those found within native wetland through the removal of the willows.  相似文献   

15.
杨贵军  王源  王敏 《应用生态学报》2021,32(4):1461-1470
为探讨贺兰山冲积扇荒漠草地拟步甲群落小尺度空间格局动态特征,本研究于2019年5—10月每月采用陷阱法调查200 m×200 m空间尺度的拟步甲昆虫群落,基于地统计分析方法,研究拟步甲昆虫群落的空间格局,并分析空间格局与地形因子的关系。6次调查共捕获拟步甲科成虫7属10种1086只,群落组成具有较明显的空间和时间变异性。其中,拟步甲群落多样性以5月最大,7月最低。Moran I指数表明,拟步甲优势种空间自相关性具有明显的季节波动性,在5月、9月和10月表现为显著空间正相关。拟步甲群落和优势种具有较强的空间异质性,主要由结构性因素决定。普通克里金插值表明,不同季节群落空间格局梯度分布存在明显差异,夏季群落空间格局比较简单。交叉方差函数分析显示,优势种物种间大多表现为正空间关联性,且主要受结构性因素单一调控。典范对应分析(CCA)结果表明,坡度和海拔显著影响昆虫分布。本研究揭示了拟步甲昆虫群落小尺度空间异质性具有明显的季节变异,为研究贺兰山冲积扇生境地表甲虫物种多样性空间格局及维持机制奠定基础。  相似文献   

16.
The bitter gourd genus Momordica comprises 47 species in Africa and 12 in Asia and Australia. All have unisexual flowers, and of the African species, 24 are dioecious, 23 monoecious, while all Asian species are dioecious. Maximum likelihood analyses of 6257 aligned nucleotides of plastid, mitochondrial and nuclear DNA obtained for 122 accessions of Momordica and seven outgroups show that Momordica is monophyletic and consists of 11 well-supported clades. Monoecy evolved from dioecy seven times independently, always in Africa and mostly in savanna species with low population densities. Leaky dioecy, with occasional fruit-producing males, occurs in two African species and might be the first step in an evolutionary transition towards monoecy. Dated biogeographic analyses suggest that Momordica originated in tropical Africa and that the Asian species are the result of one long-distance dispersal event about 19 million years ago. The pantropical vegetable Momordica charantia is of African, not Asian origin as had previously been suggested.  相似文献   

17.
Lycium comprises approximately 70 species and is disjunctly distributed in temperate to subtropical regions in South America, North America, southern Africa, Eurasia, and Australia. Among them, only Lycium sandwicense A. Gray sporadically occurs widely on oceanic islands in the Pacific Ocean. To investigate phylogenetic and biogeographic relationships of the genus with emphasis on L. sandwicense, the coding region of matK, the two intergenic spacers trnT (UGU)-trnL (UAA) and trnL (UAA)-trnF (GAA), and the trnL (UAA) intron of chloroplast DNA (cpDNA) were sequenced. A strict consensus tree resulting from the phylogenetic analysis indicates the following: (1) New World species comprise a potentially paraphyletic assemblage; (2) southern African, Australian, and Eurasian species together are monophyletic; (3) southern African species are a paraphyletic assemblage; and (4) L. sandwicense is in a clade with certain New World species. The estimated biogeographic events based on the cpDNA analysis indicate that (1) Lycium originated in the New World, (2) all southern African, Australian, and Eurasian species have a common ancestor from the New World, (3) Australian and Eurasian species originated once from a southern African progenitor, and (4) L. sandwicense differentiated from the New World species.  相似文献   

18.
Two fire-response syndromes can be described for species of the vegetation of Mediterranean-climate, southwestern Western Australia. Resprouters survive fires as individuals. Reseeders are killed by fire and must reestablish through germination and establishment of seedlings. Of the Western Australian plant families analyzed for fire-response strategies, 50% of the Proteaceae, 50% of the Restionaceae, 45% of the Orchidaceae, and 25% of the Epacridaceae are resprouter species. Within genera of the Proteaceae, the proportions of resprouters includeAdenanthos (56%),Hakea (52%),Dryandra (35%), andGrevillea (31%). WithinBanksia, 49% are resprouters, and it appears that the reseeding syndrome is the derived character in this genus. The proportion of resprouters within southwestern Western Australian plant communities ranges from 66% to 80%. These percentages are generally higher than in more arid parts of Western Australia and in comparable plant communities from other Mediterranean-type climates of the world. The relatively high proportion of resprouters within plant families and within plant communities probably indicates that the Western Australian vegetation experiences a harsher fire stress regime than do other Mediterranean-type climate areas. Western Australian plant communities have their highest diversity in the early years after fire, when the vegetation contains a higher number of reseeding species and individuals. Seed banks are dominated by the seeds of reseeders. There are no basic differences in mean seed mass, viability, or germinability of seeds between resprouting species and reseeding species, but reseeders tend to have narrower optimum germination temperature regimes. Establishment success is related more to seed mass, seedling size, and leaf ecophysiology and morphology than to fire-response strategy. Reseeder seedlings tend to grow faster than do resprouter seedlings. Basic shrub morphology differs, with reseeders generally being umbrella shaped and resprouters urn shaped. Reseeding species most commonly have a shallow, fibrous root system. Resprouters have a massive, deeply penetrating root system. Shoot:root ratios of first-year seedlings and mature plants are higher for reseeders. Resprouter seedlings store starch in root tissue at a much greater rate than do reseeder seedlings. Although the concentrations of essential nutrients in seedlings are not different between fire-response types, reseeders tend to conserve nutrients to a greater extent through leaf retention. Reseeders tend to produce greater numbers of flowers and greater amounts of floral rewards, but the breeding systems, which lead to the higher seed set in reseeders, can vary between strict outcrossing and considerable selfing. Reseeding species are not likely to be wind pollinated. Species survival in a fire-prone environment can involve a wide range of combinations of attributes. It appears that in Western Australian reseeder species the lack of an ability to resprout is compensated for by a number of other structural and functional features. Knowledge of the fire-response strategies of species of southwestern Western Australia can influence fire-regime management, conservation of rare species, and restoration of vegetation after disturbance. Further knowledge of the fire-response strategies of species of the southwestern Western Australian flora should result in better management of natural and restored plant communities of the region.  相似文献   

19.
The chironomid genus Conochironomus is revised, with diagnoses provided for both sexes of adults and, for the first time, the immature stages. The Afrotropical genotype C.acutistilus Freeman and the newly described Australian species C.australiensis (for misidentified acutistilus in Australia), C.cygnus and C.kakadu are described in all stages. C.avicula Freeman is redescribed from the male, and C.deemingi is described as new from the male alone, both from the Afrotropical Region. The Australian species C.cervus is described as new, based on the pupa alone. Comments are made on the ecology and distribution. A previously little-recognized 'tropical' Gondwanan biogeographic explanation for Conochironomus distribution is postulated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号