首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sterilization of wild canids is being used experimentally in many management applications. Few studies have clearly demonstrated vasectomized and tubal-ligated canids will retain pair-bonding and territorial behaviors. We tested whether territory fidelity, space use, and survival rates of surgically sterilized coyote (Canis latrans) packs were different from sham-operated coyote packs. We captured and radio-collared 30 coyotes in December 2006. Sixteen of these animals were sterilized via vasectomy or tubal ligation, and 14 were given sham-surgeries (i.e., remained intact). We monitored these animals using telemetry and visual observations through 2 breeding seasons and 1 pup-rearing season from December 2006 to March 2008. Mean pack size was not significantly different between sterile and intact coyote packs. We found no difference in home range size between sterile and intact coyotes. We found differences in home range and core area overlap between sterile and intact coyote packs in some seasons; however, this difference may have existed prior to sterilization. Home range fidelity was not significantly different between sterile and intact coyotes. All coyotes had higher residency rates during the breeding season, with no differences between sterile and intact coyotes. Survival rates were correlated with biological season, but there were no differences in survival rates between sterile and intact coyotes. We concluded that surgical sterilization of coyotes did not affect territory fidelity, survival rates, or home range maintenance.  相似文献   

2.
In the last century, coyotes (Canis latrans) have expanded their range geographically, but have also expanded their use of habitats within currently occupied regions. Because coyotes are not morphologically adapted for travel in deep snow, we studied coyote space use patterns in a deep-snow landscape to examine behavioral adaptations enabling them to use high elevations during winter. We examined the influence of snow depth, snow penetrability, canopy cover, and habitat type, as well as the rates of prey and predator track encounters, on coyote travel distance in high-elevation terrain in northwestern Wyoming, USA. We backtracked 13 radio-collared coyotes for 265.41 km during the winters of 2006–2007 and 2007–2008, and compared habitat use and movement patterns of the actual coyotes with 259.11 km of random travel paths. Coyotes used specific habitats differently than were available on the landscape. Open woodlands were used for the majority of coyote travel distance, followed by mixed conifer, and closed-stand spruce–fir. Prey track encounters peaked in closed-stand, mature Douglas fir, followed by 50- to 150-year-old lodgepole pine stands, and 0- to 40-year-old regeneration lodgepole pine stands. Snowmobile trails had the most variation between use and availability on the landscape (12.0 % use vs. 0.6 % available). Coyotes increased use of habitats with dense canopy cover as snow penetration increased and rates of rodent and red squirrel track encounters increased. Additionally, coyotes spent more time in habitats containing more tracks of ungulates. Conversely, use of habitats with less canopy cover decreased as snow depth increased, and coyotes traveled more directly in habitats with less canopy cover and lower snow penetration, suggesting coyotes used these habitats to travel. Coyotes persisted throughout the winter and effectively used resources despite deep snow conditions in a high-elevation environment.  相似文献   

3.
Gray wolves (Canis lupus) and coyotes (Canis latrans) generally exhibit intraspecific territoriality manifesting in spatial segregation between adjacent packs. However, previous studies have found a high degree of interspecific spatial overlap between sympatric wolves and coyotes. Eastern wolves (Canis lycaon) are the most common wolf in and around Algonquin Provincial Park (APP), Ontario, Canada and hybridize with sympatric gray wolves and coyotes. We hypothesized that all Canis types (wolves, coyotes, and hybrids) exhibit a high degree of spatial segregation due to greater genetic, morphologic, and ecological similarities between wolves and coyotes in this hybrid system compared with western North American ecosystems. We used global positioning system telemetry and probabilistic measures of spatial overlap to investigate spatial segregation between adjacent Canis packs. Our hypothesis was supported as: (1) the probability of locating wolves, coyotes, and hybrids within home ranges ( $\bar{x}$  = 0.05) or core areas ( $\bar{x}$  < 0.01) of adjacent packs was low; and (2) the amount of shared space use was negligible. Spatial segregation did not vary substantially in relation to genotypes of adjacent packs or local environmental conditions (i.e., harvest regulations or road densities). We provide the first telemetry-based demonstration of spatial segregation between wolves and coyotes, highlighting the novel relationships between Canis types in the Ontario hybrid zone relative to areas where wolves and coyotes are reproductively isolated. Territoriality among Canis may increase the likelihood of eastern wolves joining coyote and hybrid packs, facilitate hybridization, and could play a role in limiting expansion of the genetically distinct APP eastern wolf population.  相似文献   

4.
Hybridization has played an important role in the evolutionary history of Canis species in eastern North America. Genetic evidence of coyote–dog hybridization based on mitochondrial DNA (mtDNA) is lacking compared to that based on autosomal markers. This discordance suggests dog introgression into coyotes has potentially been male biased, but this hypothesis has not been formally tested. Therefore, we investigated biparentally, maternally, and paternally inherited genetic markers in a sample of coyotes and dogs from southeastern Ontario to assess potential asymmetric dog introgression into coyotes. Analysis of autosomal microsatellite genotypes revealed minimal historical and contemporary admixture between coyotes and dogs. We observed only mutually exclusive mtDNA haplotypes in coyotes and dogs, but we observed Y‐chromosome haplotypes (Y‐haplotypes) in both historical and contemporary coyotes that were also common in dogs. Species‐specific Zfy intron sequences of Y‐haplotypes shared between coyotes and dogs confirmed their homology and indicated a putative origin from dogs. We compared Y‐haplotypes observed in coyotes, wolves, and dogs profiled in multiple studies, and observed that the Y‐haplotypes shared between coyotes and dogs were either absent or rare in North American wolves, present in eastern coyotes, but absent in western coyotes. We suggest the eastern coyote has experienced asymmetric genetic introgression from dogs, resulting from predominantly historical hybridization with male dogs and subsequent backcrossing of hybrid offspring with coyotes. We discuss the temporal and spatial dynamics of coyote–dog hybridization and the conditions that may have facilitated the introgression of dog Y‐chromosomes into coyotes. Our findings clarify the evolutionary history of the eastern coyote.  相似文献   

5.
ABSTRACT Interactions between wolves (Canis lupus) and coyotes (C. latrans) can have significant impacts on their distribution and abundance. We compared diets of recently translocated Mexican wolves (C. l. baileyi) with diets of resident coyotes in Arizona and New Mexico, USA. We systematically collected scats during 2000 and 2001. Coyote diet was composed mostly of mammalian species, followed by vegetation and insects. Elk (Cervus elaphus) was the most common item in coyote scats. Mexican wolf diet had a higher proportion of large mammals and fewer small mammals than coyote diet; however, elk was also the most common food item in Mexican wolf scats. Our results suggest that Mexican wolf diet was more similar to coyote diet than previously reported, but coyotes had more seasonal variation. Considering results in other areas, we expect that Mexican wolves will have a negative impact on coyotes through direct mortality and possibly competition. Reintroduction of Mexican wolves may have great impacts on communities by changing relationships among other predators and their prey.  相似文献   

6.
Contemporary evolution through human‐induced hybridization occurs throughout the taxonomic range. Formerly allopatric species appear especially susceptible to hybridization. Consequently, hybridization is expected to be more common in regions with recent sympatry owing to human activity than in areas of historical range overlap. Coyotes ( Canis latrans) and gray wolves ( C. lupus) are historically sympatric in western North America. Following European settlement gray wolf range contracted, whereas coyote range expanded to include eastern North America. Furthermore, wolves with New World (NW) mitochondrial DNA (mtDNA) haplotypes now extend from Manitoba to Québec in Canada and hybridize with gray wolves and coyotes. Using mtDNA and 12 microsatellite markers, we evaluated levels of wolf‐coyote hybridization in regions where coyotes were present (the Canadian Prairies, n = 109 samples) and absent historically (Québec, n = 154). Wolves with NW mtDNA extended from central Saskatchewan (51°N, 69°W) to northeastern Québec (54°N, 108°W). On the Prairies, 6.3% of coyotes and 9.2% of wolves had genetic profiles suggesting wolf‐coyote hybridization. In contrast, 12.6% of coyotes and 37.4% of wolves in Québec had profiles indicating hybrid origin. Wolves with NW and Old World ( C. lupus) mtDNA appear to form integrated populations in both regions. Our results suggest that hybridization is more frequent in historically allopatric populations. Range shifts, now expected across taxa following climate change and other human influence on the environment, might therefore promote contemporary evolution by hybridization.  相似文献   

7.
Coyotes (Canis latrans) are a highly adaptable canid species whose behavioral plasticity has allowed them to persist in a wide array of habitats throughout North America. As generalists, coyotes can alter movement patterns and change territorial strategies between residency (high site fidelity) and transiency (low site fidelity) to maximize fitness. Uncertainty remains about resident and transient coyote movement patterns and habitat use because research has reached conflicting conclusions regarding patterns of habitat use by both groups. We quantified effects of habitat on resident and transient coyote movement behavior using first passage time (FPT) analysis, which assesses recursive movement along an individual''s movement path to delineate where they exhibit area‐restricted search (ARS) behaviors relative to habitat attributes. We quantified monthly movement rates for 171 coyotes (76 residents and 53 transients) and then used estimated FPT values in generalized linear mixed models to quantify monthly habitat use for resident and transient coyotes. Transients had greater movement rates than residents across all months except January. Resident FPT values were positively correlated with agricultural land cover during fall and winter, but negatively correlated with agriculture during spring. Resident FPT values were also negatively correlated with developed habitats during May–August, deciduous land cover during June–August, and wetlands during September–January except November. FPT values of transient coyotes were positively correlated with developed areas throughout much of the year and near wetlands during July–September. Transient FPT values were negatively correlated with agriculture during all months except June and July. High FPT values (ARS behavior) of residents and transients were generally correlated with greater densities of edge habitat. Although we observed high individual variation in space use, our study found substantive differences in habitat use between residents and transients, providing further evidence that complexity and plasticity of coyote habitat use is influenced by territorial strategy.  相似文献   

8.
Interference competition with wolves Canis lupus is hypothesized to limit the distribution and abundance of coyotes Canis latrans, and the extirpation of wolves is often invoked to explain the expansion in coyote range throughout much of North America. We used spatial, seasonal and temporal heterogeneity in wolf distribution and abundance to test the hypothesis that interference competition with wolves limits the distribution and abundance of coyotes. From August 2001 to August 2004, we gathered data on cause-specific mortality and survival rates of coyotes captured at wolf-free and wolf-abundant sites in Grand Teton National Park (GTNP), Wyoming, USA, to determine whether mortality due to wolves is sufficient to reduce coyote densities. We examined whether spatial segregation limits the local distribution of coyotes by evaluating home-range overlap between resident coyotes and wolves, and by contrasting dispersal rates of transient coyotes captured in wolf-free and wolf-abundant areas. Finally, we analysed data on population densities of both species at three study areas across the Greater Yellowstone Ecosystem (GYE) to determine whether an inverse relationship exists between coyote and wolf densities. Although coyotes were the numerically dominant predator, across the GYE, densities varied spatially and temporally in accordance with wolf abundance. Mean coyote densities were 33% lower at wolf-abundant sites in GTNP, and densities declined 39% in Yellowstone National Park following wolf reintroduction. A strong negative relationship between coyote and wolf densities (beta = -3.988, P < 0.005, r(2) = 0.54, n = 16), both within and across study sites, supports the hypothesis that competition with wolves limits coyote populations. Overall mortality of coyotes resulting from wolf predation was low, but wolves were responsible for 56% of transient coyote deaths (n = 5). In addition, dispersal rates of transient coyotes captured at wolf-abundant sites were 117% higher than for transients captured in wolf-free areas. Our results support the hypothesis that coyote abundance is limited by competition with wolves, and suggest that differential effects on survival and dispersal rates of transient coyotes are important mechanisms by which wolves reduce coyote densities.  相似文献   

9.
Expansion of the coyote’s (Canis latrans) distribution in North America has included most urban areas. Concerns for human safety have resulted in the need to understand the spatial relationship between humans and coyotes in urban landscapes. We examined the space use of coyotes with varying degrees of urban development in the Chicago metropolitan area, IL, USA, between March 2000 and December 2002. We compared home-range size, land use, and habitat use of 41 radio-collared coyotes (5 coyotes residing in developed areas, 29 in less-developed areas, and 7 in a matrix of developed and less-developed areas). The partitioning of coyotes into groups based on their level of exposure to urban development allowed us to examine if differences in use of land types by coyotes was evident in our study area. Coyotes in developed areas had home ranges twice the size of animals in less-developed areas. Nonurban habitats were used by all coyotes in the study area, while urban land was avoided. Coyotes in developed areas had large home ranges and high amounts of urban land in their range, but preferred nonurban habitat. This required the coyotes to travel through a matrix of urban land, thus encountering human activity and possibly increasing the risk of conflict with humans. However, coyotes in developed areas avoided crepuscular times when human activity was highest, suggesting that coyotes in developed areas may reduce conflicts with humans by traveling through the matrix of urban land late at night when the risk of contact with humans is lowest. Coyotes in less-developed areas were less affected by human activity at night and likely posed less risk to humans.  相似文献   

10.
Echinococcus multilocularis, the causative agent of human alveolar echinococcosis, has the potential to circulate in urban areas where wild host populations and humans coexist. The spatial and temporal distribution of infection in wild hosts locally affects the risk of transmission to humans. We investigated the spatial and temporal patterns of E. multilocularis infection in coyotes and rodent intermediate hosts within the city of Calgary, Canada, and the association between spatial variations in coyote infection and the relative composition of small mammal assemblages. Infection by E. multilocularis was examined in small mammals and coyote faeces collected monthly in five city parks from June 2012 to June 2013. Coyote faeces were analysed using a ZnCl2 centrifugation and sedimentation protocol. Infection in intermediate hosts was assessed through lethal trapping and post-mortem analysis. Parasite eggs and metacestodes were morphologically identified and molecularly confirmed through species-specific PCR assays. Of 982 small mammals captured, infection was detected in 2/305 (0.66%) deer mice (Peromyscus maniculatus), 2/267 (0.75%) meadow voles (Microtus pennsylvanicus), and 1/71 (1.41%) southern red backed voles (Myodes gapperi). Overall faecal prevalence in coyotes was 21.42% (n = 385) and varied across sites, ranging from 5.34% to 61.48%. Differences in coyote faecal prevalence across sites were consistent with local variations in the relative abundance of intermediate hosts within the small mammal assemblages. Infections peaked in intermediate hosts during autumn (0.68%) and winter (3.33%), and in coyotes during spring (43.47%). Peaks of infections in coyote faeces up to 83.8% in autumn were detected in a hyper-endemic area. To the best of our knowledge, our findings represent the first evidence of a sylvatic life-cycle of E. multilocularis in a North American urban setting, and provide new insights into the complexity of the parasite transmission ecology.  相似文献   

11.
Elk (Cervus canadensis) are high-profile game animals for many states in the western United States, yet over the past several decades some populations have experienced a persistent and broad-scale decline in recruitment. Over this same period, gray wolves (Canis lupus) have become an integral component of many western landscapes and agencies are increasingly challenged to maximize hunting opportunities of ungulates via predator management while simultaneously ensuring wolf conservation. To better understand the implications of predator management on elk populations, we monitored survival of 1,244 adult female elk and 806 6-month-old calves from 29 populations distributed throughout Idaho, USA, from 2004 to 2016. We developed predictive models of mortality that related mortality risk to wolf pack size, winter conditions, and individual-level characteristics. Annual mortality rates (excluding harvest) for adult females and calves were 0.09 and 0.40, respectively. Calf mortality was predicted best with a model that included additive effects of chest girth at time of capture, mean size of surrounding wolf packs, and snow depth. Adult female mortality was predicted best with a model that included female age, mean size of surrounding wolf packs, and snow depth. Based on a sensitivity analysis, chest girth had the largest effect on risk of mortality for calves followed by pack size and snow depth. Other than the effect of senescence in the oldest (>15 yr) individuals, pack size and snow depth had the largest effect on risk of mortality for adult females. We estimated cause-specific mortality and predation was the dominant cause of known-fate mortalities for adult females (35% mountain lion [Puma concolor] and 32% wolf) and calves (45% mountain lion and 28% wolf), whereas malnutrition accounted for 9% and 10% of adult female and calf mortalities, respectively. Wolves preferentially selected smaller calves and older adult females, whereas mountain lions showed little preference for calf size or age class of adult females. Our study indicates managers can increase elk survival by reducing wolf pack sizes on surrounding winter ranges, especially in areas where, or during years when, snow is deep. Additionally, managers interested in improving over-winter calf survival can implement actions to increase the size of calves entering winter by increasing the nutritional quality of summer and early fall forage resources. Although our study was prompted by management questions related to wolves, mountain lions killed more elk than wolves and differences in selection of individual elk indicate mountain lions may have comparably more of an effect on elk population dynamics. Although we were unable to relate changes in mountain lion populations to elk survival in our study, future research should seek a better understanding of multi-predator systems, including how management of one predator affect others and ultimately how these interactions affect elk survival. © 2019 The Wildlife Society  相似文献   

12.
The evolutionary importance of hybridization as a source of new adaptive genetic variation is rapidly gaining recognition. Hybridization between coyotes and wolves may have introduced adaptive alleles into the coyote gene pool that facilitated an expansion in their geographic range and dietary niche. Furthermore, hybridization between coyotes and domestic dogs may facilitate adaptation to human‐dominated environments. We genotyped 63 ancestry‐informative single‐nucleotide polymorphisms in 427 canids to examine the prevalence, spatial distribution and the ecology of admixture in eastern coyotes. Using multivariate methods and Bayesian clustering analyses, we estimated the relative contributions of western coyotes, western and eastern wolves, and domestic dogs to the admixed ancestry of Ohio and eastern coyotes. We found that eastern coyotes form an extensive hybrid swarm, with all our samples having varying levels of admixture. Ohio coyotes, previously thought to be free of admixture, are also highly admixed with wolves and dogs. Coyotes in areas of high deer density are genetically more wolf‐like, suggesting that natural selection for wolf‐like traits may result in local adaptation at a fine geographic scale. Our results, in light of other previously published studies of admixture in Canis, revealed a pattern of sex‐biased hybridization, presumably generated by male wolves and dogs mating with female coyotes. This study is the most comprehensive genetic survey of admixture in eastern coyotes and demonstrates that the frequency and scope of hybridization can be quantified with relatively few ancestry‐informative markers.  相似文献   

13.
Daytime behavioural budgets of coyotes (Canis latrans) living in the Grand Teton National Park, Jackson, Wyoming, were analysed in order to determine how activity patterns were influenced by food resources and social organization. In winter, coyotes rested more and hunted less than in other seasons. Pack-living coyotes rested more and travelled less than resident pairs or solitary residents or transients during winter months when the major food resource was ungulate (predominantly elk, Cervus canadensis) carrion. A mated female living in a pack rested significantly more and travelled significantly less than a mated female living only with her mate (as a resident pair) during winter. We predict that in times of food shortage, pack-living coyotes, and particularly reproductive females, might be at an advantage when compared to resident pairs and solitary individuals.  相似文献   

14.
ABSTRACT Anthropogenic disturbances can promote establishment and growth of predator populations in areas where secondary prey can then become threatened. In this study, we investigated habitat selection of eastern coyotes (Canis latrans), a relatively new predator in the vicinity of an endangered population of caribou (Rangifer tarandus caribou). We hypothesized that coyotes in the boreal forest depend mainly on disturbed habitat, particularly that of anthropogenic origin, because these habitats provide increased food accessibility. Coyotes would likely take advantage of moose (Alces alces) carcasses, berries, and snowshoe hares (Lepus americanus) found in open habitats created by logging. To test these predictions, we described coyote diet and habitat selection at different spatial and temporal levels and then compared resource availability between habitats. To do so, we installed Global Positioning System radiocollars on 23 individual coyotes in the Gaspésie Peninsula, eastern Québec, Canada. Coyotes selected clear-cuts of 5–20 years and avoided mature coniferous forests both at the landscape and home-range levels. Clear-cuts of 5–20 years were found to contain a high availability of moose carcasses and berries, and vulnerability of snowshoe hares is known to increase in clear-cuts. The importance of these 3 food resources was confirmed by the characteristics of core areas used by coyotes and diet analysis. Moose remains were found at 45% of core areas and coyote diet comprised 51% moose on an annual basis. Anthropogenic disturbances in the boreal forest thus seem to benefit coyotes. Our results indicated that the relationship between coyotes and caribou likely involves spillover predation. This knowledge allows managers to consider spillover predation by coyotes as a possible threat for endangered caribou population when the predator depends mainly on habitat of anthropogenic origin and to suggest methods to alleviate it when developing management plans.  相似文献   

15.
Abstract: Home-range size and population abundance indices of coyotes (Canis latrans) have not been documented in Wind Cave National Park, South Dakota, USA. In 2003 and 2004, we captured a total of 26 coyotes and radiocollared 22 adults (12 F, 10 M). In 2003 and 2004, 2 of 17 (12%) and 5 of 9 (56%) coyotes, respectively, were infected with sarcoptic mange (Sarcoptes scabiei) at the time of capture. Thus, objectives were modified to document effects of the mange epizootic on the coyote population. In 2003, home-range (adaptive-kernel) sizes for male coyotes with mange and those considered healthy were 8.26 ± 1.63 (SE) km2 and 9.67 ± 2.80 km2, respectively. In 2004, home-range sizes for those male coyotes with and without mange were 22.69 ± 9.06 km2 and 12.51 ± 2.73 km2, respectively. Male home-range size did not differ between years (P = 0.14) or by status (with or without mange; P = 0.84). Survival of collared coyotes was 60% at the end of 2003. Results from fecal line transects, an index of relative abundance, indicated that the coyote population decreased by 48% from 2003 to 2004. Continued monitoring of sarcoptic mange epizootics will enable managers to assess the effects of mange on coyote populations.  相似文献   

16.
Patterns of space-use by individuals are fundamental to the ecology of animal populations influencing their social organization, mating systems, demography and the spatial distribution of prey and competitors. To date, the principal method used to analyse the underlying determinants of animal home range patterns has been resource selection analysis (RSA), a spatially implicit approach that examines the relative frequencies of animal relocations in relation to landscape attributes. In this analysis, we adopt an alternative approach, using a series of mechanistic home range models to analyse observed patterns of territorial space-use by coyote packs in the heterogeneous landscape of Yellowstone National Park. Unlike RSAs, mechanistic home range models are derived from underlying correlated random walk models of individual movement behaviour, and yield spatially explicit predictions for patterns of space-use by individuals. As we show here, mechanistic home range models can be used to determine the underlying determinants of animal home range patterns, incorporating both movement responses to underlying landscape heterogeneities and the effects of behavioural interactions between individuals. Our analysis indicates that the spatial arrangement of coyote territories in Yellowstone is determined by the spatial distribution of prey resources and an avoidance response to the presence of neighbouring packs. We then show how the fitted mechanistic home range model can be used to correctly predict observed shifts in the patterns of coyote space-use in response to perturbation.  相似文献   

17.
Prior to 1900, coyotes (Canis latrans) were restricted to the western and central regions of North America, but by the early 2000s, coyotes became ubiquitous throughout the eastern United States. Information regarding morphological and genetic structure of coyote populations in the southeastern United States is limited, and where data exist, they are rarely compared to those from other regions of North America. We assessed geographic patterns in morphology and genetics of coyotes with special consideration of coyotes in the southeastern United States. Mean body mass of coyote populations increased along a west‐to‐east gradient, with southeastern coyotes being intermediate to western and northeastern coyotes. Similarly, principal component analysis of body mass and linear body measurements suggested that southeastern coyotes were intermediate to western and northeastern coyotes in body size but exhibited shorter tails and ears from other populations. Genetic analyses indicated that southeastern coyotes represented a distinct genetic cluster that differentiated strongly from western and northeastern coyotes. We postulate that southeastern coyotes experienced lower immigration from western populations than did northeastern coyotes, and over time, genetically diverged from both western and northeastern populations. Coyotes colonizing eastern North America experienced different selective pressures than did stable populations in the core range, and we offer that the larger body size of eastern coyotes reflects an adaptation that improved dispersal capabilities of individuals in the expanding range.  相似文献   

18.
The establishment of coyote (Canis latrans) populations in urban areas across North America has been accompanied by increased rates of human–coyote conflict. One factor thought to promote physical conflict between coyotes and people or pets is the presence of coyote pups near natal dens; however, this idea has not been tested, and no multivariate study of den selection within cities has occurred. Our objectives were to conduct a multivariate analysis of third- (i.e., home range) and fourth-order (i.e., den sites) habitat selection at dens and determine whether proximity to dens is associated with reports of physical conflict with coyotes. We found 120 dens by following coyote trails using snow tracking within urban green spaces that comprise presumed high-quality habitat for coyotes in Edmonton, Alberta, Canada. We used resource selection functions to assess habitat selection for dens, testing variables related to land cover and anthropogenic features at the third order, and testing microsite habitat features via paired sites at the fourth order. We defined conflict encounters from comments in a community reporting database and used general linear models to assess their spatial proximity to the nearest den and prevalence during the pup-rearing period compared to the rest of the year. Habitat selection was strongest at the fourth order, wherein coyotes selected for abundant hiding cover, steep slopes, and eastern exposure. The prevalence of physical conflict with coyotes increased during the pup-rearing period. Conflict also increased near known dens as an overall effect and when reports occurred outside of naturalized urban areas. These results suggest that coyotes in Edmonton den in green spaces near human development in microsites that minimize detection by people via steep slopes and dense vegetation. We suggest urban wildlife managers increase public safety education about recognition of coyote denning habitat and coyote defensive behaviors, especially outside of naturalized urban areas, because of the observed increase in physical conflict near dens.  相似文献   

19.
Some predator species appear to conform to the mesopredatorrelease hypothesis (MRH), in which larger predators help limitpopulations of smaller predators. This hypothesis has been usedto explain the possible relationship between coyotes, mesopredators,and resultant cascades involving nonpredators. However, relationshipsbetween coyotes and noncanid mesopredators are poorly understood,and predictions from the MRH have rarely been rigorously tested.We monitored sympatric raccoon and coyote populations to assess2 predictions derived from the MRH: coyote predation is an importantcause of mortality in raccoon populations or raccoons avoidareas used by coyotes. Between March 2000 and September 2001,we recorded 3553 locations for 27 radio-collared raccoons and1393 locations for 13 coyotes captured on the Max McGraw WildlifeFoundation in Illinois, USA. No raccoon mortality from coyotepredation was observed during the study, and raccoon survivalwas >0.7 each season. All raccoon 95% home ranges exhibitedoverlap with 95% coyote home ranges in each season. The meanproportion of raccoon locations within 95% coyote home rangesdid not vary by sex but did vary by season. Raccoon overlapof coyote core areas varied considerably among individuals withinseasons, ranging from 0% to 83%. However, 45% of raccoons had<10% overlap with coyote core areas, whereas only 14% ofraccoons exhibited >50% overlap. Mean overlap with core areasdid not vary by season or sex. For those raccoons with homeranges overlapping coyote core areas, mean proportion of observedraccoon locations within coyote core areas was generally greaterthan the mean proportion of random locations. Scent-stationexperiments failed to document raccoon avoidance of specificsites that had been marked with coyote urine. We did not findsupport for a mortality prediction or avoidance prediction tosupport MRH with regard to raccoons and coyotes. These resultssuggest that relationships among mammalian predators may notbe simply dictated by body size, particularly for species outsidethe Canidae.  相似文献   

20.
ABSTRACT The coyote (Canis latrans) is a recent addition to the fauna of eastern North America, and in many areas coyote populations have been established for only a decade or two. Although coyotes are known predators of white-tailed deer (Odocoileus virginianus) in their historic range, effects this new predator may have on eastern deer populations have received little attention. We speculated that in the southeastern United States, coyotes may be affecting deer recruitment, and we present 5 lines of evidence that suggest this possibility. First, the statewide deer population in South Carolina has declined coincident with the establishment and increase in the coyote population. Second, data sets from the Savannah River Site (SRS) in South Carolina indicate a new mortality source affecting the deer population concurrent with the increase in coyotes. Third, an index of deer recruitment at SRS declined during the period of increase in coyotes. Fourth, food habits data from SRS indicate that fawns are an important food item for coyotes during summer. Finally, recent research from Alabama documented significant coyote predation on fawns there. Although this evidence does not establish cause and effect between coyotes and observed declines in deer recruitment, we argue that additional research should proactively address this topic in the region. We identified several important questions on the nature of the deer—coyote relationship in the East.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号