首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S J O'Keefe  J R Knowles 《Biochemistry》1986,25(20):6077-6084
To investigate the mechanism of the carboxylation of pyruvate to oxalacetate catalyzed by the enzyme transcarboxylase, we have measured the D(V/K) and 13(V/K) isotope effects. Comparison of the double-reciprocal plots of the initial velocities with [1H3]pyruvate and with [2H3]pyruvate as substrate yields a deuterium isotope effect on Vmax/Km of 1.39 +/- 0.04. The 13C kinetic isotope effect on the carboxylation of pyruvate to oxalacetate has been measured by the competitive method and is 1.0227 +/- 0.0008. To determine whether the removal of the proton from pyruvate and the addition of the carboxyl group occur in the same or in different steps, the double-isotope fractionation test has been used. When [2H3]pyruvate replaces [1H3]pyruvate as the substrate, the observed 13(V/K) isotope effect falls from 1.0227 to 1.0141 +/- 0.001. The latter value is in excellent agreement with the value of 1.0136, predicted for a stepwise pathway. We may conclude, therefore, that the carboxylation of pyruvate catalyzed by transcarboxylase proceeds by a stepwise mechanism involving the intermediate formation of the substrate carbanion.  相似文献   

2.
Several 2-(aminomethyl)-and 2-(2-aminoethyl)-pyrrolidine-3,4-diol derivatives have been assayed for their inhibitory activities towards glycosidases. Good inhibitors of alpha-mannosidases must have the (2R,3R,4S) configuration and possess 2-(benzylamino)methyl substituents. Stereomers with the (2S,3R,4S) configuration are also competitive inhibitors of alpha-mannosidases, but less potent as they share the configuration of C(1), C(2), C(3) of beta-D-mannosides rather than that of alpha-D-mannosides. Interestingly, (2S,3R,4S)-2-[2-[(4-phenyl)phenylamino]ethyl]pyrrolidine-3,4-diol (12g) inhibits several enzymes, for instance alpha-L-fucosidase from bovine epididymis (K(i)=6.5microM, competitive), alpha-galactosidase from bovine liver (K(i)=5microM, mixed) and alpha-mannosidase from jack bean (K(i)=102microM, mixed). Diamines such as (2R,3S,4R)-2-[2-(phenylamino) or 2-(benzylamino)ethyl]pyrrolidine-3,4-diol (ent-12a, ent-12b) inhibit beta-glucosidase from almonds (K(i)=13-40microM, competitive).  相似文献   

3.
Gamma-carboxyglutamic acid, formed during the post-translational vitamin K-dependent carboxylation of glutamic acid residues in polypeptides has been identified not only in coagulation factors II (prothrombin),, VII, IX and X [1--4], but also in several other plasma proteins [3,5,6] and in protein of bone [7,8] and kidney [9]. In rat liver, carboxylation is mediated through an enzyme system located in the microsomal membrane [10]. The enzyme system requires CO2, O2 and the reduced (hydroquinone) form of the vitamin, as well as a suitable substrate [10,11]. Rat liver microsomes also convert vitamin K1 (phylloquinone) to its stable 2,3-epoxide [12]. Several studies suggest a link between carboxylation and the formation of the epoxide [12--14]. In one of these [14], a survey of rat tissues for vitamin K1 epoxidation revealed that, in addition to liver, this activity was also possessed by kidney, bone, spleen and placenta. In preliminary experiments, vitamin K-dependent carboxylating systems have been found in rat and chick kidney [9], in chick bone [15] and in rat spleen and placenta (unpublished observations). In this communication, we describe some of the basic characteristics of the vitamin K-dependent carboxylating system as found in human placental microsomes.  相似文献   

4.
The pathway of propionate conversion in a syntrophic coculture of Smithella propionica and Methanospirillum hungatei JF1 was investigated by (13)C-NMR spectroscopy. Cocultures produced acetate and butyrate from propionate. [3-(13)C]propionate was converted to [2-(13)C]acetate, with no [1-(13)C]acetate formed. Butyrate from [3-(13)C]propionate was labeled at the C2 and C4 positions in a ratio of about 1:1.5. Double-labeled propionate (2,3-(13)C) yielded not only double-labeled acetate but also single-labeled acetate at the C1 or C2 position. Most butyrate formed from [2,3-(13)C]propionate was also double labeled in either the C1 and C2 atoms or the C3 and C4 atoms in a ratio of about 1:1.5. Smaller amounts of single-labeled butyrate and other combinations were also produced. 1-(13)C-labeled propionate yielded both [1-(13)C]acetate and [2-(13)C]acetate. When (13)C-labeled bicarbonate was present, label was not incorporated into acetate, propionate, or butyrate. In each of the incubations described above, (13)C was never recovered in bicarbonate or methane. These results indicate that S. propionica does not degrade propionate via the methyl-malonyl-coenzyme A (CoA) pathway or any other of the known pathways, such as the acryloyl-CoA pathway or the reductive carboxylation pathway. Our results strongly suggest that propionate is dismutated to acetate and butyrate via a six-carbon intermediate.  相似文献   

5.
R Shapiro  J F Riordan 《Biochemistry》1984,23(22):5225-5233
The interaction of angiotensin converting enzyme with six metal-coordinating [(D-3-mercapto-2-methylpropanoyl)-L-Pro (captopril), N-[1(S)-carboxy-3-phenylpropyl]-L-Ala-L-Pro (MK-422), N-(phenylphosphoryl)-L-Phe-L-Phe, N alpha-(3-mercaptopropanoyl)-L-Arg, N alpha-[1(S)-carboxy-3-phenylpropyl]-Ala-L-Lys, and N-[1(S)-carboxy-5-aminopentyl]-L-Phe-Gly] and three dipeptide inhibitors (Gly-L-Trp, L-Phe-L-Arg, and L-Ala-L-Pro) was examined at pH 7.5 in the presence of 300 mM NaCl. Inhibition modes, apparent Ki [Ki(app)] values, and shapes of 1/v vs. [I] plots were found to vary with the substrate employed. All inhibitors except Phe-Arg were competitive with the substrate furanacryloyl (Fa)-Phe-Gly-Gly, while five of seven tested with Fa-Phe-Phe-Arg as substrate produced mixed patterns. Ki-(app) values for N-[1(S)-carboxy-5-aminopentyl]-L-Phe-Gly, N-(phenylphosphoryl)-L-Phe-L-Phe, Gly-Trp, and MK-422 were 8.3-, 5.5-, 4.7-, and 2.6-fold lower, respectively, when Fa-Phe-Gly-Gly was substrate, compared with values measured with Fa-Phe-Phe-Arg. In contrast, Ki(app) values for Phe-Arg and (3-mercaptopropanoyl)-Arg were lower (2.8- and 2.2-fold, respectively) when Fa-Phe-Phe-Arg was the substrate. Plots of 1/v vs. [I] for most of the inhibitors were nonlinear, to an extent which was also substrate dependent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
All major fragment ions of codeine and morphine were elucidated using LC-electrospray MS/MS and high resolution FT-ICR-MS combined with an IRMPD system. Nanogram quantities of labeled codeine were isolated and purified from Papaver somniferum seedlings, which were grown for up to 9 days in the presence of [ring-13C6]-l-tyrosine, [ring-13C6]-tyramine and [1,2-13C2], [6-O-methyl 13C]-(R,S)-coclaurine. The labeling degree of codeine up to 57% into morphinans was observed.  相似文献   

7.
R T Jiang  Y J Shyy  M D Tsai 《Biochemistry》1984,23(8):1661-1667
Separate diastereomers of 1,2-dipalmitoyl-sn-glycero-3- thiophosphoethanolamine ( DPPsE ) were prepared in 97% diastereomeric purity and characterized by 31P, 13C, and 1H nuclear magnetic resonance (NMR). The isomers hydrolyzed by phospholipases A2 and C specifically were designated as isomer B (31P NMR delta 59.13 in CDCl3 + Et3N ) and isomer A (59.29 ppm), respectively, analogous to the isomers B and A of 1,2-dipalmitoyl-sn-glycero-3- thiophosphocholine ( DPPsC ) [ Bruzik , K., Jiang , R.-T., & Tsai, M.-D. (1983) Biochemistry 22, 2478-2486]. Phospholipase D from cabbage was shown to be specific to isomer A of DPPsC in transphosphatidylation . The product DPPsE was shown to be isomer A. The absolute configuration of chiral DPPsE at phosphorus was elucidated by bromine-mediated desulfurization in H2 18O to give chiral 1,2-dipalmitoyl-sn-glycero-3-[18O]phosphoethanolamine ( [18O]DPPE) followed by 31 P NMR analysis [ Bruzik , K., & Tsai, M.-D. (1984) J. Am. Chem. Soc. 106, 747-754]. The absolute configuration of chiral DPPsC was elucidated by desulfurization in H2 18O mediated by bromine or cyanogen bromide to give chiral 1,2-dipalmitoyl-sn-glycero-3-[18O]phosphocholine ( [18O]DPPC), which was then converted to [18O]DPPE by phospholipase D with retention of configuration [ Bruzik , K., & Tsai, M.-D. (1984) Biochemistry (preceding paper in this issue)]. The results indicate that isomer A of both DPPsE and DPPsC is SP whereas isomer B is RP.  相似文献   

8.
Vitamin K uptake in hepatocytes and hepatoma cells   总被引:1,自引:0,他引:1  
Li ZQ  He FY  Stehle CJ  Wang Z  Kar S  Finn FM  Carr BI 《Life sciences》2002,70(18):2085-2100
Hepatocellular carcinoma (HCC) or hepatoma cells have impaired ability to perform vitamin K-dependent carboxylation reactions. Vitamin K can also inhibit growth of HCC cells in vitro. Both carboxylation and growth inhibition are vitamin K dose dependent. We used rat hepatocytes, a vitamin K-growth sensitive (MH7777) and a vitamin K-growth resistant (H4IIE) rat hepatoma cell line to examine vitamin K uptake and vitamin K-mediated microsomal carboxylation. We found that vitamin K is taken up by normal rat hepatocytes against a saturable concentration gradient. The relative rates of uptake by rat hepatocytes and the two rat cell lines MH7777 and H4IIE correlated with their sensitivity to vitamin K-mediated cell growth inhibition. Pooled hepatocytes from liver nodules from rats treated with the hepatocarcinogen diethylnitrosamine (DEN) also had a reduced rate of vitamin K uptake. However, using a cell-free system, microsomes from both normal rat hepatocytes and the two rat hepatoma cell lines had a similar ability to support carboxylation mediated by exogenously added vitamin K. The results support the hypothesis that different sensitivity of hepatoma cells to vitamin K may be due to differences in vitamin K uptake and may be unrelated to the actions of vitamin K on carboxylation.  相似文献   

9.
The vitamin K dependent carboxylase of liver microsomes is involved in the posttranslational modification of certain serine protease zymogens which are critical components of the blood clotting cascade. During coupled carboxylation/oxygenation this carboxylase converts glutamate residues, dihydrovitamin K, CO2, and O2 to a gamma-carboxyglutamyl (Gla) residue, vitamin K (2R,3S)-epoxide, and H2O with a stoichiometry of 1:1 for all substrates and products. In this paper we investigate the role of molecular oxygen in the reaction by following the course of the oxygen atoms using 18O2. Two different mass spectroscopic techniques, electron ionization positive ion mass spectrometry and supercritical fluid chromatography-negative ion chemical ionization mass spectrometry, were used to quantitate the amount of 18O incorporation into the various oxygens of the vitamin K epoxide product. We found that 0.95 mol atoms of oxygen were incorporated into the epoxide oxygen, 0.05 mol atoms of oxygen were incorporated into the quinone oxygen of vitamin K epoxide, and the remaining ca. 1.0 mol atoms of oxygen were incorporated into H2O. No incorporation of oxygen into vitamin K epoxide from 50% H2(18)O was observed. Thus, the carboxylase operates as a dioxygenase 5% of the time during carboxylation/oxygenation. The relevance of these findings with respect to the nonenzymic "basicity enhancement" model proposed by Ham and Dowd [(1990) J. Am. Chem. Soc. 112, 1660-1661] is discussed.  相似文献   

10.
The non-invasive technique of 13C nuclear magnetic resonance was applied to study glucose metabolism in vivo in the insect parasite Crithidia fasciculata. It was found that under anaerobic conditions [1-13C]glucose underwent a glycolytic pathway whose main metabolic products were identified as [2-13C]ethanol, [2-13C]succinate and [1,3-13C2]glycerol. These metabolites were excreted by C. fasciculata into the incubation medium, while in the cells [3-13C]phosphoenolpyruvate was also detected in addition to the aforementioned compounds. The C3 acid is apparently the acceptor of the primary CO2 fixation reaction, which leads in Trypanosomatids to the synthesis of succinate. By addition of sodium bicarbonate to the incubation mixture L-[3-13C]malate was detected among the excretion products, while the ethanol:succinate ratio of 2.0 in the absence of bicarbonate changed to a ratio of 0.6 in the presence of the latter. This was due to a shift of the balance between carboxylation of phosphoenolpyruvate, leading to succinate, and pyruvate decarboxylation leading to ethanol. The addition of 25% 2H2O to the incubation mixture led to the formation of [2-13C, 2-2H]ethanol derived from the prior incorporation of 2H+ into pyruvate in the reactions mediated by either pyruvate kinase or malic enzyme. However, no 2H+ incorporation into L-malate was detected, excluding the possibility that the latter was formed by carboxylation of pyruvate, and lending support to the idea that L-malate results from the carboxylation of phosphoenolpyruvate to oxaloacetate by phosphoenolpyruvate carboxykinase. The formation of [2-13C, 2-2H]-succinate under the same conditions reflected the uptake of 2H+ during the reduction of fumarate. When the incubations were carried out in the presence of 100% 2H2O, several [1-13C, 1-2H]ethanol species were detected, as well as [2-13C, 2-2H]malate and [1,3-13C2, 1,3-2H2]glycerol. The former deuterated compounds reflect the existence of NAD2H species when the incubations were carried out in 100% 2H2O, while the incorporation of 2H+ into [1,3-13C2]glycerol must be attributed to the phosphoglucose-isomerase-mediated reaction during glycolysis.  相似文献   

11.
Abstract Serial dilutions of methanogenic sludges in propionate medium gave a methanogenic non-acetoclastic enrichment degrading 1 mol of propionate to 1.6 mol of acetate and 0.17 mol of methane, with a transient accumulation of butyrate. NMR recordings showed the conversion of [2-13C]- and [3-13C]-propionate to [3-13C]- and [4-13C]-butyrate, respectively, thus demonstrating a reductive carboxylation of propionate to butyrate. The labelling found in the accumulated acetate and fermentation balances also suggested that reductive carboxylation was the major pathway involved in propionate conversion to acetate.  相似文献   

12.
Escherichia coli cells containing the biphenyl dioxygenase genes bphA1A2A3A4 from Pseudomonas pseudoalcaligenes KF707 were found to biotransform isoflavone and produced a metabolite that was not found in a control experiment. Liquid chromatography/mass spectrometry (LC/MS) and 1H and 13C nuclear magnetic resonance (NMR) analyses indicated that biphenyl dioxygenase induced 2′,3′-cis-dihydroxylation of the B-ring of isoflavone. In a previous report, the same enzyme showed dioxygenase activity toward flavone, producing flavone 2′,3′-cis-dihydrodiol. Due to growing interest in flavone chemistry and the absolute configuration of natural products, time-dependent density functional theory (TD-DFT) calculations were combined with circular dichroism (CD) spectroscopy to determine the absolute configuration of the isoflavone dihydrodiol. By computational methods, the structure of the isoflavone metabolite was determined to be 3-[(5S,6R)-5,6-dihydroxycyclohexa-1,3-dienyl]-4H-chromen-4-one. This structure was confirmed further by the modified Mosher’s method. The same protocol was applied to the flavone metabolite, and the absolute configuration was determined to be 2-[(5S,6R)-5,6-dihydroxycyclohexa-1,3-dienyl]-4H-chromen-4-one. After determination of the absolute configurations of the biotransformation products, we suggest the binding mode of these substrate analogs to the enzyme active site.  相似文献   

13.
Pyruvate given in large doses may be neuroprotective in stroke, but it is not known to what degree the brain metabolizes pyruvate. Intravenous injection of [3-13C]pyruvate led to dose-dependent labelling of cerebral metabolites so that at 5 min after injection of 18 mmoles [3-13C]pyruvate/kg (2 g sodium pyruvate/kg), approximately 20% of brain glutamate and GABA were labelled, as could be detected by 13C nuclear magnetic resonance spectrometry ex vivo. Pyruvate, 9 mmoles/kg, was equivalent to glucose, 9 mmoles/kg, as a substrate for cerebral tricarboxylic acid (TCA) cycle activity. Inhibition of the glial TCA cycle with fluoroacetate did not affect formation of [4-13C]glutamate or [2-13C]GABA from [3-13C]pyruvate, but reduced formation of [4-13C]glutamine by 50%, indicating predominantly neuronal metabolism of exogenous pyruvate. Extensive formation of [3-13C]lactate from [2-13C]pyruvate demonstrated reversible carboxylation of pyruvate to malate and equilibration with fumarate, presumably in neurones, but anaplerotic formation of TCA cycle intermediates from exogenous pyruvate could not be detected. Too rapid injection of large amounts of pyruvate led to seizure activity, respiratory arrest and death. We conclude that exogenous pyruvate is an excellent energy substrate for neurones in vivo, but that care must be taken to avoid the seizure-inducing effect of pyruvate given in large doses.  相似文献   

14.
Iida K  Kajiwara M 《The FEBS journal》2007,274(19):5090-5095
The metabolic pathways leading from l-[2-13C]aspartic acid, [2-13C]glycine and l-[methyl-13C]methionine to vitamin B12 were investigated, focusing on the biosynthetic pathways leading to the aminopropanol moiety of vitamin B12 and on the role of the Shemin pathway leading to delta-aminolevulinic acid (a biosynthetic intermediate of tetrapyrrole), by means of feeding experiments with Propionibacterium shermanii in combination with 13C-NMR spectroscopy. The 13C-methylene carbons of l-[2-(13)C]aspartic acid, which is transformed to [2-13C]glycine via l-[2-13C]threonine, and [2-13C]glycine added to the culture medium served mainly to enrich the seven methyl carbons of the corrin ring through C-methylation by S-adenosyl-l-[methyl-13C]methionine derived from catabolically generated l-[methyl-13C]methionine in the presence of tetrahydrofolic acid. The results indicate that the catabolism of these amino acids predominates over pathways leading to (2R)-1-amino-2-propanol or delta-aminolevulinic acid in P. shermanii. Feeding of l-[methyl-13C]methionine efficiently enriched all seven methyl carbons. In the cases of [2-13C]glycine and l-[methyl-13C]methionine, the 13C-enrichment ratio of the methyl carbon at C-25 (the site of the first C-methylation) was less than those of the other six methyl carbons, probably due to the influence of endogenous d-glucose in P. shermanii. The almost identical 13C-enrichment ratios of the other six methyl carbons indicated that these C-methylations during vitamin B12 biosynthesis were completed before the amino acids were completely consumed. However, in the case of l-[2-13C]aspartic acid, the 13C-enrichment ratios of five methyl carbons were low and similar, whereas the last two sites of C-methylation (C-53 and C-35) were not labeled, presumably because of complete consumption of the smaller amount of added label. The ratios of 13C-incorporation into the seven methyl carbons are influenced by the conditions of amino acid feeding experiments in a manner that is dependent upon the order of C-methylation in the corrin ring of vitamin B12.  相似文献   

15.
The 13C NMR spectra of the pheophorbide of bacteriochlorophyll c, formed in the presence of L-[1-13C]glutamate and [2-13C]glycine and [13C]bicarbonate in Prosthecochloris aestaurii, were analysed. The isotope in the glutamate was specifically incorporated into the eight carbon atoms in the tetrapyrrole macrocycle derived from the C-5 of 5-aminolevulinic acid, while no specific enrichment of these eight carbon atoms was observed in the spectrum of the pigment formed in the presence of [2-13C]glycine. These labelling patterns provide evidence for the operation of the C5 pathway of 5-aminolevulinic acid synthesis for bacteriochlorophyll c formation in the bacterium. The labelling of bacteriochlorophyll c by [13C]bicarbonate is consistent with its formation from 5-[1,4,5-13C]aminolevulinic acid formed by the C5 pathway from [1,2,5-13C]glutamic acid. It is proposed that this glutamate is the transamination product of 2-[1,2,5-13C]oxoglutaric acid, arising by carboxylation of [1,4-13C]succinyl-CoA with 13CO2 catalysed by 2-oxoglutaric acid synthase activity, and that the labelled succinyl-CoA is, in turn, derived by the fixation of 13CO2 by the reductive tricarboxylic acid cycle. The 13C chemical shifts of two sp2 quaternary carbons of bacteriopheophorbide c methyl ester (C-2 and C-4) were reassigned.  相似文献   

16.
The formation of tyrosine from phenylalanine catalyzed by rat liver phenylalanine hydroxylase is coupled to the generation of a 4a-hydroxy adduct from the requisite tetrahydropterin cofactor. As indicated by its circular dichroism (CD) spectrum, the optical activity of the adduct generated from racemic 6-methyltetrahydropterin requires stereoselectivity of the oxygenation. The absolute configuration of this new stereocenter is 4a(S)-hydroxy-6(RS)-methyltetrahydropterin by analogy to the CD spectrum of one of the four stereoisomers of 5-deaza-4a-hydroxy-6-methyltetrahydropterin. The source of the 4a-hydroxy oxygen is O2, as demonstrated by the observation of a 18O-induced 13C shift in the 13C NMR spectrum of the adduct when generated from [4a-13C]-6-methyltetrahydropterin and 18O2.  相似文献   

17.
Jin DY  Tie JK  Stafford DW 《Biochemistry》2007,46(24):7279-7283
Vitamin K epoxide (or oxido) reductase (VKOR) is the target of warfarin and provides vitamin K hydroquinone for the carboxylation of select glutamic acid residues of the vitamin K-dependent proteins which are important for coagulation, signaling, and bone metabolism. It has been known for at least 20 years that cysteines are required for VKOR function. To investigate their importance, we mutated each of the seven cysteines in VKOR. In addition, we made VKOR with both C43 and C51 mutated to alanine (C43A/C51A), as well as a VKOR with residues C43-C51 deleted. Each mutated enzyme was purified and characterized. We report here that C132 and C135 of the CXXC motif are essential for both the conversion of vitamin K epoxide to vitamin K and the conversion of vitamin K to vitamin K hydroquinone. Surprisingly, conserved cysteines, 43 and 51, appear not to be important for either reaction. For the in vitro reaction driven by dithiothreitol, the 43-51 deletion mutation retained 85% and C43A/C51A 112% of the wild-type activity. The facile purification of the nine different mutations reported here illustrates the ease and reproducibility of VKOR purification by the method reported in our recent publication [Chu, P.-H., Huang, T.-Y., Williams, J., and Stafford, D. W. (2006) Proc. Natl. Acad. Sci. U S A. 103, 19308-19313].  相似文献   

18.
Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture   总被引:5,自引:0,他引:5  
Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture was studied by substrate utilization tests and identification of metabolites by gas chromatography-mass spectrometry. In substrate utilization tests, the culture was able to oxidize naphthalene, 2-methylnaphthalene, 1- and 2-naphthoic acids, phenylacetic acid, benzoic acid, cyclohexanecarboxylic acid, and cyclohex-1-ene-carboxylic acid with sulfate as the electron acceptor. Neither hydroxylated 1- or 2-naphthoic acid derivatives and 1- or 2-naphthol nor the monoaromatic compounds ortho-phthalic acid, 2-carboxy-1-phenylacetic acid, and salicylic acid were utilized by the culture within 100 days. 2-Naphthoic acid accumulated in all naphthalene-grown cultures. Reduced 2-naphthoic acid derivatives could be identified by comparison of mass spectra and coelution with commercial reference compounds such as 1,2,3, 4-tetrahydro-2-naphthoic acid and chemically synthesized decahydro-2-naphthoic acid. 5,6,7,8-Tetrahydro-2-naphthoic acid and octahydro-2-naphthoic acid were tentatively identified by their mass spectra. The metabolites identified suggest a stepwise reduction of the aromatic ring system before ring cleavage. In degradation experiments with [1-(13)C]naphthalene or deuterated D(8)-naphthalene, all metabolites mentioned derived from the introduced labeled naphthalene. When a [(13)C]bicarbonate-buffered growth medium was used in conjunction with unlabeled naphthalene, (13)C incorporation into the carboxylic group of 2-naphthoic acid was shown, indicating that activation of naphthalene by carboxylation was the initial degradation step. No ring fission products were identified.  相似文献   

19.
Six tropane alkaloids were isolated from the Sri Lankan endemic plant Erythroxylum zeylanicum O.E. Schulz (Erythroxylaceae) and structurally elucidated by NMR and MS measurements. Three of them, erythrozeylanines A [1R,3R,5S,6R-6-acetoxy-3-(3',4',5'-trimethoxybenzoyloxy)tropane], B [cis-3 beta-(cinnamoyloxy)tropane], and C [cis-6 beta-acetoxy-3 alpha-(cinnamoyloxy)tropane] are new, whereas the others have already been found in other Erythroxylum species. For the first time, the absolute configuration of a tropane alkaloid (erythrozeylanine A) has been determined by quantum chemical CD calculations.  相似文献   

20.
Summary [U-D]Phenol and [4-D]phenol were used to rule out carboxylation of phenol in the C1-position by a strictly anaerobic, defined mixed culture. By mass spectrometric analysis of deuterated phenol species and of benzoate, which were formed from [U-D]phenol by D/H-exchange or by carboxylation from cell suspensions, it was shown that only one deuterium (D) from the aromatic nucleus was replaced with a least 97% efficiency. This excluded benzoate synthesis by carboxylation in the C1-position of phenol. Finally, carboxylation in the para-position of phenol was demonstrated with [4-D]phenol by gas chromatography/mass spectroscopy of the products. Since direct measurement of phenol carboxylase activity was impossible due to a very active interfering decarboxylase activity, the optimal pH range and ion strength, as well as the requirement of cations in crude cell-free extracts was characterized by means of D/H-exchange from deuterated phenol.Dedicated to Prof. R. S. Wolfe on the occasion of his 70th birthday Offsprint requests to: J. Winter  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号