首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Both tyrosine phosphorylation and calpain-mediated truncation of ionotropic glutamate receptors are important mechanisms for synaptic plasticity. Previous work from our laboratory has shown that calpain activation results in truncation of the C-terminal domains of several glutamate receptor subunits. To test whether and how tyrosine phosphorylation of glutamate ionotropic receptor subunits modulates calpain susceptibility, synaptic membranes were phosphorylated by Fyn or Src, two members of the Src family tyrosine kinases. Tyrosine phosphorylation of synaptic membranes by Src significantly reduced calpain-mediated truncation of both NR2A and NR2B subunits of NMDA receptors, but not of GluR1 subunits of AMPA receptors. In contrast, phosphorylation with Fyn significantly protected calpain-mediated truncation of GluR1 subunits of AMPA receptors, but enhanced calpain-mediated truncation of NR2A subunits of NMDA receptors. Similar results were observed with NR2A and NR2B C-terminal domain fusion proteins phosphorylated by Fyn or Src before incubation with calpain and calcium. In addition, phosphorylation of NR2A and NR2B C-terminal fusion proteins by Fyn or Src enhanced their binding to spectrin and PSD-95. Thus, tyrosine phosphorylation impairs or facilitates calpain-mediated truncation of glutamate receptor subunits, depending on which tyrosine kinase is activated. Such mechanisms could serve to regulate receptor integrity and location, in addition to modulating channel properties.  相似文献   

2.
The N-methyl-d-aspartate (NMDA) receptors play critical roles in synaptic plasticity, neuronal development, and excitotoxicity. Tyrosine phosphorylation of NMDA receptors by Src-family tyrosine kinases such as Fyn is implicated in synaptic plasticity. To precisely address the roles of NMDA receptor tyrosine phosphorylation, we identified Fyn-mediated phosphorylation sites on the GluR epsilon 2 (NR2B) subunit of NMDA receptors. Seven out of 25 tyrosine residues in the C-terminal cytoplasmic region of GluR epsilon 2 were phosphorylated by Fyn in vitro. Of these 7 residues, Tyr-1252, Tyr-1336, and Tyr-1472 in GluR epsilon 2 were phosphorylated in human embryonic kidney fibroblasts when co-expressed with active Fyn, and Tyr-1472 was the major phosphorylation site in this system. We then generated rabbit polyclonal antibodies specific to Tyr-1472-phosphorylated GluR epsilon 2 and showed that Tyr-1472 of GluR epsilon 2 was indeed phosphorylated in murine brain using the antibodies. Importantly, Tyr-1472 phosphorylation was greatly reduced in fyn mutant mice. Moreover, Tyr-1472 phosphorylation became evident when hippocampal long term potentiation started to be observed, and its magnitude became larger in murine brain. Finally, Tyr-1472 phosphorylation was significantly enhanced after induction of long term potentiation in the hippocampal CA1 region. These data suggest that Tyr-1472 phosphorylation of GluR epsilon 2 is important for synaptic plasticity.  相似文献   

3.
Specific proteolysis of the NR2 subunit at multiple sites by calpain   总被引:4,自引:0,他引:4  
The NMDA subtype of glutamate receptor plays an important role in the molecular mechanisms of learning, memory and excitotoxicity. NMDA receptors are highly permeable to calcium, which can lead to the activation of the calcium-dependent protease, calpain. In the present study, the ability of calpain to modulate NMDA receptor function through direct proteolytic digestion of the individual NMDA receptor subunits was examined. HEK293t cells were cotransfected with the NR1a/2A, NR1a/2B or NR1a/2C receptor combinations. Cellular homogenates of these receptor combinations were prepared and digested by purified calpain I in vitro. All three NR2 subunits could be proteolyzed by calpain I while no actin or NR1a cleavage was observed. Based on immunoblot analysis, calpain cleavage of NR2A, NR2B and NR2C subunits was limited to their C-terminal region. In vitro calpain digestion of fusion protein constructs containing the C-terminal region of NR2A yielded two cleavage sites at amino acids 1279 and 1330. Although it has been suggested that calpain cleavage of the NMDA receptor may act as a negative feedback mechanism, the current findings demonstrated that calpain cleavage did not alter [(125)I]MK801 binding and that receptors truncated to the identified cleavage sites had peak intracellular calcium levels, (45)Ca uptake rates and basal electrophysiological properties similar to wild type.  相似文献   

4.
NMDA receptors are potentiated by phosphorylation in a subunit- and kinase-specific manner. Both native and recombinant NMDA receptors are inhibited by behaviorally relevant concentrations of ethanol. Whether the phosphorylation state of individual subunits modulates the ethanol sensitivity of these receptors is not known. In this study, the effects of Fyn tyrosine kinase on the ethanol sensitivity of specific recombinant NMDA receptors expressed in HEK 293 cells were investigated. Whole-cell mode patch clamp and ratiometric calcium imaging demonstrated that the degree of ethanol inhibition of NR1/NR2B receptors was unaffected by Fyn tyrosine kinase. In contrast, the inhibition of NR1/NR2A receptors by ethanol (100 mM) was significantly reduced under conditions of enhanced Fyn-mediated tyrosine phosphorylation of the NR2A subunit. This effect was not observed at lower concentrations of ethanol (< or = 50 mM). These results suggest that tyrosine phosphorylation of specific NMDA receptors by Fyn tyrosine kinase may regulate the sensitivity of these receptors to the sedative/hypnotic concentrations of ethanol.  相似文献   

5.
Src-mediated tyrosine phosphorylation of N-methyl-d-aspartate receptor subunits has been shown to modify the functional properties of N-methyl-d-aspartate receptors. Moreover, calpain-mediated truncation of N-methyl-d-aspartate receptor subunits has been found to alter the structure of the receptors. In the present study, we first used immunoprecipitation with a variety of antibodies against N-methyl-d-aspartate receptor subunits and anti-phosphotyrosine antibodies to show that tyrosine-phosphorylated subunits of N-methyl-d-aspartate receptor are protected against calpain-mediated truncation of their C-terminal domains. A GST fusion protein containing the C-terminal domain of NR2A was used to identify the calpain cutting sites in the C-terminal domain. One site was identified at residues 1278-1279, corresponding to one of the preferred calpain truncation sites. This site is adjacent to a consensus sequence for Src-mediated tyrosine phosphorylation, and Src-mediated tyrosine phosphorylation of the GST-NR2A C-terminal fusion protein also inhibited calpain-mediated truncation of the fusion protein. We propose that phosphorylation of NR2 subunits and the resulting inhibition of calpain-mediated truncation of their C-terminal domains provide for the stabilization of the N-methyl-d-aspartate receptors in postsynaptic structures.  相似文献   

6.
NMDA receptors play a critical role in various aspects of CNS function. Hence, it is important to identify mechanisms that regulate NMDA receptor activity. We have shown previously that insulin rapidly potentiates NMDA receptor activity in both native and recombinant expression systems. Here we report that insulin causes a transient phosphorylation of NR2A and NR2B NMDA receptor subunits on tyrosine residues. Rat hippocampal slices were exposed to 1 microM insulin for 20 and 60 min and then solubilized. NR2A and NR2B subunits were immunoprecipitated and probed for tyrosine phosphorylation. Insulin incubation of hippocampal slices for 20 min elicited an increase in tyrosine phosphorylation to 176 +/- 16% (NR2A) and 203 +/- 15% (NR2B) of control levels. In contrast, 60 min of insulin incubation did not alter NR2 tyrosine phosphorylation levels (NR2A: 85 +/- 13% of control; NR2B: 93 +/- 10% of control). Although the consequence of insulin-stimulated tyrosine phosphorylation is unknown, it is possible that this site(s) is responsible for insulin potentiation of NMDA receptor activity. This possibility is consistent with our earlier finding that insulin potentiates hippocampal NMDA receptor activity after 20 min, but not after 60 min, of insulin exposure.  相似文献   

7.
NMDA receptors (NMDARs), fundamental to learning and memory and implicated in certain neurological disorders, are heterotetrameric complexes composed of two NR1 and two NR2 subunits. The function of synaptic NMDARs in postnatal principal forebrain neurons is typically attributed to diheteromeric NR1/NR2A and NR1/NR2B receptors, despite compelling evidence for triheteromeric NR1/NR2A/NR2B receptors. In synapses, the properties of triheteromeric NMDARs could thus far not be distinguished from those of mixtures of diheteromeric NMDARs. To find a signature of NR1/NR2A/NR2B receptors, we have employed two gene-targeted mouse lines, expressing either NR1/NR2A or NR1/NR2B receptors without NR1/NR2A/NR2B receptors, and compared their synaptic properties with those of wild type. In acute hippocampal slices of mutants older than 4 weeks we found a distinct voltage dependence of NMDA R-mediated excitatory postsynaptic current (NMDA EPSC) decay time for the two diheteromeric NMDARs. In wild-type mice, NMDA EPSCs unveiled the NR1/NR2A characteristic for this voltage-dependent deactivation exclusively, indicating that the contribution of NR1/NR2B receptors to evoked NMDA EPSCs is negligible in adult CA3-to-CA1 synapses. The presence of NR1/NR2A/NR2B receptors was obvious from properties that could not be explained by a mixture of diheteromeric NR1/NR2A and NR1/NR2B receptors or by the presence of NR1/NR2A receptors alone. The decay time for NMDA EPSCs in wild type was slower than that for NR1/NR2A receptors, and the sensitivity of NMDA EPSCs to NR2B-directed NMDAR antagonists was 50%. Thus, NR2B is prominent in adult hippocampal synapses as an integral part of NR1/NR2A/NR2B receptors.  相似文献   

8.
NMDA receptors play critical roles in synaptic modulation and neurological disorders. In this study, we investigated the developmental changes in NR2 cleavage by NMDA receptor-activated calpain in cultured cortical and hippocampal neurons. Calpain activity increased with development, associated with increased expression of NMDA receptors but not of calpain I. The activation of calpain in immature and mature cortical cultures was inhibited by antagonists of NR1/2B and NR1/2A/2B receptors, whereas the inhibition of NR1/2B receptors did not alter calpain activation in mature hippocampal cultures. The degradation of NR2 subunits by calpain differed with developmental age. NR2A was not a substrate of calpain in mature hippocampal cultures, but was cleaved in immature cortical and hippocampal cultures. NR2B degradation by calpain in cortical cultures decreased with development, but the level of degradation of NR2B in hippocampal cultures did not change. The kinetics of NMDA receptor-gated whole cell currents were also modulated by calpain activation in a manner that varied with developmental stage in vitro. In early (but not later) developmental stages, calpain activation altered the NMDA-evoked current rise time and time constants for both desensitization and deactivation. Our data suggest that the susceptibility of the NMDA receptor to cleavage by calpain varies with neuronal maturity in a manner that may alter its electrophysiological properties.  相似文献   

9.
Phosphorylation of neural proteins in response to a diverse array of external stimuli is one of the main mechanisms underlying dynamic changes in neural circuitry. The NR2B subunit of the NMDA receptor is tyrosine-phosphorylated in the brain, with Tyr-1472 its major phosphorylation site. Here, we generate mice with a knockin mutation of the Tyr-1472 site to phenylalanine (Y1472F) and show that Tyr-1472 phosphorylation is essential for fear learning and amygdaloid synaptic plasticity. The knockin mice show impaired fear-related learning and reduced amygdaloid long-term potentiation. NMDA receptor-mediated CaMKII signaling is impaired in YF/YF mice. Electron microscopic analyses reveal that the Y1472F mutant of the NR2B subunit shows improper localization at synapses in the amygdala. We thus identify Tyr-1472 phosphorylation as a key mediator of fear learning and amygdaloid synaptic plasticity.  相似文献   

10.
NR2C-containing N-methyl-D-aspartate (NMDA) receptors are highly expressed in cerebellar granule cells where they mediate the majority of current in the adult. NMDA receptors composed of NR1/NR2C exhibit a low conductance and reduced sensitivity to Mg(2+), compared with the more commonly studied NR2A- and NR2B-containing receptors. Despite these interesting features, very little is known about the regulation of NR2C function. Here we investigate the role of phosphorylation of NR2C in regulating NMDA receptor trafficking and ion channel properties. We identify a phosphorylation site, serine 1244 (Ser(1244)), near the extreme COOH terminus of NR2C, which is phosphorylated by both cAMP-dependent protein kinase and protein kinase C. This residue is located adjacent to the consensus PDZ ligand, a region that regulates protein-protein interactions and receptor trafficking in NR2A and NR2B. We show that Ser(1244) on NR2C is phosphorylated in vitro, in heterologous cells, and in neurons. Moreover, we demonstrate for the first time that NR2C interacts with the PSD-95 family of PDZ domain-containing proteins but that phosphorylation of Ser(1244) does not influence this PDZ interaction. Furthermore, Ser(1244) phosphorylation does not regulate surface expression of NR1/NR2C receptors. However, we find that this site does regulate the kinetics of the ion channel: a phosphomimetic mutation at Ser(1244) accelerates both the rise and decay of NMDA-evoked currents in excised patches from HEK-293 cells. Therefore, phosphorylation of Ser(1244) does not regulate trafficking but unexpectedly affects ion channel function, suggesting that phosphorylation of Ser(1244) on NR2C may be important in defining the functional properties of NMDA receptor-mediated currents in the cerebellum.  相似文献   

11.
The NMDA receptor (NMDAR) is a component of excitatory synapses and a key participant in synaptic plasticity. We investigated the role of two domains in the C terminus of the NR2B subunit--the PDZ binding domain and the clathrin adaptor protein (AP-2) binding motif--in the synaptic localization of NMDA receptors. NR2B subunits lacking functional PDZ binding are excluded from the synapse. Mutations in the AP-2 binding motif, YEKL, significantly increase the number of synaptic receptors and allow the synaptic localization of NR2B subunits lacking PDZ binding. Peptides corresponding to YEKL increase the synaptic response within minutes. In contrast, the NR2A subunit localizes to the synapse in the absence of PDZ binding and is not altered by mutations in its motif corresponding to YEKL of NR2B. This study identifies a dynamic regulation of synaptic NR2B-containing NMDARs through PDZ protein-mediated stabilization and AP-2-mediated internalization that is modulated by phosphorylation by Fyn kinase.  相似文献   

12.
The protein tyrosine kinase Src is known to regulate NMDA receptors in native neurons. While NR2A, NR2B and NR2D are known to be phosphorylated on tyrosine residues, the exact sites have remained unidentified. Immunoprecipitation of NMDA receptor subunits followed by western blotting was used to analyze the state of tyrosine phosphorylation of recombinant NMDA receptor subunits expressed in HEK293 cells. Using antiphosphotyrosine antibody PY20, we find that on expression in HEK cells, v-Src and Fyn cause detectable tyrosine phosphorylation only of NR2A. Because a stronger signal was produced by the constitutively active v-Src, the general region of v-Src phosphorylation was delimited by expression of a series of truncation mutants of NR2A. Site-directed mutagenesis on candidate sites within the likely region allowed identification of three sites, Y1292, Y1325, and Y1387 that account for a significant fraction of the total PY20 signal. Two of these sites, Y1292 and Y1387, were suggested to control current modulation by Src in previous studies of HEK cells expressing NR1/NR2A. One of these sites, Y1325, has not yet been evaluated for effects on receptor current. A unique tyrosine site, Y1267, was shown not to be a site of detectable phosphorylation, in accordance with its Src-independent regulation of receptor currents.  相似文献   

13.
The activity of the N-methyl-D-aspartate (NMDA) receptor, a subclass of ionotropic glutamate receptor, is modulated by a complex network of phosphorylation and dephosphorylation. I investigated the relative extent of tyrosine phosphorylation of NMDA receptor subunit 2A (NR2A) and 2B (NR2B) subunits in the rat forebrain postsynaptic density (PSD) fraction. Immunoblot analysis of immunoprecipitates with antiphosphotyrosine antibodies indicated that tyrosine phosphorylation of NR2A was only 28.6% of that of NR2B. When phosphotyrosine-containing peptides were isolated by affinity-purification or immunoprecipitation, and probed for the two subunits, NR2B was detected but not NR2A. Furthermore, depletion of NR2B removed the phosphotyrosine-containing 180 kDa peptide from the solution while the converse was not true. The small extent of tyrosine phosphorylation of NR2A in the unstimulated condition may explain the dramatic increase in tyrosine phosphorylation in various physiological and pathological conditions.  相似文献   

14.
Neurotoxicity induced by beta-amyloid peptide (Abeta) involves glutamate toxicity, resulting from overactivation of N-methyl-D-aspartate (NMDA) receptors and elevation of intracellular calcium. However, the heterogeneity of the NMDA receptors, frequently composed of NR1 and NR2A-D subunits, has been less studied. Thus, we determined the contribution of NMDA receptor subtypes on Abeta(1-40) toxicity in HEK293 cells transiently expressing NR1/NR2A or NR1/NR2B subunits. Analysis of lactate dehydrogenase (LDH) release and trypan blue exclusion revealed an increase in Abeta(1-40) toxicity upon NR1/NR2A expression, compared to NR1/NR2B, indicating loss of plasma membrane integrity. Furthermore, Abeta(1-40) decreased intracellular ATP in cells expressing NR1/NR2A. MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate), a noncompetitive NMDA receptor antagonist, partially prevented the decrease in cell viability and the energy impairment. These differences were not accounted for by the activation of caspases 2, 3, 8 and 9 or calpains or by DNA fragmentation, excluding the hypothesis of apoptosis. Functional NR1/NR2A and NR1/NR2B receptor subtypes were further evidenced by single-cell calcium imaging. Stimulation of NR1/NR2A receptors with NMDA/glycine revealed an increase in intracellular calcium in cells pre-exposed to Abeta(1-40). Opposite effects were observed upon activation of NR1/NR2B receptors. These results suggest that NR1/NR2A-composed NMDA receptors mediate necrotic cell death in HEK293 cells exposed to Abeta(1-40) through changes in calcium homeostasis.  相似文献   

15.
Abstract: The subunit compositions of the NR1 C2 exon-containing N -methyl- d -aspartate (NMDA) receptors of adult mammalian forebrain were determined by using a combination of immunoaffinity chromatography and immunoprecipitation studies with NMDA receptor subunit-specific antibodies. NMDA receptors were solubilised by sodium deoxycholate, pH 9, and purified by anti-NR1 C2 antibody affinity chromatography. The purified receptor subpopulation showed immunoreactivity with anti-NR1 C2, anti-NR1 N1, anti-NR1 C2', anti-NR2A, and anti-NR2B NMDA receptor antibodies. The NR1 C2-receptor subpopulation was subjected to immunoprecipitation using anti-NR2B antibodies and the resultant immune pellets analysed by immunoblotting where anti-NR1 C2, anti-NR1 C2', anti-NR2A, and anti-NR2B immunoreactivities were all found. Quantification of the immunoblots showed that 46% of the NR1 C2 immunoreactivity was associated with the NR2B subunit. Of this, 87% (i.e., 40% of total) were NR1 C2/NR2B receptors and 13% (6% of total) were NR1 C2/NR2A/NR2B, thus identifying the triple combination as a minor receptor subset. These results demonstrate directly, for the first time, the coexistence of the NR2A and NR2B subunits in native NMDA receptors. They show the coexistence of two splice forms of the NR1 subunit, i.e., NR1 C2 and NR1 C2', in native receptors and, in addition, they imply an NMDA receptor subpopulation containing four types of NMDA receptor subunit, NR1 C2, NR1 C2', NR2A, and NR2B, which, in accord with molecular size determinations, predicts that the NMDA receptor is at least tetrameric. These results are the first quantitative study of NMDA receptor subtypes and demonstrate molecular heterogeneity for both the NR1 and the NR2 subunits in native forebrain NMDA receptors.  相似文献   

16.
The N-methyl-D-aspartate receptor (NMDAR) is an ionotropic glutamate receptor, which plays crucial roles in synaptic plasticity and development. We have recently shown that potentiation of NMDA receptor function by protein kinase C (PKC) appears to be mediated via activation of non-receptor tyrosine kinases. The aim of this study was to test whether this effect could be mediated by direct tyrosine phosphorylation of the NR2A or NR2B subunits of the receptor. Following treatment of rat hippocampal CA1 mini-slices with 500 nM phorbol 12-myristate 13-acetate (PMA) for 15 min, samples were homogenized, immunoprecipitated with anti-NR2A or NR2B antibodies and the resulting pellets subjected to Western blotting with antiphosphotyrosine antibody. An increase in tyrosine phosphorylation of both NR2A (76 +/- 11% above control) and NR2B (41 +/- 11%) was observed. This increase was blocked by pretreatment with the selective PKC inhibitor chelerythrine, with the tyrosine kinase inhibitor Lavendustin A or with the Src family tyrosine kinase inhibitor PP2. PMA treatment also produced an increase in the phosphorylation of serine 890 on the NR1 subunit, a known PKC site, at 5 min with phosphorylation returning to near basal levels by 10 min while tyrosine phosphorylation of NR2A and NR2B was sustained for up to 15 min. These results suggest that the modulation of NMDA receptor function seen with PKC activation may be the result of tyrosine phosphorylation of NR2A and/or NR2B.  相似文献   

17.
Phosphorylation of the NMDA receptor by Src-family tyrosine kinases has been implicated in the regulation of receptor function. We have investigated the tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B by exogenous Src and Fyn and compared this to phosphorylation by tyrosine kinases associated with the postsynaptic density (PSD). Phosphorylation of the receptor by exogenous Src and Fyn was dependent upon initial binding of the kinases to PSDs via their SH2-domains. Src and Fyn phosphorylated similar sites in NR2A and NR2B, tryptic peptide mapping identifying seven and five major tyrosine-phosphorylated peptides derived from NR2A and NR2B, respectively. All five tyrosine phosphorylation sites on NR2B were localized to the C-terminal, cytoplasmic domain. Phosphorylation of NR2B by endogenous PSD tyrosine kinases yielded only three tyrosine-phosphorylated tryptic peptides, two of which corresponded to Src phosphorylation sites, and one of which was novel. Phosphorylation-site specific antibodies identified NR2B Tyr1472 as a phosphorylation site for intrinsic PSD tyrosine kinases. Phosphorylation of this site was inhibited by the Src-family-specific inhibitor PP2. The results identify several potential phosphorylation sites for Src in the NMDA receptor, and indicate that not all of these sites are available for phosphorylation by kinases located within the structural framework of the PSD.  相似文献   

18.
N-Methyl-D-aspartate (NMDA) receptors are tetrameric protein complexes composed of the glycine-binding NR1 subunit with a glutamate-binding NR2 and/or glycine-binding NR3 subunit. Tri-heteromeric receptors containing NR1, NR2, and NR3 subunits reconstitute channels, which differ strikingly in many properties from the respective glycine- and glutamate-gated NR1/NR2 complexes and the NR1/NR3 receptors gated by glycine alone. Therefore, an accurate oligomerization process of the different subunits has to assure proper NMDA receptor assembly, which has been assumed to occur via the oligomerization of homodimers. Indeed, using fluorescence resonance energy transfer analysis of differentially fluorescence-tagged subunits and blue native polyacrylamide gel electrophoresis after metabolic labeling and affinity purification revealed that the NR1 subunit is capable of forming homo-oligomeric aggregates. In contrast, both the NR2 and the NR3 subunits formed homo- and hetero-oligomers only in the presence of the NR1 subunit indicating differential roles of the subunits in NMDA receptor assembly. However, co-expression of the NR3A subunit with an N-terminal domain-deleted NR1 subunit (NR1(DeltaNTD)) abrogating NR1 homo-oligomerization did not affect NR1/NR3A receptor stoichiometry or function. Hence, homo-oligomerization of the NR1 subunit is not essential for proper NR1/NR3 receptor assembly. Because identical results were obtained for NR1(DeltaNTD)/NR2 NMDA receptors (Madry, C., Mesic, I., Betz, H., and Laube, B. (2007) Mol. Pharmacol., 72, 1535-1544) and NR1-containing hetero-oligomers are readily formed, we assume that heterodimerization of the NR1 with an NR3 or NR2 subunit, which is followed by the subsequent association of two heterodimers, is the key step in determining proper NMDA receptor subunit assembly and stoichiometry.  相似文献   

19.
We recently identified a novel mechanism for modulation of the phosphorylation state and function of the N-methyl-d-aspartate (NMDA) receptor via the scaffolding protein RACK1. We found that RACK1 binds both the NR2B subunit of the NMDA receptor and the nonreceptor protein-tyrosine kinase, Fyn. RACK1 inhibits Fyn phosphorylation of NR2B and decreases NMDA receptor-mediated currents in CA1 hippocampal slices (Yaka, R., Thornton, C., Vagts, A. J., Phamluong, K., Bonci, A., and Ron, D. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 5710-5715). Here, we identified the signaling cascade by which RACK1 is released from the NMDA receptor complex and identified the consequences of the dissociation. We found that activation of the cAMP/protein kinase A pathway in hippocampal slices induced the release of RACK1 from NR2B and Fyn. This resulted in the induction of NR2B phosphorylation and the enhancement of NMDA receptor-mediated activity via Fyn. We identified the neuropeptide, pituitary adenylate cyclase activating polypeptide (PACAP(1-38)), as a ligand that induced phosphorylation of NR2B and enhanced NMDA receptor potentials. Finally, we found that activation of the cAMP/protein kinase A pathway induced the movement of RACK1 to the nuclear compartment in dissociated hippocampal neurons. Nuclear RACK1 in turn was found to regulate the expression of brain-derived neurotrophic factor induced by PACAP(1-38). Taken together our results suggest that activation of adenylate cyclase by PACAP(1-38) results in the release of RACK1 from the NMDA receptor and Fyn. This in turn leads to NMDA receptor phosphorylation, enhanced activity mediated by Fyn, and to the induction of brain-derived neurotrophic factor expression by RACK1.  相似文献   

20.
Abstract: The NMDA receptor has recently been found to be phosphorylated on tyrosine. To assess the possible connection between tyrosine phosphorylation of the NMDA receptor and signaling pathways in the postsynaptic cell, we have investigated the relationship between tyrosine phosphorylation and the binding of NMDA receptor subunits to the SH2 domains of phospholipase C-γ (PLC-γ). A glutathione S -transferase (GST) fusion protein containing both the N- and the C-proximal SH2 domains of PLC-γ was bound to glutathione-agarose and reacted with synaptic junctional proteins and glycoproteins. Tyrosine-phosphorylated PSD-GP180, which has been identified as the NR2B subunit of the NMDA receptor, bound to the SH2-agarose beads in a phosphorylation-dependent fashion. Immunoblot analysis with antibodies specific for individual NMDA receptor subunits showed that both NR2A and NR2B subunits bound to the SH2-agarose. No binding occurred to GST-agarose lacking an associated SH2 domain, indicating that binding was specific for the SH2 domains. The binding of receptor subunits increased after the incubation of synaptic junctions with ATP and decreased after treatment of synaptic junctions with exogenous protein tyrosine phosphatase. Immunoprecipitation experiments confirmed that NR2A and NR2B were phosphorylated on tyrosine and further that tyrosine phosphorylation of each of the subunits was increased after incubation with ATP. The results demonstrate that NMDA receptor subunits NR2A and NR2B will bind to the SH2 domains of PLC-γ and that isolated synaptic junctions contain endogenous protein tyrosine kinase(s) that can phosphorylate both NR2A and NR2B receptor subunits, and suggest that interaction of the tyrosine-phosphorylated NMDA receptor with proteins that contain SH2 domains may serve to link it to signaling pathways in the postsynaptic cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号