首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 246 毫秒
1.
Proenzyme maturation is a general mechanism to control the activation of enzymes. Catalytically active members of the A Disintegrin And Metalloprotease (ADAM) family of membrane-anchored metalloproteases are synthesized as proenzymes, in which the latency is maintained by their autoinhibitory pro-domains. A proteolytic processing then transforms the proenzyme into a catalytically active form. The removal of the pro-domain of ADAMs is currently thought to depend on processing at a canonical consensus site for the proprotein convertase Furin (RXXR) between the pro- and the catalytic domain. Here, we demonstrate that this previously described canonical site is a secondary cleavage site to a prerequisite cleavage in a newly characterized upstream PC site embedded within the pro-domain sequence. The novel upstream regulatory site is important for the maturation of several ADAM proenzymes. Mutations in the upstream regulatory site of ADAM17, ADAM10, and ADAM9 do not prevent pro-domain processing between the pro- and metalloprotease domain, but nevertheless, cause significantly reduced catalytic activity. Thus, our results have uncovered a novel functionally relevant PC processing site in the N-terminal part of the pro-domain that is important for the activation of these ADAMs. These results suggest that the novel PC site is part of a general mechanism underlying proenzyme maturation of ADAMs that is independent of processing at the previously identified canonical Furin cleavage site.  相似文献   

2.
ADAM33 (a disintegrin and metalloproteinase) is an asthma susceptibility gene recently identified through a genetic study of asthmatic families (van Eerdewegh et al. (2002) Nature 418, 426-430). In order to characterize the catalytic properties of ADAM33, the metalloproteinase domain of human ADAM33 was expressed in Drosophila S2 cells and purified. The N-terminal sequence of the purified metalloproteinase was exclusively (204)EARR, indicating utilization of one of three furin recognition sites. Of many synthetic peptides tested as potential substrates, four peptides derived from beta-amyloid precursor protein (APP), Kit-ligand-1 (KL-1), tumor necrosis factor-related activation-induced cytokine, and insulin B chain were cleaved by ADAM33; mutation at the catalytic site, E346A, inactivated catalytic activity. Cleavage of APP occurred at His(14)/Gln(15), not at the alpha-secretase site and was inefficient (k(cat)/K(m) (1.6 +/- 0.3) x 10(2) m(-1) s(-1)). Cleavage of a juxtamembrane KL-1 peptide occurred at a site used physiologically with a similar efficiency. Mutagenesis of KL-1 peptide substrate indicated that the P3, P2, P1, and P3' residues were critical for activity. In a transfected cell-based sheddase assay, ADAM33 functioned as a negative regulator of APP shedding and mediated some constitutive shedding of KL-1, which was not regulated by phorbol 12-myristate 13-acetate activation. ADAM33 activity was sensitive to several hydroxamate inhibitors (IK682, K(i) = 23 +/- 7 nm) and to tissue inhibitors of metalloproteinase (TIMPs). Activity was inhibited moderately by TIMP-3 and TIMP-4 and weakly inhibited by TIMP-2 but not by TIMP-1, a profile distinct from other ADAMs. The identification of ADAM33 peptide substrates, cellular activity, and a distinct inhibitor profile provide the basis for further functional studies of ADAM33.  相似文献   

3.
Human ADAM33 is a multiple-domain, type-I transmembrane zinc metalloprotease recently implicated in asthma susceptibility [Nature 418 (2002) 426]. To provide an active protease for functional studies, expression of a recombinant ADAM33 zymogen (pro-catalytic domains, pro-CAT) was attempted in several insect cells. The pro-CAT was cloned into baculovirus under the regulation of the polyhedron promoter and using either the honeybee mellitin or ADAM33 signal sequence. Sf9 or Hi5 cells infected with these recombinant viruses expressed the majority of the protein unprocessed and as inclusion bodies ( approximately 10 mg/L). On the other hand, similar constructs could be expressed, processed, and secreted by Drosophila S2 cells using a variety of constitutive (actin, pAc5.1) or inducible (metallothionein, PMT) promoters and leader sequences (e.g., native and BiP). Higher expression level of 10-fold was observed for the inducible system resulting in an average yield of 20 mg/L after purification. The majority of the catalytic domain purified from the Drosophila conditioned media remained associated with the pro-domain after several chromatography steps. An induction cocktail containing cadmium chloride and zinc chloride was subsequently developed for the PMT system as an alternative to using cupric sulfate or cadmium chloride as single inducers. The novel induction cocktail resulted in an increased ratio of secreted catalytic to pro-domain, and yielded milligram amounts of highly purified protease. The availability of this modified expression system facilitated purification of the wild type and several glycosylation mutants, one of which (N231Q) crystallized recently for X-ray structure determination [J. Mol. Biol. 335 (2003) 129].  相似文献   

4.
ADAM family proteins are type I transmembrane, zinc-dependent metalloproteases. This family has multiple conserved domains, including a signal peptide, a pro-domain, a metalloprotease domain, a disintegrin (DI) domain, a cysteine-rich (Cys) domain, an EGF-like domain, a transmembrane domain, and a cytoplasmic domain. The Cys and DI domains may play active roles in regulating proteolytic activity or substrate specificity. ADAM19 has an autolytic processing activity within its Cys domain, and the processing is necessary for its proteolytic activity. To identify a new physiological function of ADAM19, we screened for associating proteins by using the extracellular domain of ADAM19 in a yeast two-hybrid system. Cysteine-rich protein 2 (CRIP2) showed an association with ADAM19 through its DI and Cys domains. Sequence analysis revealed that CRIP2 is a secretable protein without a classical signal. CRIP2 secretion was increased by overexpression of ADAM19 and decreased by suppression of ADAM19 expression. Moreover, CRIP2 secretion increased in parallel with the autolytic processing of ADAM19 stimulated by lipopolysaccharide. These findings suggest that ADAM19 autolysis is activated by lipopolysaccharide and that ADAM19 promotes the secretion of CRIP2.  相似文献   

5.
Toxoplasma gondii utilizes specialized secretory organelles called rhoptries to invade and hijack its host cell. Many rhoptry proteins are proteolytically processed at a highly conserved SΦXE site to remove organellar targeting sequences that may also affect protein activity. We have studied the trafficking and biogenesis of a secreted rhoptry metalloprotease with homology to insulysin that we named toxolysin-1 (TLN1). Through genetic ablation and molecular dissection of TLN1, we have identified the smallest rhoptry targeting domain yet reported and expanded the consensus sequence of the rhoptry pro-domain cleavage site. In addition to removal of its pro-domain, TLN1 undergoes a C-terminal cleavage event that occurs at a processing site not previously seen in Toxoplasma rhoptry proteins. While pro-domain cleavage occurs in the nascent rhoptries, processing of the C-terminal region precedes commitment to rhoptry targeting, suggesting that it is mediated by a different maturase, and we have identified residues critical for proteolysis. We have additionally shown that both pieces of TLN1 associate in a detergent-resistant complex, formation of which is necessary for trafficking of the C-terminal portion to the rhoptries. Together, these studies reveal novel processing and trafficking events that are present in the protein constituents of this unusual secretory organelle.  相似文献   

6.
Adam33 is a putative asthma susceptibility gene encoding for a membrane-anchored metalloprotease belonging to the ADAM family. The ADAMs (a disintegrin and metalloprotease) are a family of glycoproteins implicated in cell-cell interactions, cell fusion, and cell signaling. We have determined the crystal structure of the Adam33 catalytic domain in complex with the inhibitor marimastat and the inhibitor-free form. The structures reveal the polypeptide fold and active site environment resembling that of other metalloproteases. The substrate-binding site contains unique features that allow the structure-based design of specific inhibitors of this enzyme.  相似文献   

7.
8.
Membrane type 4 matrix metalloproteinase (MT4-MMP) shows the least sequence homology to the other MT-MMPs, suggesting a distinct function for this protein. We have isolated a complete cDNA corresponding to the mouse homologue which includes the signal peptide and a complete pro-domain, features that were lacking from the human form originally isolated. Mouse MT4-MMP (mMT4-MMP) expressed in COS-7 cells is located at the cell surface but does not show ability to activate pro-MMP2. The pro-catalytic domain was expressed in Escherichia coli as insoluble inclusions and active enzyme recovered after refolding. Activity of the isolated catalytic domain against synthetic peptides commonly used for MMP enzyme assays could be inhibited by TIMP1, -2, and -3. The recombinant mMT4-MMP catalytic domain was also unable to activate pro-MMP2 and was very poor at hydrolyzing components of the extracellular matrix with the exception of fibrinogen and fibrin. mMT4-MMP was able to hydrolyze efficiently a peptide consisting of the pro-tumor necrosis factor alpha (TNFalpha) cleavage site, a glutathione S-transferase-pro-TNFalpha fusion protein, and was found to shed pro-TNFalpha when co-transfected in COS-7 cells. MT4-MMP was detected by Western blot in monocyte/macrophage cell lines which in combination with its fibrinolytic and TNFalpha-converting activity suggests a role in inflammation.  相似文献   

9.
ADAM13 is a member of the disintegrin and metalloprotease protein family that is expressed on cranial neural crest cells surface and is essential for their migration. ADAM13 is an active protease that can cleave fibronectin in vitro and remodel a fibronectin substrate in vivo. Using a recombinant secreted protein containing both disintegrin and cysteine-rich domains of ADAM13, we show that this "adhesive" region of the protein binds directly to fibronectin. Fibronectin fusion proteins corresponding to the various functional domains were used to define the second heparin-binding domain as the ADAM13 binding site. Mutation of the syndecan-binding site (PPRR --> PPTM) within this domain abolishes binding of the recombinant disintegrin and cysteine-rich domains of ADAM13. We further show that the adhesive disintegrin and cysteine-rich domain of ADAM13 can promote cell adhesion via beta(1) integrins. This adhesion requires integrin activation and can be prevented by antibodies to the cysteine-rich domain of ADAM13 and beta(1) integrin. Finally, wild type, but not the E/A mutant of ADAM13 metalloprotease domain, can be shed from the cell surface, releasing the metalloprotease domain associated with the disintegrin and cysteine-rich domains. This suggests that ADAM13 shedding may involve its own metalloprotease activity and that the released protease may interact with both integrins and extracellular matrix proteins.  相似文献   

10.
Stautz D  Wewer UM  Kveiborg M 《PloS one》2012,7(5):e37628
A recently identified breast cancer-associated mutation in the metalloprotease ADAM12 alters a potential dileucine trafficking signal, which could affect protein processing and cellular localization. ADAM12 belongs to the group of A Disintegrin And Metalloproteases (ADAMs), which are typically membrane-associated proteins involved in ectodomain shedding, cell-adhesion, and signaling. ADAM12 as well as several members of the ADAM family are over-expressed in various cancers, correlating with disease stage. Three breast cancer-associated somatic mutations were previously identified in ADAM12, and two of these, one in the metalloprotease domain and another in the disintegrin domain, were investigated and found to result in protein misfolding, retention in the secretory pathway, and failure of zymogen maturation. The third mutation, p.L792F in the ADAM12 cytoplasmic tail, was not investigated, but is potentially significant given its location within a di-leucine motif, which is recognized as a potential cellular trafficking signal. The present study was motivated both by the potential relevance of this documented mutation to cancer, as well as for determining the role of the di-leucine motif in ADAM12 trafficking. Expression of ADAM12 p.L792F in mammalian cells demonstrated quantitatively similar expression levels and zymogen maturation as wild-type (WT) ADAM12, as well as comparable cellular localizations. A cell surface biotinylation assay demonstrated that cell surface levels of ADAM12 WT and ADAM12 p.L792F were similar and that internalization of the mutant occurred at the same rate and extent as for ADAM12 WT. Moreover, functional analysis revealed no differences in cell proliferation or ectodomain shedding of epidermal growth factor (EGF), a known ADAM12 substrate between WT and mutant ADAM12. These data suggest that the ADAM12 p.L792F mutation is unlikely to be a driver (cancer causing)-mutation in breast cancer.  相似文献   

11.
We investigated the regulation of the proteolytic activity of human adamalysin 19 (a disintegrin and metalloproteinase 19, hADAM19). It was processed at Glu(586)(P1)-Ser(587)(P1') site in the cysteine-rich domain as shown by protein N-terminal sequencing. This truncation was autolytic as illustrated by its R199A/R200A or E346A mutation that prevented the zymogen activation by furin or abolished the catalytic activity. Reagents that block furin-mediated activation of pro-hADAM19, decRVKR-CMK, and brefeldin A abrogated this processing. The sizes of the side chains of the P1 and P1' residues are critical for the processing of hADAM19. The amount of processing product in the E586Q or S587A mutant with a side chain almost the same size as that in the wild type was almost equal. Conversely, very little processing was observed when the size of the side chain was changed significantly, such as in the E586A, E586G, or S587F mutants. Two mutants with presumably subtle structural distinctions from wild type hADAM19, E586D and S587T, displayed rare or little processing and had very low capacities to cleave alpha2-macroglobulin and a peptide substrate. Therefore, this processing is necessary for hADAM19 to exert its proteolytic activities. Moreover, a new peptide substrate, Ac-RPLE-SNAV, which is identical to the processing site sequence, was cleaved at the E-S bond by soluble hADAM19 containing the catalytic and disintegrin domains. This enzyme cleaved the substrate with K(m), k(cat), and k(cat)/K(m) of 2.0 mm, 2.4/min, and 1200 m(-1) min(-1), respectively, using a fluorescamine assay. Preliminary studies showed that a protein kinase C activator, phorbol 12-myristate 13-acetate, promoted the cellular processing of hADAM19; however, three calmodulin antagonists, trifluoperazine, W7, and calmidazolium, impaired this cleavage, indicating complex signal pathways may be involved in the processing.  相似文献   

12.
Delta-like 1 (Dll1) is a mammalian ligand for Notch receptors. Interactions between Dll1 and Notch in trans activate the Notch pathway, whereas Dll1 binding to Notch in cis inhibits Notch signaling. Dll1 undergoes proteolytic processing in its extracellular domain by ADAM10. In this work we demonstrate that Dll1 represents a substrate for several other members of the ADAM family. In co-transfected cells, Dll1 is constitutively cleaved by ADAM12, and the N-terminal fragment of Dll1 is released to medium. ADAM12-mediated cleavage of Dll1 is cell density-dependent, takes place in cis orientation, and does not require the presence of the cytoplasmic domain of ADAM12. Full-length Dll1, but not its N- or C-terminal proteolytic fragment, co-immunoprecipitates with ADAM12. By using a Notch reporter construct, we show that Dll1 processing by ADAM12 increases Notch signaling in a cell-autonomous manner. Furthermore, ADAM9 and ADAM17 have the ability to process Dll1. In contrast, ADAM15 does not cleave Dll1, although the two proteins still co-immunoprecipitate with each other. Asn-353 present in the catalytic motif of ADAM12 and other Dll1-processing ADAMs, but absent in ADAM15, is necessary for Dll1 cleavage. Dll1 cleavage is reduced in ADAM9/12/15(-/-) mouse embryonic fibroblasts (MEFs), suggesting that the endogenous ADAM9 and/or ADAM12 present in wild type MEFs contribute to Dll1 processing. Finally, the endogenous Dll1 present in primary mouse myoblasts undergoes cleavage in confluent, differentiating myoblast cultures, and this cleavage is decreased by ADAM12 small interfering RNAs. Our findings expand the role of ADAM proteins in the regulation of Notch signaling.  相似文献   

13.
Recently, a novel gene was reported to underlie asthma. Linkage to the short arm of chromosome 20 in a genome screen was followed by positive tests of association that centre on the gene for a membrane-anchored zinc-dependent metalloproteinase known as ADAM33. The domain structure of the ADAM33 protein gives capabilities of proteolysis, adhesion, cell fusion and intracellular signalling. Although its function is at present unknown, these potential actions of ADAM33 provide many possibilities for further research.  相似文献   

14.
Metalloproteinase-disintegrins (ADAMs) are membrane-spanning multi-domain proteins containing a zinc metalloproteinase domain and a disintegrin domain which may serve as an integrin ligand. Based on a conserved sequence within the disintegrin domain, GE(E/Q)CDCG, seven genes were isolated from a human genomic library. Two of these genes lack introns and show testis-specific expression (ADAM20 and ADAM21), while the other two genes contain introns (ADAM22 and ADAM23) and are expressed predominantly in the brain. In addition, three pseudogenes were isolated; one of which evolved from ADAM21. Human chromosomal mapping indicated that ADAM22 and ADAM23 mapped to chromosome 7q21 and 2q33, respectively, while the three pseudogenes 1-2, 3-3, and 1-32 mapped to chromosome 14q24.1, 8p23, and 14q24.1, respectively. An ancestral analysis of all known ADAMs indicates that the zinc-binding motif in the catalytic domain arose once in a common ancestor and was lost by those members lacking this motif.  相似文献   

15.
DNase colicins E2 and E7, both of which appropriate the BtuB/Tol translocation machinery to cross the outer membrane, undergo a processing step as they enter the cytoplasm. This endoproteolytic cleavage is essential for their killing action. A processed form of the same size, 18.5 kDa, which corresponds to the C-terminal catalytic domain, was detected in the cytoplasm of bacteria treated with either of the two DNase colicins. The inner-membrane protease FtsH is necessary for the processing that allows the translocation of the colicin DNase domain into the cytoplasm. The processing occurs near residue D420, at the same position as the FtsH-dependent cleavage in RNase colicins E3 and D. The cleavage site is located 30 amino acids upstream of the DNase domain. In contrast, the previously reported periplasm-dependent colicin cleavage, located at R452 in colicin E2, was shown to be generated by the outer-membrane protease OmpT and we show that this cleavage is not physiologically relevant for colicin import. Residue R452, whose mutated derivatives led to toxicity defect, was shown to have no role in colicin processing and translocation, but it plays a key role in the catalytic activity, as previously reported for other DNase colicins. Membrane associated forms of colicins E2 and E7 were detected on target cells as proteinase K resistant peptides, which include both the receptor-binding and DNase domains. A similar, but much less proteinase K-resistant form was also detected with RNase colicin E3. These colicin forms are not relevant for colicin import, but their detection on the cell surface indicates that whole nuclease-colicin molecules are found in a stable association with the outer-membrane receptor BtuB of the target cells.  相似文献   

16.
Catalytic activity of ADAM28   总被引:9,自引:0,他引:9  
ADAMs are membrane-anchored glycoproteins containing a disintegrin and metalloprotease domain that have important roles in fertilization, development, and diseases such as Alzheimer's dementia. Here we present the first evidence for catalytic activity of ADAM28, a protein that is highly expressed in the epididymis and lymphocytes. Recombinant ADAM28 cleaves myelin basic protein at two sites. The catalytic activity of ADAM28 is not sensitive to tissue inhibitors of metalloproteases 1 and 2, but can be abolished by a mutation in the catalytic site. Catalytically active ADAM28 will be valuable for further studies of its role in sperm maturation and lymphocyte function.  相似文献   

17.
ADAMTS1 is a secreted protein that belongs to the recently described ADAMTS (a disintegrin and metalloprotease with thrombospondin repeats) family of proteases. Evaluation of ADAMTS1 catalytic activity on a panel of extracellular matrix proteins showed a restrictive substrate specificity which includes some proteoglycans. Our results demonstrated that human ADAMTS1 cleaves aggrecan at a previously shown site by its mouse homolog, but we have also identified additional cleavage sites that ultimately confirm the classification of this protease as an 'aggrecanase'. Specificity of ADAMTS1 activity was further verified when a point mutation in the zinc-binding domain abolished its catalytic effects, and latency conferred by the prodomain was also demonstrated using a furin cleavage site mutant. Suppression of ADAMTS1 activity was accomplished with a specific monoclonal antibody and some metalloprotease inhibitors, including tissue inhibitor of metalloproteinases 2 and 3. Finally, we developed an activity assay using an artificial peptide substrate based on the interglobular domain cleavage site (E(373)-A) of rat aggrecan.  相似文献   

18.
T J Chambers  A Grakoui    C M Rice 《Journal of virology》1991,65(11):6042-6050
The vaccinia virus-T7 transient expression system was used to further examine the role of the NS3 proteinase in processing of the yellow fever (YF) virus nonstructural polyprotein in BHK cells. YF virus-specific polyproteins and cleavage products were identified by immunoprecipitation with region-specific antisera, by size, and by comparison with authentic YF virus polypeptides. A YF virus polyprotein initiating with a signal sequence derived from the E protein fused to the N terminus of NS2A and extending through the N-terminal 356 amino acids of NS5 exhibited processing at the 2A-2B, 2B-3, 3-4A, 4A-4B, and 4B-5 cleavage sites. Similar results were obtained with polyproteins whose N termini began within NS2A (position 110) or with NS2B. When the NS3 proteinase domain was inactivated by replacing the proposed catalytic Ser-138 with Ala, processing at all sites was abolished. The results suggest that an active NS3 proteinase domain is necessary for cleavage at the diabasic nonstructural cleavage sites and that cleavage at the proposed 4A-4B signalase site requires prior cleavage at the 4B-5 site. Cleavages were not observed with a polyprotein whose N terminus began with NS3, but cleavage at the 4B-5 site could be restored by supplying the the NS2B protein in trans. Several experimental results suggested that trans cleavage at the 4B-5 site requires association of NS2B and the NS3 proteinase domain. Coexpression of different proteinases and catalytically inactive polyprotein substrates revealed that trans cleavage at the 2B-3 and 4B-5 sites was relatively efficient when compared with trans cleavage at the 2A-2B and 3-4A sites.  相似文献   

19.
Zou J  Zhang R  Zhu F  Liu J  Madison V  Umland SP 《Biochemistry》2005,44(11):4247-4256
ADAM33 is an asthma susceptibility gene recently identified through a genetic study of asthmatic families [van Eerdewegh, et al. (2002) Nature 418, 426-430]. To understand the function of the gene product, the recombinant metalloproteinase domain of human ADAM33 was purified and tested for its substrate cleavage specificity using peptides derived from beta-amyloid precursor protein (APP). A single Ala substitution at the P2 position of a 10-residue APP peptide, YEVHHQKLVF, yielded a 20-fold more efficient substrate. Terminal truncation studies identified a minimal nine-residue core (P5-P4') important for ADAM33 recognition and cleavage. Full positional scanning of the 10-mer peptide using the 19 naturally occurring l-amino acids (excluding Cys) revealed a substrate specificity profile. A strong preference for Val or Ile at P3, Ala at P2, and Gln at P1' was observed. The substrate binding model based on the X-ray structure of the ADAM33-inhibitor complex supported the observed substrate specificity profile. On the basis of this, an improved substrate was designed and a fluorescence resonance energy transfer (FRET) assay was developed using a fluorogenic derivative of this substrate. Kinetic studies confirmed that the best substrate, FRET-P2 [K(Dabcyl)YRVAFQKLAE(Edans)K], was approximately 100-fold more efficient than the wild-type APP peptide substrate, with a k(cat)/K(m) value of (3.6 +/- 0.1) x 10(4) s(-)(1) M(-)(1). Using this substrate and the FRET assay, ADAM33 enzyme activity and thermal stability were characterized. ADAM33 dependence on buffer conditions, detergents, and temperature was examined, and optimal conditions were defined. Accurate K(i) values for tissue inhibitors of metalloproteinase and small molecule compounds were obtained.  相似文献   

20.
The ADAM (a disintegrin and metalloprotease) family consists of multidomain cell-surface proteins that have a major impact on cell behavior. These transmembrane-anchored proteins are synthesized as proforms that have (from the N terminus): a prodomain; a metalloprotease-, disintegrin-like-, cysteine-rich, epidermal growth factor-like, and transmembrane domain; and a cytoplasmic tail. The 90-kDa mature form of human ADAM12 is generated in the trans-Golgi through cleavage of the prodomain by a furin-peptidase and is stored intracellularly until translocation to the cell surface as a constitutively active protein. However, little is known about the regulation of ADAM12 cell-surface translocation. Here, we used human RD rhabdomyosarcoma cells, which express ADAM12 at the cell surface, in a temporal pattern. We report that protein kinase C (PKC) epsilon induces ADAM12 translocation to the cell surface and that catalytic activity of PKCepsilon is required for this translocation. The following results support this conclusion: 1) treatment of cells with 0.1 microM phorbol 12-myristate 13-acetate (PMA) enhanced ADAM12 cell-surface immunostaining, 2) ADAM12 and PKCepsilon could be co-immunoprecipitated from membrane-enriched fractions of PMA-treated cells, 3) RD cells transfected with EGFP-tagged, myristoylated PKCepsilon expressed more ADAM12 at the cell surface than did non-transfected cells, and 4) RD cells transfected with a kinase-inactive PKCepsilon mutant did not exhibit ADAM12 cell-surface translocation upon PMA treatment. Finally, we demonstrate that the C1 and C2 domains of PKCepsilon both contain a binding site for ADAM12. These studies show that PKCepsilon plays a critical role in the regulation of ADAM12 cell-surface expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号