首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Midgut tissue undergoes remodeling during metamorphosis in insects belonging to orders Lepidoptera and Diptera. We investigated the developmental and hormonal regulation of these remodeling events in lepidopteran insect, Heliothis virescens. In H. virescens, programmed cell death (PCD) of larval midgut cells as well as proliferation and differentiation of imaginal cells began at 108 h after ecdysis to the final larval instar (AEFL) and proceeded through the pupal stages. Expression patterns of pro- cell death factors (caspase-1 and ICE) and anti-cell death factor, Inhibitor of Apoptosis (IAP) were studied in midguts during last larval and pupal stages. IAP, Caspase-1 and ICE mRNAs showed peaks at 48 h AEFL, 96 h AEFL and in newly formed pupae, respectively. Immunohistochemical analysis substantiated high caspase-3 activity in midgut at 108 h AEFL. Application of methoprene, a juvenile hormone analog (JHA) blocked PCD by maintaining high levels of IAP, downregulating the expression of caspase-1, ICE and inhibiting an increase in caspase-3 protein levels in midgut tissue. Also, the differentiation of imaginal cells was impaired by methoprene treatment. These studies demonstrate that presence of JHA during final instar larvae affects both midgut remodeling and larval-pupal metamorphosis leading to larval/pupal deformities in lepidopteran insects, a mechanism that is different from that in mosquito, Ae. aegypti where JHA uncouples midgut remodeling from metamorphosis.  相似文献   

2.
3.
4.
5.
These studies focus on the pupal Aedes aegypti midgut muscularis for the first 26 h following larval-pupal transition. The midgut muscularis of Ae. aegypti pupae during this first half of the pupal stadium is a grid of both circularly and longitudinally oriented muscle bands, arranged in a manner resembling that of the larvae. While many muscle bands exhibit signs of degeneration during the time period studied, not all bands degrade, nor is this degradation simultaneous. Band deterioration involves destruction of internal elements while the muscle fiber plasma membrane remains intact. Deterioration of contractile elements may involve proteosome-like structures and associated enzymes. Many features of the larval muscularis including cruciform cells, bifurcating circular bands, and bifurcating longitudinal bands of muscle are retained during the time period investigated. Neuromuscular junctions along some muscle bands are retained through at least 16 h into the pupal stadium. The selective nature of muscle fiber degradation, coupled with the retention of larval features and neural input, may allow for limited functionality of the muscularis during metamorphosis. Evidence of sexual dimorphism in the midgut muscularis of male and female Ae. aegypti pupae was not observed during the time period studied.  相似文献   

6.
7.
Parasitism of the tobacco hornworm, Manducasexta, by the braconid wasp Cotesiacongregata, induces developmental arrest of the host in the larval stage. During the final instar of the host, its juvenile hormone (JH) titer is elevated, preventing host metamorphosis. This study investigated the effects of hormonal manipulation of the host on the parasitoid’s emergence behavior. The second larval ecdysis of the wasps coincides with their emergence from the host, and application of the juvenile hormone analogue methoprene to day 4 fifth instar hosts either delayed or totally suppressed the subsequent emergence of the wasps. Effects of methoprene were dose-dependent and no parasitoids emerged following treatment of host larvae with doses >50 μg. Parasitoids which failed to emerge eventually succumbed as unecydsed pharate third instar larvae in the hemocoel of the host. Effects of host methoprene treatment on parasitoid metamorphosis were also assessed, and metamorphic disruption occurred at much lower dosages compared with doses necessary to suppress parasitoid emergence behavior. The inhibitory effect of methoprene on parasitoid emergence behavior appears to be mediated by effects of this hormone on the synthesis or release of ecdysis-triggering hormone (ETH) in the parasitoid, the proximate endocrine cue which triggers ecdysis behavior in free-living insects. ETH accumulated in the epitracheal Inka cells of parasitoids developing in methoprene-treated hosts, suggestive of a lack of hormone release. Thus, the hormonal modulation of parasitoid emergence behavior appears to be complex, involving a suite of hormones including JH, ecdysteroid, and peptide hormones.  相似文献   

8.
Hou L  Wang JX  Zhao XF 《Amino acids》2011,40(3):953-961
Midgut remodeling is a complex physiological process in holometabolous insects. During midgut remodeling, the larval midgut is decomposed by apoptosis or autophagy during metamorphosis, and the degraded larval midgut is partially absorbed as nutrients by the imaginal midgut for its formation. The molecular mechanism involved in this process is not clear. Here, we found that a Rab protein, which we have named HaRab32, is related to the organogenesis of insect imaginal midgut. Results show that HaRab32 is up-regulated in epidermis and midgut during metamorphosis. Its expression could be up-regulated by 20E. Immunohistochemistry shows Rab32 is distributed in the epithelium of the imaginal midgut during metamorphosis. Knockdown of HaRab32 by RNA interference disturbs the formation of the imaginal midgut. These data imply HaRab32 plays important roles in midgut remodeling by participating in the imaginal midgut formation.  相似文献   

9.
斜纹夜蛾Spodoptera litura是一种世界性分布的重要农业害虫, 在生长发育过程中要经历幼虫 蛹的变态发育过程。由于变态发育前后昆虫的食性发生了明显的改变, 作为食物消化吸收的中肠也发生了解体和重建。与此相适应, 昆虫中肠的各种物质和能量代谢也可能会相应地发生改变。为研究斜纹夜蛾中肠变态发育过程中糖代谢途径的变化情况, 我们从斜纹夜蛾中肠EST文库中鉴定出了12个糖代谢相关基因, 克隆了其中3个基因的全长cDNA, 并应用半定量PCR和定量PCR的方法检测了其在幼虫 蛹变态发育期中肠组织的转录表达以及对激素和饥饿等因素的响应情况。结果表明: 这3个基因(α-L-岩藻糖苷酶、 N-乙酰葡萄糖胺-6-磷酸去乙酰酶和烯醇化酶基因)的开放阅读框分别为1 461, 1 200和1 299 bp, 预测的分子量分别为56.3, 43.3和46.7 kDa。这12个糖代谢相关的基因在变态发育期的中肠组织中具有5种不同的mRNA表达模式: (Ⅰ)只在幼虫期高表达(唾液麦芽糖酶前体蛋白、 糖基水解酶31家族成员蛋白、 线粒体乙醛脱氢酶、 β-1,3 葡聚糖酶基因); (Ⅱ)只在预蛹期高表达(β-葡萄糖醛酸酶、 β-N-酰基氨基葡萄糖苷酶3基因); (Ⅲ)只在蛹期高表达(葡萄糖胺-6-磷酸异构酶基因); (Ⅳ)在预蛹期和蛹期高表达(α-葡萄糖苷酶、 α-淀粉酶、 N-乙酰葡糖胺 6 磷酸脱乙酰酶和α-L-岩藻糖苷酶基因); (Ⅴ)在变态发育期恒定表达(烯醇化酶基因)。这说明, 为适应变态发育斜纹夜蛾中肠糖代谢途径发生了明显的改变。保幼激素对这些基因的表达没有明显的影响, 但蜕皮激素对Ⅰ类基因(如糖基水解酶31家族成员蛋白基因)具有一定的抑制作用, 对Ⅲ类基因(如葡萄糖胺-6-磷酸异构酶基因)有显著的上调作用。此外, 我们还发现饥饿对几乎所有这些基因的表达都有显著的抑制作用。这些结果说明, 昆虫中肠变态发育过程中糖代谢相关基因的动态变化可能受到蜕皮激素以及饥饿相关因素的共同调控。这一研究对从代谢角度揭示昆虫变态发育的分子机理具有重要意义。  相似文献   

10.
Konopova B  Smykal V  Jindra M 《PloS one》2011,6(12):e28728
Insect larvae metamorphose to winged and reproductive adults either directly (hemimetaboly) or through an intermediary pupal stage (holometaboly). In either case juvenile hormone (JH) prevents metamorphosis until a larva has attained an appropriate phase of development. In holometabolous insects, JH acts through its putative receptor Methoprene-tolerant (Met) to regulate Krüppel-homolog 1 (Kr-h1) and Broad-Complex (BR-C) genes. While Met and Kr-h1 prevent precocious metamorphosis in pre-final larval instars, BR-C specifies the pupal stage. How JH signaling operates in hemimetabolous insects is poorly understood. Here, we compare the function of Met, Kr-h1 and BR-C genes in the two types of insects. Using systemic RNAi in the hemimetabolous true bug, Pyrrhocoris apterus, we show that Met conveys the JH signal to prevent premature metamorphosis by maintaining high expression of Kr-h1. Knockdown of either Met or Kr-h1 (but not of BR-C) in penultimate-instar Pyrrhocoris larvae causes precocious development of adult color pattern, wings and genitalia. A natural fall of Kr-h1 expression in the last larval instar normally permits adult development, and treatment with an exogenous JH mimic methoprene at this time requires both Met and Kr-h1 to block the adult program and induce an extra larval instar. Met and Kr-h1 therefore serve as JH-dependent repressors of deleterious precocious metamorphic changes in both hemimetabolous and holometabolous juveniles, whereas BR-C has been recruited for a new role in specifying the holometabolous pupa. These results show that despite considerable evolutionary distance, insects with diverse developmental strategies employ a common-core JH signaling pathway to commit to adult morphogenesis.  相似文献   

11.
Previous studies have shown that the larval epidermis of the tobacco hornworm, Manduca sexta, contains a 29 kDa nuclear protein (JP29) that binds pothoaffinity analogs of juvenile hormone (JH), but does not bind JH I with high affinity. We now find that JP29 is also associated with the insecticyanin granules, and we show that JP29 mRNA is regulated in a complex fashion by both 20-hydroxyecdysone (20E) and JH. Studies with day 2 fourth instar larval epidermis in vitro showed that a molting concentration 12 μg/ml) of 20E caused the disappearance of JP29 mRNA, irrespective of the presence or absence of JH; this effect was dependent on the concentration of 20E (ED50=200 ng/ml). The reappearance of JP29 mRNA around the time of ecdysis required the presence of JH at head capsule slippage (HCS), since little appeared in larvae allatectomized about 6 h before HCS unless JH I was applied at the time of HCS. Maintenance of JP29 mRNA in fifth instar epidermis also required the continued presence of JH in both isolated abdomens and in vitro. Culture of either day 1 or day 2 fifth instar epidermis without hormones for 24 h caused decline of JP29 mRNA, which was accelerated by 20E in a concentration-dependent manner (ED50 = 30 and 10 ng/ml 20E respectively). When day 2 epidermis was exposed to 500 ng/ml 20E for 24 h to cause pupal commitment, JP29 mRNA disappeared. Neither methoprene nor JH I (in either the presence or the absence of the esterase inhibitor O-ethyl, S-phenyl phosphamidethiolate [EPPAT]) was able to prevent this loss, although both slowed its rate. The mRNA for the larval cuticle protein LCP14 was found to be regulated similarly to that for JP29 by 20E, but differently by JH. The JP29 protein was relatively long-live, persisting after the disappearance of its mRNA for at least 19 h during the larval molt and for more than 24 h in vitro. Although trace amounts of JP29 are found for the first 12 h after pupal ecdysis, injection of 5 μg JH II into pupae during the critical period to cause the synthesis of a second pupal cuticle had no effect on the amount of JP29 present. Thus, although the presence of JP29 in larval epidermis is associated with and dependent on JH, high amounts are not associated with the “status quo” action of JH on the pupa. The role of this protein consequently remains obscure. Arch. Insect Biochem. Physiol. 34:409–428, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
In the last larval instar of Lepidoptera, ecdysteroid in the absence of juvenile hormone (JH) is believed to cause the shift from larval to pupal development. In Manduca sexta, tissues such as the Verson's gland and crochet epidermis become pupally committed before the earliest pulse of ecdysteroid that occurs on day 2. What causes the change in commitment in these tissues? First it was necessary to determine at what stage these tissues become competent to express the pupal program. Last instar larvae of different ages were induced to molt prematurely by feeding the ecdysteroid analog RH5992 and Verson's gland proteins were analyzed by SDS-polyacrylamide gel electrophoresis. Glands became competent to make pupal proteins between 24 and 32 h after the last larval ecdysis. Next, hormonal regulation of competence was examined in ligated abdomens of 12h last instar larvae. Treatment with JH II acid or methoprene acid plus a low dose (1/50th of the molt inducing dose) of RH5992 induced competence, whereas RH5992 alone, methoprene acid alone or methoprene plus RH5992 did not. Verson's glands maintained in vitro produced pupal proteins in response to methoprene acid together with RH5992 but not with RH5992 alone. Likewise, crochet epidermis lost the ability to make crochets (metamorphic change) only in isolated abdomens treated with JH II acid or methoprene acid and low doses of RH5992. In conclusion, JH acid in the presence of basal levels of ecdysteroid induces tissue competence for metamorphosis. Metamorphic competence is followed by commitment, induced by a small pulse of ecdysteroid in the absence of JH, and finally by expression caused by a high titer of ecdysteroid. It is proposed that JH acid is an essential metamorphic hormone.  相似文献   

13.
Pupal commitment of the wing imaginal disc of the silkworm, Bombyx mori, is completed shortly after the final (fifth) larval ecdysis. Pupal commitment was induced by in vitro culture with 20-hydroxyecdysone (20E). Shortly after the head capsule slippage (HCS) that occurs approximately 24 h before the final larval ecdysis, the discs become competent to respond to 20E, indicating that the process of pupal commitment begins in the late penultimate (fourth) instar. The simultaneous presence of methoprene (JHA) with 20E suppressed the pupal commitment at 4 ng/ml for the discs at 12 h after HCS and at 240 ng/ml for the discs at the ecdysis. Thus, the discs rapidly lose their sensitivity to JH at the end of the fourth instar. Day 0 fourth wing discs were not pupally committed by 20E when freshly dissected discs were exposed to 20E. By contrast, exposure to 20E after a pre-culture in a hormone free medium induced the pupal commitment. In those discs, the effective JHA concentration to suppress the 20E effects was 0.1 ng/ml. The present data suggest that pupal commitment proceeds through two stages from a reversible state that begins at around HCS to an irreversible state early in the fifth instar. The loss of sensitivity to JH is the primary impetus to begin the process and 20E is the factor that drives the discs to enter the reversible state.  相似文献   

14.
Lysozyme in the midgut of Manduca sexta during metamorphosis.   总被引:1,自引:0,他引:1  
Low levels of lysozyme were found in the midgut epithelium of the tobacco hornworm, Manduca sexta, during the early part of the fifth larval stadium. This was observed in control insects as well as in bacterially challenged insects. No lysozyme was detected in the gut contents of either group of insects which were actively eating or in the early stages of metamorphosis. However, high levels of lysozyme activity were detected in homogenates of midgut tissue collected from insects later in the stadium. Immunocytochemical studies demonstrated that lysozyme accumulates in large apical vacuoles in regenerative cells of the midgut during the larval-pupal molt. These cells, initially scattered basally throughout the larval midgut epithelium, multiply and form a continuous cell layer underneath the larval midgut cells. At the larval/pupal ecdysis the larval midgut epithelium is sloughed off and the regenerative cells, now forming the single cell layer of the midgut, release the contents of their vacuoles into the midgut lumen. This release results in high lysozyme activity in the lumen of the pupal midgut and is thought to confer protection from bacterial infection. This is the first indication that the lysozyme gene may be developmentally regulated in a specific tissue in the absence of a bacterial infection.  相似文献   

15.
16.
The larval midgut in holometabolous insects must undergo a remodeling process during metamorphosis to form the pupal-adult midgut. However, the molecular mechanism of larval midgut cell dissociation remains unknown. Here, we show that the expression and activity of Helicoverpa armigera cathepsin L (Har-CatL) are high in the midgut at the mid-late stage of the 6th-instar larvae and are responsive to the upstream hormone ecdysone. Immunocytochemistry shows that signals for Har-CatL-like are localized in midgut cells, and an inhibitor experiment demonstrates that Har-CatL functions in the dissociation of midgut epithelial cells. Mechanistically, Har-CatL can cleave pro-caspase-1 into the mature peptide, thereby increasing the activity of caspase-1, which plays a key role in apoptosis, indicating that Har-CatL is also involved in the apoptosis of midgut cells by activating caspase-1. We believe that this is the first report that Har-CatL regulates the dissociation and apoptosis of the larval midgut epithelium for midgut remodeling.  相似文献   

17.
18.
When final (5th) instar larvae of Precis coenia were treated with the juvenile hormone analog (JHA) methoprene, they underwent a supernumerary larval molt, except for certain regions of their imaginal disks, which deposited a normal pupal cuticle. Evidently those regions had already become irreversibly committed to pupal development at the time JHA was applied. By applying JHA at successively later times in the instar, the progression of pupal commitment could be studied. Pupal commitment in the proboscis, antenna, eye, leg and wing imaginal disks occurred in disk-specific patterns. In each imaginal disk there were distinct initiation sites where pupal commitment began during the first few hours of the final larval instar, and from which commitment spread across the remainder of the disk over a 2- to 3-day period. The initiation sites were not always located in homologous regions of the various disks. As a rule, pupal commitment also spread from imaginal disk tissue to surrounding epidermal tissue. The regions of pupal commitment in all disks except those of the wings, coincided with the regions of growth of the disk. Only portions of the disk that had undergone cell division and growth underwent pupal commitment. Shortening the growth period did not prevent pupal commitment in the wing imaginal disk, indicating that, in this disk at least, a normal number of cell divisions was not crucial in reprogramming of disk cells for pupal cuticle synthesis. The apparent growth spurt of imaginal disks that occurs during the last part of the final larval instar is merely the final stage of normal and constant exponential growth. Juvenile hormone (JH) and ecdysteroids appeared to play little role in the regulation of normal imaginal disk growth. Instead, growth of the disks may be under intrinsic control. Interestingly, even though endogenous fluctuation in JH titers do not affect imaginal disk growth, exogenous JHA proved able to inhibit both pupal commitment, cell movement, and growth of the disks during the last larval instar. This function of JH could be important under certain adverse conditions, such as when metamorphosis is delayed in favor of a supernumerary larval molt.  相似文献   

19.
The eye imaginal disc of Manduca sexta is created early in the final larval instar from the adult eye primordium, which is composed of fully differentiated cells of the larval head capsule epidermis. Concomitant with the down-regulation of the larval epidermal program, expression of broad, a marker of pupal commitment, is activated in the primordium. The cells then detach from the cuticle, fold inward, and begin to proliferate at high levels to produce the inverted, eye imaginal disc. These and other events that begin on the first day of the final larval instar appear to mark the initiation of metamorphosis. Little is known about the endocrine control of the initiation of metamorphosis in any insect. The hemolymph titer of juvenile hormone (JH) declines to low levels during this period and the presence of JH is sufficient to repress development in cultured eye primordia. However, maintenance of JH at high levels in vivo by treatment with long-lasting JH mimics has no apparent effect on early steps in eye imaginal disc development. We discuss our findings in the context of the endocrine control of metamorphosis. The initiation of metamorphosis in Manduca, and perhaps a wide range of insect species, appears to involve the overcoming of JH repression by an unidentified, nutrient-dependent, hormonal factor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号