首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pharyngeal jaw of cichlids may represent a key innovation that facilitated their unparalleled trophic divergence. In cichlids, 'fusion' of the lower pharyngeal jaw (LPJ) results from suturing between the two lower ceratobranchials. To examine, what novel abilities a more extensively fused pharyngeal jaw may confer, the function of LPJ suturing was examined in Heroine cichlids. Greater LPJ suturing, pharyngeal jaw splitting under compression and the forces used to crush molluscs in the wild suggest increased LPJ fusion in the trophically polymorphic Herichthys minckleyi operates to strengthen the pharyngeal jaw. Among Heroine cichlid species, the presence of an external LPJ suture and feeding specialization on molluscs was evolutionarily quite variable, but greater LPJ fusion estimated from the amount of external suturing was highly correlated with molluscivory. Throughout cichlid diversification, increased pharyngeal jaw fusion via suturing has likely helped to reinforce the LPJ during pharyngeal processing thereby facilitating the ability of cichlids to exploit durable prey.  相似文献   

2.
Most contemporary studies of adaptive radiation focus on relatively recent and geographically restricted clades. It is less clear whether diversification of ancient clades spanning entire continents is consistent with adaptive radiation. We used novel fossil calibrations to generate a chronogram of Neotropical cichlid fishes and to test whether patterns of lineage and morphological diversification are congruent with hypothesized adaptive radiations in South and Central America. We found that diversification in the Neotropical cichlid clade and the highly diverse tribe Geophagini was consistent with diversity‐dependent, early bursts of divergence followed by decreased rates of lineage accumulation. South American Geophagini underwent early rapid differentiation in body shape, expanding into novel morphological space characterized by elongate‐bodied predators. Divergence in head shape attributes associated with trophic specialization evolved under strong adaptive constraints in all Neotropical cichlid clades. The South American Cichlasomatini followed patterns consistent with constant rates of morphological divergence. Although morphological diversification in South American Heroini was limited, Eocene invasion of Central American habitats was followed by convergent diversification mirroring variation observed in Geophagini. Diversification in Neotropical cichlids was influenced by the early adaptive radiation of Geophagini, which potentially limited differentiation in other cichlid clades.  相似文献   

3.
The extent to which elements of functional systems can change independently (modularity) likely influences the diversification of lineages. Major innovations in organismal design, like the pharyngeal jaw in cichlid fishes, may be key to a group's success when they relax constraints on diversification by increasing phenotypic modularity. In cichlid fishes, pharyngeal jaw modifications that enhanced the ability to breakdown prey may have freed their oral jaws from serving their ancestral dual role as a site of both prey capture and prey processing. This functional decoupling that allowed the oral jaws to become devoted solely to prey capture has been hypothesized to have permitted the two sets of cichlid jaws to evolve independently. We tested the hypothesis that oral and pharyngeal jaw mechanics are evolutionarily decoupled both within and among Neotropical Heroine cichlids. In the trophically polymorphic species Herichthys minckleyi, molariforms that exhibit enlarged molarlike pharyngeal jaw teeth were found to have approximately 400% greater lower jaw mass compared to H. minckleyi with the alternative papilliform pharyngeal morphology. However, oral jaw gape, lower jaw velocity ratios, anterior jaw linkage mechanics, and jaw protrusion did not differ between the morphotypes. In 40 other Heroine species, there was a weak correlation between oral jaw mechanics and pharyngeal jaw mass when phylogenetic history was ignored. Yet, after expansion of the cytochrome b phylogeny for Heroines, change in oral jaw mechanics was found to be independent of evolutionary change in pharyngeal jaw mass based on independent contrasts. Evolutionary decoupling of oral and pharyngeal jaw mechanics has likely played a critical role in the unparalleled trophic diversification of cichlid fishes.  相似文献   

4.

Background  

Cichlid fishes are classic examples of adaptive radiation because of their putative tendency to explosively diversify after invading novel environments. To examine whether ecological opportunity increased diversification (speciation minus extinction) early in a species-rich cichlid radiation, we determined if Heroine cichlids experienced a burst of diversification following their invasion of Central America.  相似文献   

5.
Family level molecular phylogenetic analyses of cichlid fishes have generally suffered from a limited number of characters and/or poor taxonomic sampling across one or more major geographic assemblage, and therefore have not provided a robust test of early intrafamilial diversification. Herein we use both nuclear and mitochondrial nucleotide characters and direct optimization to reconstruct a phylogeny for cichlid fishes. Representatives of major cichlid lineages across all geographic assemblages are included, as well as nearly twice the number of characters as any prior family‐level study. In a strict consensus of 81 equally most‐parsimonious hypotheses, based on the simultaneous analysis of 2222 aligned nucleotide characters from two mitochondrial and two nuclear genes, four major subfamilial lineages are recovered with strong support. Etroplinae, endemic to Madagascar (Paretroplus) and southern Asia (Etroplus), is recovered as the sister taxon to the remainder of Cichlidae. Although the South Asian cichlids are monophyletic, the Malagasy plus South Asian lineages are not. The remaining Malagasy lineage, Ptychochrominae, is monophyletic and is recovered as the sister group to a clade comprising the African and Neotropical cichlids. The African (Pseudocrenilabrinae) and Neotropical (Cichlinae) lineages are each monophyletic in this reconstruction. The use of multiple molecular markers, from both mitochondrial and nuclear genes, results in a phylogeny that in general exhibits strong support, notably for early diversification events within Cichlidae. Results further indicate that Labroidei is not monophyletic, and that the sister group to Cichlidae may comprise a large and diverse assemblage of percomorph lineages. This hypothesis may at least partly explain why morphological studies that have attempted to place Cichlidae within Percomorpha, or that have tested cichlid monophyly using only “labroid” lineages, have met with only limited success. © The Willi Hennig Society 2004.  相似文献   

6.
Heroini constitute the second largest tribe of Neotropical cichlids and show their greatest diversity in Mesoamerica. Although heroine species are morphologically and ecologically very diverse, they were all historically assigned to one single genus, Cichlasoma that was never formally revised from a phylogenetic point of view. Here, we present the most comprehensive molecular phylogeny of the tribe Heroini to date, based on the complete DNA sequence of the mitochondrial gene cytochrome b, and the analysis of 204 individuals representing 91 species. Phylogenetic analyses did not support the monophyly of heroines because the genus Pterophyllum was placed as the sister group of all remaining heroines plus cichlasomatines. However, the recovered relative position of Pterophyllum was without strong statistical support. Within the remaining heroines, Hyspelecara and Hoplarchus are recovered with low support in a basal position with respect to a clade that includes Heros, Uaru, Mesonauta, and Symphysodon, and the circumamazonian (CAM) heroines. The first clade is restricted to South America. The largest clade of heroines, the CAM heroines, include more than 85% of the species within the tribe. This clade is mostly Mesoamerican, but also contains four species found in the Greater Antilles (Nandopsis), and three genera found in South America (the 'Heros' festae group, Australoheros, and Caquetaia). Up to eight major lineages can be recovered within the CAM heroines, but the phylogenetic relationships among them remain unresolved. Two large suprageneric groups can be distinguished, the amphilophines and the herichthyines. The amphilophines include Amphilophus, Archocentrus, Hypsophrys, Neetroplus, Parachromis, Petenia, and five additional unnamed genera (the 'Heros' istlanus group, the 'Amphilophus' calobrensis group, the 'Heros' urophthalmus group, the 'Heros' wesseli group, and the 'Heros' sieboldii group). The herichthyines include the crown-group herichthyines (Herichthys, Theraps, Vieja, and Paratheraps) and the genera Tomocichla, Herotilapia, and Thorichthys, together with three unnamed genera (the 'Heros' umbriferus group, the 'Heros' grammodes group, and the 'Heros' salvini group). Amphilophines are prevalent in southern Mesomerica south of the Motagua fault. Herichthyines have basal linages in Central America, whereas crown-group herichthyines and three related genera are found north from the Motagua fault. At least two independent origins are required to explain current Mesoamerican heroine distribution. Dispersal of heroines from South America into Mesoamerica was dated between 24 and 16 million years ago (MYA) based on geological calibrations and on standard fish mitochondrial cytochrome b rates, respectively. These datings cannot be reconciled with currently known geological evidence, and the existence of a connection between Central America and South America in the Miocene needs to be postulated in order to explain the origins of Mesoamerican heroine lineages. However, our datings agree with those estimated for the dispersal of other secondary freshwater fishes (Rivulidae, Synbranchus) into Mesoamerica, and predate the invasion of primary freshwater fishes by at least 10 myr.  相似文献   

7.
Heroine cichlids are major components of the fish faunas in both Central America and the Caribbean. To examine the evolutionary patterns of how cichlids colonized both of these regions, we reconstructed the phylogenetic relationships among 23 cichlid lineages. We used three phylogenetically novel nuclear markers (Dystropin b, Myomesin1, and Wnt7b) in combination with sequence data from seven other gene regions (Nd2, Rag1, Enc1, Sreb2, Ptr, Plagl2, and Zic1) to elucidate the species tree of these cichlids. The species examined represent major heroine lineages in South America, Central America, and the Greater Antilles. The individual gene trees of these groups were topologically quite discordant. Therefore, we combined the genetic partitions and inferred the species tree using both concatenation and a coalescent-based Bayesian method. The two resulting phylogenetic topologies were largely concordant but differed in two fundamental ways. First, more nodes in the concatenated tree were supported with substantial or 100% Bayesian posterior support than in the coalescent-based tree. Second, there was a minor, but biogeographically critical, topological difference between the concatenated and coalescent-based trees. Nevertheless, both analyses recovered topologies consistent with the Greater Antillean heroines being phylogenetically nested within the largely Central American heroine radiation. This study suggests that reconstructions of cichlid phylogeny and historical biogeography should account for the vagaries of individual gene histories.  相似文献   

8.
The ability of Perciform fishes to protrude their jaw has likely been critical to the trophic diversification of this group, which includes approximately 20% of all vertebrates. The length of the ascending process of the premaxilla is thought to influence the maximum extent that cichlids and other Perciforms protrude their oral jaw. Using a combination of morphometrics, kinematics, and new phylogenetic hypotheses for 20 Heroine cichlid species, we tested the evolutionary relationship between the length of the premaxillary ascending process and maximum jaw protrusion. In this clade, the length of the ascending process of the premaxilla ranged from 11.6–32.7% with respect to standard length whereas maximum jaw protrusion ranged from 3.5–23.4% with respect to standard length. The evolutionary relationships among the Heroine cichlids obtained from the genetic partitions cytochrome b, S7, and RAG1 showed limited concordance. However, correlations between the length of the ascending process and maximum jaw protrusion were highly significant when examined as independent contrasts using all three topologies. Evolutionary change in the length of the ascending process of the premaxilla is likely critical for determining the amount of jaw protrusion in Perciform groups such as cichlid fishes. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 619–629.  相似文献   

9.
Swamp eels of the genera Synbranchus and Ophisternon are secondary freshwater fishes whose biogeography provides evidence of their long residence in Mesoamerica, while their impoverished species-level taxonomy might suggest a more recent diversification or a conservative morphology. We have inferred the phylogenetic relationships of Synbranchus marmoratus and Ophisternon aenigmaticum from 45 drainages throughout South, Central America, and Cuba based on mitochondrial genes (cytochrome b and ATPase 8/6). Phylogeographic analysis supported the monophyly of Mesoamerican O. aenigmaticum although our results suggest that S. marmoratus is not a monophyletic group. We found a evolutionary differentiated Synbranchus mtDNA lineage inhabiting Las Perlas islands (Pacific Panama) that appeared to be taxonomically distinct and separated for a long period of time from the main Synbranchus clade. Major synbranchid clades were also corroborated with the nuclear RAG-1 gene (1171-bp). Application of two fish-based mtDNA clocks (1.05-1.3% pairwise divergence/million year (Ma)), is in accordance with the Gondwanian origin suggested for the Synbranchidae. The mtDNA lineages exhibited a remarkable geographic structure in Central America suggesting that vicariance has most likely promoted the Synbranchus and Ophisternon mtDNA diversification. Although our data indicate the importance of the Pacific area in Synbranchus differentiation, the mtDNA divergence between South and Central American Synbranchus is too small to support Cretaceous colonization via the proto-Antillean bridge suggested by Rosen [Syst. Zool. 24 (1976) 431]. Instead, our phylogeographic results suggest that Ophisternon and Synbranchus mtDNA clades most likely colonized Central America during the Miocene (12.7-23Ma) prior the final closure of the Isthmus of Panama (3.3Ma).  相似文献   

10.
Morphological convergence provides strong evidence that evolution is adaptive. However, putatively convergent morphology is often examined in two dimensions with no explicit model of function. In this study, we investigated structural and mechanical similarities of the lower pharyngeal jaw (LPJ) in cichlid fish that have evolved the ability to crush hard-shelled molluscs. Using a novel phylogeny, we demonstrated molluscivory has been gained and/or been lost numerous times in Heroine cichlids. Within this comparative framework, we produced three-dimensional computed tomography (CT) scans for LPJs of both morphotypes in the trophically polymorphic Herichthys minckleyi and six evolutionarily independent pairs of closely related species. Like H. minckleyi , these species exhibit divergence between a molluscivore and a nonmolluscivore. Using the CT scans, we generated finite element models of papilliform H. minckleyi LPJs to determine where stress would concentrate in a jaw not modified to crush molluscs. Then, we examined whether stress in the papilliform LPJ predicted structural modifications in molariform H. minckleyi and other molluscivorous species. Despite potential constraints, stresses imposed during prey processing explain 40% of LPJ variation in mollusc crushing species. The structural and mechanical analyses also suggest divergence found in polymorphic species could provide the substrate for trophic differences found in reproductively isolated cichlids.  相似文献   

11.
Phylogenetic relationships among cichlasomatine cichlids were studied using an extensive taxon sampling and both morphological and molecular data sets. A new genus, Andinoacara n. gen. with six species ( A. pulcher-rivulatus group of previous authors) from trans-andean South America and NW cis-andean South America, is described based on results of phylogenetic and diagnosability analyses and tests of alternative topologies Our results demonstrate that cichlasomatine cichlid diversity is divided into five principal lineages composed of eleven genera and three suprageneric clades: the [( Bujurquina , Tahuantinsuyoa ), ( Andinoacara ) (BAT) clade; the ( Cleithracara , ( Nannacara , Ivanacara )] clade (NIC) plus Laetacara and 'Aequidens' hoehnei ; and the ( Aequidens , Cichlasoma ) clade, where Aequidens is paraphyletic to Cichlasoma . Two former Aequidens species are additionally transferred into Krobia ( K. potaroensis , K. paloemeuensis ). 'Aequidens' hoehnei probably represents a unique evolutionary lineage and would thus qualify for a separate generic status. Molecular data are yet not available for this species and its generic status requires further study. Relationships between the three suprageneric clades and between Acaronia and Krobia could not be convincingly resolved with our data set of two mitochondrial (16S and cyt b ) and two nuclear (S7 and RAG1) molecular markers and 96 morphological characters.  相似文献   

12.
The contrasting distribution of species diversity across the major lineages of cichlids makes them an ideal group for investigating macroevolutionary processes. In this study, we investigate whether different rates of diversification may explain the disparity in species richness across cichlid lineages globally. We present the most taxonomically robust time-calibrated hypothesis of cichlid evolutionary relationships to date. We then utilize this temporal framework to investigate whether both species-rich and depauperate lineages are associated with rapid shifts in diversification rates and if exceptional species richness can be explained by clade age alone. A single significant rapid rate shift increase is detected within the evolutionary history of the African subfamily Pseudocrenilabrinae, which includes the haplochromins of the East African Great Lakes. Several lineages from the subfamilies Pseudocrenilabrinae (Australotilapiini, Oreochromini) and Cichlinae (Heroini) exhibit exceptional species richness given their clade age, a net rate of diversification, and relative rates of extinction, indicating that clade age alone is not a sufficient explanation for their increased diversity. Our results indicate that the Neotropical Cichlinae includes lineages that have not experienced a significant rapid burst in diversification when compared to certain African lineages (rift lake). Neotropical cichlids have remained comparatively understudied with regard to macroevolutionary patterns relative to African lineages, and our results indicate that of Neotropical lineages, the tribe Heroini may have an elevated rate of diversification in contrast to other Neotropical cichlids. These findings provide insight into our understanding of the diversification patterns across taxonomically disparate lineages in this diverse clade of freshwater fishes and one of the most species-rich families of vertebrates.  相似文献   

13.
Host-parasite coevolution is one of the main topics of the evolutionary biology of host-parasite associations. The majority of monogeneans parasitizing fish exhibit a high degree of host specificity. As a result, their evolutionary history might be intertwined with that of their fish hosts. The Cichlidae represent a diverse group of secondary freshwater fish with disjunctive distribution. Host-specific dactylogyrid monogeneans commonly parasitize cichlid fish. Their high diversity is associated with the main areas of cichlid distribution, i.e., Neotropical America and Africa. Nevertheless, the parasite fauna of cichlids from Neotropical America is still underexplored. A total of 31 cichlid species were examined for the presence of monogeneans, with 20 of them being parasitized. On these cichlids, 30 monogeneans belonging to the genera Gussevia, Trinidactylus, and Scadicleithrum were identified, 17 of them potentially representing new species for science. Phylogenetic analyses revealed three monophyletic groups of Neotropic cichlid monogeneans. Genus Gussevia was monophyletic, while Sciadicleithrum resulted polyphyletic. Sciedicleithrum from South America and Sciadicleithrum from Mexico represented two divergent lineages. The plesiomorphic Neotropical cichlid host group for dactylogyrid monogeneans was Cichlini, from which the representatives of other Neotropical cichlid tribes were colonised. Cophylogenetic analyses revealed a statistically significant cophylogenetic signal in the investigated host-parasite system, with host switch and duplication representing the main coevolutionary events for monogeneans parasitizing Neotropical cichlids. This scenario is in accordance with previous studies focussed on dactylogyridean monogeneans parasitizing freshwater fish in Europe and Africa.  相似文献   

14.
A molecular phylogenetic analysis recovers a pattern consistent with a drift vicariance scenario for the origin of Greater Antillean cichlids. This phylogeny, based on mitochondrial and nuclear genes, reveals that clades on different geographic regions diverged concurrently with the geological separation of these areas. Middle America was initially colonized by South American cichlids in the Cretaceous, most probably through the Cretaceous Island Arc. The separation of Greater Antillean cichlids and their mainland Middle American relatives was caused by a drift vicariance event that took place when the islands became separated from Yucatan in the Eocene. Greater Antillean cichlids are monophyletic and do not have close South American relatives. Therefore, the alternative hypothesis that these cichlids migrated via an Oligocene landbridge from South America is falsified. A marine dispersal hypothesis is not employed because the drift vicariance hypothesis is better able to explain the biogeographic patterns, both temporal and phylogenetic.  相似文献   

15.
The carnivorous plant family Sarraceniaceae comprises three genera of wetland-inhabiting pitcher plants: Darlingtonia in the northwestern United States, Sarracenia in eastern North America, and Heliamphora in northern South America. Hypotheses concerning the biogeographic history leading to this unusual disjunct distribution are controversial, in part because genus- and species-level phylogenies have not been clearly resolved. Here, we present a robust, species-rich phylogeny of Sarraceniaceae based on seven mitochondrial, nuclear, and plastid loci, which we use to illuminate this family's phylogenetic and biogeographic history. The family and genera are monophyletic: Darlingtonia is sister to a clade consisting of Heliamphora+Sarracenia. Within Sarracenia, two clades were strongly supported: one consisting of S. purpurea, its subspecies, and S. rosea; the other consisting of nine species endemic to the southeastern United States. Divergence time estimates revealed that stem group Sarraceniaceae likely originated in South America 44-53 million years ago (Mya) (highest posterior density [HPD] estimate = 47 Mya). By 25-44 (HPD = 35) Mya, crown-group Sarraceniaceae appears to have been widespread across North and South America, and Darlingtonia (western North America) had diverged from Heliamphora+Sarracenia (eastern North America+South America). This disjunction and apparent range contraction is consistent with late Eocene cooling and aridification, which may have severed the continuity of Sarraceniaceae across much of North America. Sarracenia and Heliamphora subsequently diverged in the late Oligocene, 14-32 (HPD = 23) Mya, perhaps when direct overland continuity between North and South America became reduced. Initial diversification of South American Heliamphora began at least 8 Mya, but diversification of Sarracenia was more recent (2-7, HPD = 4 Mya); the bulk of southeastern United States Sarracenia originated co-incident with Pleistocene glaciation, <3 Mya. Overall, these results suggest climatic change at different temporal and spatial scales in part shaped the distribution and diversity of this carnivorous plant clade.  相似文献   

16.
Mesoamerica, defined as the broad linguistic and cultural area from middle southern Mexico to Costa Rica, might have played a pivotal role during the colonization of the American continent. The Mesoamerican isthmus has constituted an important geographic barrier that has severely restricted gene flow between North and South America in pre-historical times. Although the Native American component has been already described in admixed Mexican populations, few studies have been carried out in native Mexican populations. In this study, we present mitochondrial DNA (mtDNA) sequence data for the first hypervariable region (HVR-I) in 477 unrelated individuals belonging to 11 different native populations from Mexico. Almost all of the Native Mexican mtDNAs could be classified into the four pan-Amerindian haplogroups (A2, B2, C1, and D1); only two of them could be allocated to the rare Native American lineage D4h3. Their haplogroup phylogenies are clearly star-like, as expected from relatively young populations that have experienced diverse episodes of genetic drift (e.g., extensive isolation, genetic drift, and founder effects) and posterior population expansions. In agreement with this observation, Native Mexican populations show a high degree of heterogeneity in their patterns of haplogroup frequencies. Haplogroup X2a was absent in our samples, supporting previous observations where this clade was only detected in the American northernmost areas. The search for identical sequences in the American continent shows that, although Native Mexican populations seem to show a closer relationship to North American populations, they cannot be related to a single geographical region within the continent. Finally, we did not find significant population structure in the maternal lineages when considering the four main and distinct linguistic groups represented in our Mexican samples (Oto-Manguean, Uto-Aztecan, Tarascan, and Mayan), suggesting that genetic divergence predates linguistic diversification in Mexico.  相似文献   

17.
Through the examination of past and present distributions of plants and animals, historical biogeographers have provided many insights on the dynamics of the massive organismal exchange between North and South America. However, relatively few phylogeographic studies have been attempted in the land bridge of Mesoamerica despite its importance to better understand the evolutionary forces influencing this biodiversity 'hotspot'. Here we use mitochondrial DNA sequence data from fresh samples and formalin-fixed museum specimens to investigate the genetic and biogeographic diversity of the threatened Mesoamerican spiny-tailed lizards of the Ctenosaura quinquecarinata complex. Species boundaries and their phylogeographic patterns are examined to better understand their disjunct distribution. Three monophyletic, allopatric lineages are established using mtDNA phylogenetic and nested clade analyses in (i) northern: México, (ii) central: Guatemala, El Salvador and Honduras, and (iii) southern: Nicaragua and Costa Rica. The average sequence divergence observed between lineages varied between 2.0% and 3.7% indicating that they do not represent a very recent split and the patterns of divergence support the recently established nomenclature of C. quinquecarinata, Ctenosaura flavidorsalis and Ctenosaura oaxacana. Considering the geological history of Mesoamerica and the observed phylogeographic patterns of these lizards, major evolutionary episodes of their radiation in Mesoamerica are postulated and are indicative of the regions' geological complexity. The implications of these findings for the historical biogeography, taxonomy and conservation of these lizards are discussed.  相似文献   

18.
Vitis L. (the grape genus) is the economically most important fruit crop, as the source of grapes and wine. Phylogenetic relationships within the genus have been highly controversial. Herein, we employ sequence data from whole plastomes to attempt to enhance Vitis phylogenetic resolution. The results support the New World Vitis subgenus Vitis as monophyletic. Within the clade, V. californica is sister to the remaining New World Vitis subgenus Vitis. Furthermore, within subgenus Vitis, a Eurasian clade is robustly supported and is sister to the New World clade. The clade of Vitis vinifera ssp. vinifera and V. vinifera ssp. sylvestris is sister to the core Asian clade of Vitis. Several widespread species in North America are found to be non‐monophyletic in the plastome tree, for example, the broadly defined Vitis cinerea and V. aestivalis each needs to be split into several species. The non‐monophyly of some species may also be due to common occurrences of hybridizations in North American Vitis. The classification of North American Vitis by Munson into nine series is discussed based on the phylogenetic results. Analyses of divergence times and lineage diversification support a rapid radiation of Vitis in North America beginning in the Neogene.  相似文献   

19.
Haplochromine cichlids form the most species-rich lineage of cichlid fishes that both colonized almost all river systems in Africa and radiated to species flocks in several East African lakes. The enormous diversity of lakes is contrasted by a relatively poor albeit biogeographically clearly structured species diversity in rivers. The present study analyzed the genetic structure and phylogeographic history of species and populations of the genus Pseudocrenilabrus in Zambian rivers that span two major African drainage systems, the Congo- and the Zambezi-system. The mtDNA phylogeny identifies four major lineages, three of which occur in the Congo-system and one in the Zambezi system. Two of the Congo-clades (Lake Mweru and Lunzua River) comprise distinct albeit yet undescribed species, while the fish of the third Congo-drainage clade (Chambeshi River and Bangweulu swamps), together with the fish of the Zambezi clade (Zambezi and Kafue River) are assigned to Pseudocrenilabrus philander. Concerning the intraspecific genetic diversity observed in the sampled rivers, most populations are highly uniform in comparison to lacustrine haplochromines, suggesting severe founder effects and/or bottlenecking during their history. Two bursts of diversification are reflected in the structure of the linearized tree. The first locates at about 3.9% mean sequence divergence and points to an almost simultaneous colonization of the sampled river systems. Subsequent regional diversification (with about 1% mean sequence divergence) occurred contemporaneously within the Kafue River and the Zambezi River. The clear-cut genetic biogeographic structure points to the dominance of geographic speciation in this lineage of riverine cichlid fishes, contrasting the importance of in situ diversification observed in lake cichlids.  相似文献   

20.
Chrysosplenium (Saxifragaceae) consists of 57 species widely distributed in temperate and arctic regions of the Northern Hemisphere, with two species restricted to the southern part of South America. Species relationships within the genus are highly problematic. The genus has traditionally been divided into two groups, sometimes recognized as sections (Oppositifolia and Alternifolia), based on leaf arrangement, or, alternatively, into 17 series. Based on morphological features, Hara suggested that the genus originated in South America and then subsequently migrated to the Northern Hemisphere. We conducted phylogenetic analyses of DNA sequences of the chloroplast gene matK for species of Chrysosplenium to elucidate relationships, test Hara's biogeographic hypothesis for the genus, and examine chromosomal and gynoecial diversification. These analyses revealed that both sections Oppositifolia and Alternifolia are monophyletic and form two large sister clades. Hence, leaf arrangement is a good indicator of relationships within this genus. Hara's series Pilosa and Macrostemon are each also monophyletic; however, series Oppositifolia, Alternifolia, and Nepalensia are clearly not monophyletic. MacClade reconstructions suggest that the genus arose in Eastern Asia, rather than in South America, with several independent migration events from Asia to the New World. In one well-defined subclade, species from eastern and western North America form a discrete clade, with Old World species as their sister group, suggesting that the eastern and western North American taxa diverged following migration to that continent. The South American species forms a clade with species from eastern Asia; this disjunction may be the result of ancient long-distance dispersal. Character mapping demonstrated that gynoecial diversification is dynamic, with reversals from inferior to half-inferior ovaries, as well as to ovaries that appear superior. Chromosomal evolution also appears to be labile with several independent origins of n = 12 (from an original number of n = 11) and multiple episodes of aneuploidy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号