首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selection can have a significant effect on sequence evolution and this will be reflected in the information contained within the phylogenetic relationships between species. Selection will reduce the frequency of any deleterious nucleotides, and this can be used to test for the presence of selection. The frequencies of different nucleotides can be predicted theoretically and compared to observed values. If a sample of sequences has an usually low frequency of a particular nucleotide then selection might be inferred to have acted upon these sequences. This conclusion can be true only if the sequences are not too closely related and if sufficient mutations have occurred during their evolution. Otherwise, the unusual pattern of nucleotides in the sequences may be caused by recent common ancestry. An algorithm is presented to obtain maximum-likelihood estimates of selection coefficients using the phylogenetic information contained within sequence data. A k-allele model is developed that uses the phylogeny to measure relative mutation rates and degrees of relatedness and to evaluate the likelihood in the presence of selection. The method is illustrated with examples from the NS2 genes of influenza viruses and the MHC genes of mice. It is shown that the maximum-likelihood estimate for mutation rates are very large for. influenza viruses and that statistically significant selection acts to maintain a specific coding sequence. Overall, the MHC genes also have significant selection to preserve the coding sequence, but at the antigen recognition site, this selection is reversed to promote genetic variation. Maximum-likelihood estimates of these selection coefficients are provided.  相似文献   

2.
Brucella species are facultative intracellular pathogenic α-Proteobacteria that can cause brucellosis in humans and domestic animals. The clinical and veterinary importance of the bacteria has led to well established studies on the molecular mechanisms of Brucella infection of host organisms. However, to date, no genome-wide study has scanned for genes related to the host specificity of Brucella spp. The majority of bacterial genes related to specific environmental adaptations such as host specificity are well-known to have evolved under positive selection pressure. We thus detected signals of positive selection for individual orthologous genes among Brucella genomes and identified genes related to host specificity. We first determined orthologous sets from seven completely sequenced Brucella genomes using the Reciprocal Best Hits (RBH). A maximum likelihood analysis based on the branch-site test was accomplished to examine the presence of positive selection signals, which was subsequently confirmed by phylogenetic analysis. Consequently, 12 out of 2,033 orthologous genes were positively selected by specific Brucella lineages, each of which belongs to a particular animal host. Extensive literature reviews revealed that half of these computationally identified genes are indeed involved in Brucella host specificity. We expect that this genome-wide approach based on positive selection may be reliably used to screen for genes related to environmental adaptation of a particular species and that it will provide a set of appropriate candidate genes.  相似文献   

3.
《Ecology and evolution》2017,7(14):5170-5180
Detecting signatures of selection can provide a new insight into the mechanism of contemporary breeding and artificial selection and further reveal the causal genes associated to the phenotypic variation. However, the signatures of selection on genes entailing for profitable traits between Chinese commercial and indigenous goats have been poorly interpreted. We noticed footprints of positive selection at MC 1R gene containing SNP s genotyped in five Chinese native goat breeds. An experimental distribution of F ST was built based on approximations of F ST for each SNP across five breeds. We identified selection using the high F ST outlier method and found that MC 1R candidate gene show evidence of positive selection. Furthermore, adaptive selection pressure on specific codons was determined using different codon based on maximum‐likelihood methods; signature of positive selection in mammalian MC 1R was explored in individual codons. Evolutionary analyses were inferred under maximum likelihood models, the HyPhy package implemented in the DATAMONKEY Web Server. The results of codon selection displayed positive diversifying selection at the sites were mainly involved in development of genetic variations in coat color in various mammalian species. Positive diversifying selection inferred with recent evolutionary changes in domesticated goat MC 1R provides new insights that the gene evolution may have been modulated by domestication events in goats.  相似文献   

4.
Insecticide resistance is a standing concern for arthropod pest species, which may result in insecticide control failure. Nonetheless, while insecticide resistance has remained a focus of attention for decades, the incurring risk of insecticide control failure has been neglected. The recognition of both problems is paramount for arthropod pest management and particularly so when invasive species notoriously difficult to control and exhibiting frequent cases of insecticide resistance are considered. Such is the case of the putative whitefly species Middle East‐Asia Minor I (MEAM1) (Bemisia tabaci B‐biotype), for which little information is available in the Neotropics. Thus, the likely occurrence and levels of resistance to seven insecticides were surveyed among Brazilian populations of this species. The likelihood of control failure to the five insecticides registered for this species was also determined. Resistance was detected to all insecticides assessed reaching instances of high (i.e. >100×) to very high levels (>1000×) in all of them. Overall efficacy was particularly low (<60%) and the control failure likelihood was high (>25%) and frequent (70%) for the bioinsecticide azadirachtin, followed by spiromesifen and lambda‐cyhalothrin. In contrast, the likelihood of control failure was low for diafenthiuron, and mainly imidacloprid. As cartap and chlorantraniliprole are not used against whiteflies, but are frequently applied on the same host plants, inadvertent selection probably took place leading to high levels of resistance, particularly for the latter. The resistance levels of cartap and chlorantraniliprole correlated with imidacloprid resistance (r > 0.65, P < 0.001), suggesting that the latter use may have somewhat favoured inadvertent selection for resistance to both compounds not used against the whitefly. A further concern is that chlorantraniliprole use in the reported scenario may allow cross selection to cyantraniliprole, a related diamide with recent registration against whiteflies demanding attention in designing resistance management programmes.  相似文献   

5.
The prion diseases, such as Creutzfeldt-Jakob disease of humans and bovine spongiform encephalopathy, involve the aberrant metabolism and accumulation of prion protein PrP. There are three contradictory hypotheses about evolution of prion protein gene PRNP. Population genetic studies have proposed that PRNP could be under balancing selection, strong purifying selection, or mainly positive selection. We made use of the maximum likelihood tests for detection of positive selection at the amino acid level and present availability of PRNP coding sequences to contribute to these disagreements. Positive selection could occur at amino acids residing in active sites, and at amino acids involved in protein-protein interactions. Thus we tested a hypothesis that positive selection at the amino acid level in PrP might have taken place in human and related species from the superordinal group Euarchonta, as well as in bovine and related species from the superordinal clade Laurasiatheria. Our study and the present experimental evidences indicate that positive selection at the amino acid level might have taken place in the PrP signal sequences and conformationally plastic PrP regions, as well as at the protein X binding sites. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Prof. Vera Gamulin passed away.  相似文献   

6.
The class II genes of the major histocompatibility complex encode proteins which play a crucial role in antigen presentation. They are among the most polymorphic proteins known, and this polymorphism is thought to be the result of natural selection. To understand the selective pressure acting on the protein and to examine possible differences in the evolutionary dynamics among species, we apply maximum likelihood models of codon substitution to analyze the DRB genes of six mammalian species: human, chimpanzee, macaque, tamarin, dog, and cow. The models account for variable selective pressures across codons in the gene and have the power to detect amino acid residues under either positive or negative selection. Our analysis detected positive selection in the DRB genes in each of the six mammals examined. Comparison with structural data reveals that almost all amino acid residues inferred to be under positive selection in humans are in the peptide binding region (PBR) and are in contact with the antigen side chains, although residues outside of but close to the PBR are also detected. Strong purifying selection is also detected in the PBR, at sites which contact the antigen and at sites which may be involved in dimerization or T cell binding. The analysis demonstrates the utility of the random-sites analysis even when structural information is available. The different mammalian species are found to share many positively or negatively selected sites, suggesting that their functional roles have remained very similar in the different species, despite the different habitats and pathogens of the species.  相似文献   

7.
Should we have different expectations regarding the likelihood and pace of speciation by sexual selection when considering species with sexually monomorphic mating signals? Two conditions that can facilitate rapid species divergence are Felsenstein's one‐allele mechanism and a genetic architecture that includes a genetic association between signal and preference loci. In sexually monomorphic species, the former can manifest in the form of mate choice based on phenotype matching. The latter can be promoted by selection acting upon genetic loci for divergent signals and preferences expressed simultaneously in each individual, rather than acting separately on signal loci in males and preference loci in females. Both sexes in the Chrysoperla carnea group of green lacewings (Insecta, Neuroptera, Chrysopidae) produce sexually monomorphic species‐specific mating signals. We hybridized the two species C. agilis and C. carnea to test for evidence of these speciation‐facilitating conditions. Hybrid signals were more complex than the parents and we observed a dominant influence of C. carnea. We found a dominant influence of C. agilis on preferences in the form of hybrid discrimination against C. carnea. Preferences in hybrids followed patterns predicting preference loci that determine mate choice rather than a one‐allele mechanism. The genetic association between signal and preference we detected in the segregating hybrid crosses indicates that speciation in these species with sexually monomorphic mating signals can have occurred rapidly. However, we need additional evidence to determine whether such genetic associations form more readily in sexually monomorphic species compared to dimorphic species and consequently facilitate speciation.  相似文献   

8.
Single likelihood ancestor counting (SLAC), fixed effects likelihood (FEL), and several random effects likelihood (REL) methods were utilized to identify positively and negatively selected sites in sexually induced gene 1 (Sig1) of four different Thalassiosira species. The SLAC analysis did not find any sites affected by positive selection but suggested 13 sites influenced by negative selection. The SLAC approach may be too conservative because of low sequence divergence. The FEL and REL analyses revealed over 60 negatively selected sites and two positively selected sites that were unique to each method. The REL method may not be able to reliably identify individual sites under selection when applied to short sequences with low divergence. Instead, we proposed a new alignment-wide test for adaptive evolution based on codon models with variation in synonymous and nonsynonymous substitution rates among sites and found evidence for diversifying evolution without relying on site-by-site testing. The performance of the FEL and REL approaches was evaluated by subjecting the tests to a type I error rate simulation analysis, using the specific characteristics of the Sig1 data set. Simulation results indicated that the FEL test had reasonable Type I errors, while REL might have been too liberal, suggesting that the two positively selected sites identified by FEL (codons 94 and 174) are not likely to be false positives. The evolution of these codon sites, one of which is located in functional domain II, appears to be associated with divergence among the three major Thalassiosira lineages. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Martin Kreitman]  相似文献   

9.
The presence of sibling species within the marine gastropod genus Crepipatella has complicated the taxonomy of members of the group. Since the establishment of the genus, 15 species have been described, but recent studies have indicated that there are only five valid species, two of which inhabit the coasts of Chile, namely C. dilatata and C. fecunda. The two species are morphologically indistinguishable as adults, but can be differentiated on the basis of their encapsulated developmental stages. The primary aim of this study was to reconstruct phylogeny within the genus, and to establish species limits of C. dilatata and C. fecunda, using mitochondrial DNA data. To this end, we used maximum parsimony, maximum likelihood, and Bayesian inference to reconstruct phylogenies using 589 bp of the cytochrome oxidase I (COI) gene. The mtDNA phylogenies were then used as input in a general mixed Yule‐coalescent (GMYC) analysis to estimate species boundaries. In addition, quarter likelihood mapping was used to test a posteriori the confidence of inner branch patterns in the phylogenetic tree. Both DNA tree‐based and GMYC methods provide support for five isolated lineages within this species complex. Our data also suggest that Late Pleistocene and Holocene fragmentation and subsequent range expansion events may have shaped contemporary genetic patterns of Crepipatella in South America.  相似文献   

10.
Conspicuousness, or having high contrast relative to the surrounding background, is a common feature of unpalatable species. Several hypotheses have been proposed to explain the occurrence of conspicuousness, and while most involve the role of conspicuousness as a direct signal of unpalatability to potential predators, one hypothesis suggests that exaggerated conspicuousness may evolve in unpalatable species to reduce predator confusion with palatable species (potential Batesian mimics). This hypothesis of antagonistic coevolution between palatable and unpalatable species hinges on the ‘cost of conspicuousness’, in which conspicuousness increases the likelihood of predation more in palatable species than in unpalatable species. Under this mimicry scenario, four patterns are expected: (i) mimics will more closely resemble local models than models from other localities, (ii) there will be a positive relationship between mimic and model conspicuousness, (iii) models will be more conspicuous in the presence of mimics, and (iv) when models and mimics differ in conspicuousness, mimics will be less conspicuous than models. We tested these predictions in the salamander mimicry system involving Notophthalmus viridescens (model) and one colour morph of Plethodon cinereus (mimic). All predictions were supported, indicating that selection for Batesian mimicry not only influences the evolution of mimics, but also the evolution of the models they resemble. These findings indicate that mimicry plays a large role in the evolution of model warning signals, particularly influencing the evolution of conspicuousness.  相似文献   

11.
The evolution of morphological diversity via selection requires that morphological traits display significant heritable genetic variation. In Plethodon salamanders, considerable evidence suggests that head shape evolves in response to selection from interspecific competition, yet the genetic underpinnings of head shape have not been quantitatively examined. Here I used geometric morphometrics and quantitative genetics to assess heritable patterns of head shape variation from hatchling salamanders in two Plethodon species (P. cinereus and P. nettingi). Head shape differed significantly between species and among clutches within species, suggesting that a sizeable proportion of head shape variation was the result of clutch effects. Further, using a full-sib animal model and restricted maximum likelihood (REML), I identified large values of maximal additive heritability for all study localities ($ h_{\max }^{2} > 0.65 $ h_{\max }^{2} > 0.65 ), revealing that Plethodon exhibit considerable heritable genetic variation for head shape. Comparisons of the components of heritable shape variation showed that the magnitude of shape heritability (hmax2 h_{\max }^{2} ) did not differ among localities or species. Therefore, the potential microevolutionary shape change displayed by the two species would be similar if they were exposed to comparable selective forces. However, the direction of maximal shape heritability in morphospace differed between P. cinereus and P. nettingi, indicating that potential evolutionary shape change along these heritability trajectories would diverge between the two species. This finding implies that distinct head shapes could evolve in the two species, even if subjected to the same selection pressure. When combined with previous knowledge of patterns of head shape variation among species and ecological selection on head shape, these findings suggest that microevolutionary and macroevolutionary trends of morphological diversification in Plethodon may be explained as a result of the interaction between ecological selection and underlying patterns of genetic covariance for this multi-dimensional trait.  相似文献   

12.
Evolution of the number of LRRs in plant disease resistance genes   总被引:1,自引:0,他引:1  
The largest group of plant resistance (R) genes contain the regions that encode the nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains (NBS-LRR genes). To gain new resistance, amino acid substitutions and changes in number of the LRRs that recognize the presence of pathogens are considered important. In this study, we focus on the evolution of the number of LRRs and analyze the genome data of five plant species, Arabidopsis thaliana, Oryza sativa, Medicago truncatula, Lotus japonicus and Populus trichocarpa. We first categorized the NBS-LRR genes in each species into groups and subgroups based on the phylogenetic relationships of their NBS domain sequences. Then we estimated the evolutionary rate of the number of LRRs relative to the synonymous divergence in the NBS domain sequences by a maximum likelihood method assuming the single stepwise mutation model. The estimates ranged from 4.5 to 600 and differed between groups in the same species or between species. This indicated different roles played by different groups of the NBS-LRR genes within a species or the effects of various life history characteristics, such as generation time, of the species. We also tested the fit of the model to the data using the variance of number of LRRs in each subgroup. In some subgroups in some plants (16 out of 174 subgroups), the results of simulation using the estimated rates significantly deviated from the observed data. Those subgroups may have undergone different modes of selection from the other subgroups.  相似文献   

13.
Among various groups of fishes, a shift in peak wavelength sensitivity has been correlated with changes in their photic environments. The genus Sebastes is a radiation of marine fish species that inhabit a wide range of depths from intertidal to over 600 m. We examined 32 species of Sebastes for evidence of adaptive amino acid substitution at the rhodopsin gene. Fourteen amino acid positions were variable among these species. Maximum likelihood analyses identify several of these to be targets of positive selection. None of these correspond to previously identified critical amino acid sites, yet they may in fact be functionally important. The occurrence of independent parallel changes at certain amino acid positions reinforces this idea. Reconstruction of habitat depths of ancestral nodes in the phylogeny suggests that shallow habitats have been colonized independently in different lineages. The evolution of rhodopsin appears to be associated with changes in depth, with accelerated evolution in lineages that have had large changes in depth.  相似文献   

14.
It is generally accepted that chromosomal inversions have been key elements in adaptation and speciation processes. In this context, Drosophila subobscura has been, and still is, an excellent model species due to its rich chromosomal polymorphism. In this species, many analyses from natural populations have demonstrated the adaptive potential of individual inversions (and their overlapped combinations, the so‐called arrangements). However, little information is available on the evolutionary role of combinations generated by inversions located in homologous and nonhomologous chromosomes. The aim of this research was to ascertain whether these combinations are also a target for natural selection. For this objective, we have studied the inversion composition of homologous and nonhomologous chromosomes from a D. subobscura sample collected in a well‐studied population, Mount Avala (Serbia). No significant deviation from H‐W expectations was detected, and when comparing particular karyotypic combinations, likelihood ratios close to 1 were obtained. Thus, it seems that for each pair of homologous chromosomes inversions no deviation from randomness was detected. Finally, no linkage disequilibrium was observed between inversions located in different chromosomes of the karyotype. For all these reasons, it can be assumed that, at the cytological level, the individual inversions rather than their combinations in different chromosomes are the main target of selection.  相似文献   

15.
We took a comparative approach utilizing clines to investigate the extent to which natural selection may have shaped population divergence in cuticular hydrocarbons (CHCs) that are also under sexual selection in Drosophila. We detected the presence of CHC clines along a latitudinal gradient on the east coast of Australia in two fly species with independent phylogenetic and population histories, suggesting adaptation to shared abiotic factors. For both species, significant associations were detected between clinal variation in CHCs and temperature variation along the gradient, suggesting temperature maxima as a candidate abiotic factor shaping CHC variation among populations. However, rainfall and humidity correlated with CHC variation to differing extents in the two species, suggesting that response to these abiotic factors may vary in a species‐specific manner. Our results suggest that natural selection, in addition to sexual selection, plays a significant role in structuring among‐population variation in sexually selected traits in Drosophila.  相似文献   

16.
Divergent natural selection driven by competition for limited resources can promote speciation, even in the presence of gene flow. Reproductive isolation is more likely to result from divergent selection when the partitioned resource is closely linked to mating. Obligate symbiosis and host fidelity (mating on or near the host) can provide this link, creating ideal conditions for speciation in the absence of physical barriers to dispersal. Symbiotic organisms often experience competition for hosts, and host fidelity ensures that divergent selection for a specific host or host habitat can lead to speciation and strengthen pre‐existing reproductive barriers. Here, we present evidence that diversification of a sympatric species complex occurred despite the potential for gene flow and that partitioning of host resources (both by species and by host habitat) has contributed to this diversification. Four species of snapping shrimps (Alpheus armatus, A. immaculatus, A. polystictus and A. roquensis) are distributed mainly sympatrically in the Caribbean, while the fifth species (A. rudolphi) is restricted to Brazil. All five species are obligate commensals of sea anemones with a high degree of fidelity and ecological specificity for host species and habitat. We analysed sequence data from 10 nuclear genes and the mitochondrial COI gene in 11–16 individuals from each of the Caribbean taxa and from the only available specimen of the Brazilian taxon. Phylogenetic analyses support morphology‐based species assignments and a well‐supported Caribbean clade. The Brazilian A. rudolphi is recovered as an outgroup to the Caribbean taxa. Isolation–migration coalescent analysis provides evidence for historical gene flow among sympatric sister species. Our data suggest that both selection for a novel host and selection for host microhabitat may have promoted diversification of this complex despite gene flow.  相似文献   

17.
Oviposition responses ofPieris rapae L. andP. napi oleracea Harris to nine crucifers, one Capparidaceae and one Tropaeolaceae were directly compared under controlled conditions. Chemical fractions from these plants were also tested on both insects for the presence of oviposition stimulants or deterrents. The results showed that plant chemistry is a key factor in differential selection of potential hosts by thesePieris species. Some plant species were equally acceptable to bothPieris species. However,P. rapae preferred cabbage over most test plants whereasP. napi oleracea strongly preferred plant species that were avoided byP. rapae. The observed preferences were explained in most cases by the presence of stimulants and deterrents in extracts of the plants. The twoPieris species have apparently evolved differential sensitivities to the chemical stimuli that trigger or deter oviposition. The balance of positively and negatively interpreted sensory signals evoked by plant chemicals obviously plays an important role in acceptance or rejection of a plant by both species. The role of specific glucosinolates and differing structure-activity relationships is suggested.  相似文献   

18.
Phenotypic adaptations can allow organisms to relax abiotic selection and facilitate their ecological success in challenging habitats, yet we have relatively little data for the prevalence of this phenomenon at macroecological scales. Using data on the relative abundance of coral reef wrasses and parrotfishes (f. Labridae) spread across three ocean basins and the Red Sea, we reveal the consistent global dominance of extreme wave‐swept habitats by fishes in the genus Thalassoma, with abundances up to 15 times higher than any other labrid. A key locomotor modification—a winged pectoral fin that facilitates efficient underwater flight in high‐flow environments—is likely to have underpinned this global success, as numerical dominance by Thalassoma was contingent upon the presence of high‐intensity wave energy. The ecological success of the most abundant species also varied with species richness and the presence of congeneric competitors. While several fish taxa have independently evolved winged pectoral fins, Thalassoma appears to have combined efficient high‐speed swimming (to relax abiotic selection) with trophic versatility (to maximize exploitation of rich resources) to exploit and dominate extreme coral reef habitats around the world.  相似文献   

19.
A crucial component for developing insect management strategies is the understanding of the ecological parameters involved in habitat selection by proliferating species. The key ecological drivers underlying habitat selection in the mosquito Coquillettidia sp. have been investigated in natura. Vegetation analysis suggested that the most suitable habitats were ponds with a high vegetation cover maintaining a high degree of humidity in the air. The optimal biotope for Coquillettidia was associated with the presence of larval host plants such as Typha sp., Phragmites sp., and Juncus sp. Water quality was also found to be a key factor in larval habitat distribution. The presence of larvae was significantly correlated with physico-chemical factors and the optimal water characteristics were neutral pH, low salt concentration, and a relatively low level of suspended particulate matter. A significant correlation was observed between chemical cues and the Coquillettidia distribution pattern. For instance, 2,6-di-tert-butyl-p-cresol was positively correlated to larval habitat, whereas high lauric acid and heptadecanoic acid concentrations may be limiting factors. This study underlines the fact that mosquito habitat selection is driven by a complex process based on discriminating levels of several ecological factors. Multivariate analysis helps understand such processes, which is this case will assist in managing expanding populations of a species that threatens human health.  相似文献   

20.
Rapid evolution of snake venom genes by positive selection has been reported previously but key features of this process such as the targets of selection, rates of gene turnover, and functional diversity of toxins generated remain unclear. This is especially true for closely related species with divergent diets. We describe the evolution of PLA2 gene sequences isolated from genomic DNA from four taxa of Sistrurus rattlesnakes which feed on different prey. We identified four to seven distinct PLA2 sequences in each taxon and phylogenetic analyses suggest that these sequences represent a rapidly evolving gene family consisting of both paralogous and homologous loci with high rates of gene gain and loss. Strong positive selection was implicated as a driving force in the evolution of these protein coding sequences. Exons coding for amino acids that make up mature proteins have levels of variation two to three times greater than those of the surrounding noncoding intronic sequences. Maximum likelihood models of coding sequence evolution reveal that a high proportion (∼30%) of all codons in the mature protein fall into a class of codons with an estimated d N /d S (ω) ratio of at least 2.8. An analysis of selection on individual codons identified nine residues as being under strong (p < 0.01) positive selection, with a disproportionately high proportion of these residues found in two functional regions of the PLA2 protein (surface residues and putative anticoagulant region). This is direct evidence that diversifying selection has led to high levels of functional diversity due to structural differences in proteins among these snakes. Overall, our results demonstrate that both gene gain and loss and protein sequence evolution via positive selection are important evolutionary forces driving adaptive divergence in venom proteins in closely related species of venomous snakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号